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1. Introduction

Within the framework of dynamic equations, solution
stability is broadly acknowledged as one of the most
significant and fascinating qualitative attributes. Among
the various types of stability, Ulam stability has garnered
notable attention owing to its theoretical significance and
broad range of applications. Both differential and
difference equations are covered by numerous stability
theories see, ([1-4]) and ([5, 6]). Ulam stability refers to
the principle that an exact solution may exist near any
approximate solution of a given equation. This concept is
especially significant in scenarios where determining an
exact solution is difficult or impossible through direct
methods. It provides a theoretical foundation for analyzing
approximate solutions and has been widely applied across
different fields of mathematical analysis, especially in
relation to functional and differential equations. The
concept of this form of stability in functional equations
was initially introduced by Ulam [7] and was investigated
after one year by D.H.Hyers [8]. Since that time, many
researchers have actively explored the Ulam stability of
different types of differential and integral equations [9-15].
ILA. Rus [16] introduced four categories of Ulam stability
for

¢ (@) = b(a,Y(a), (1.1)

on both finite and infinite intervals.
He later extended this classification by identifying four
types of Ulam stability for the more general equation

¢(a) = 0(g(@) +b(a,5(a)), (1.2)

in Banach spaces (see [17]).
In [19], Y. Shen analyzed Ulam stability for the equation

*(a) = w(a)¢(a) + h(a), (1.3)

and its adjoint

*(0) = —0(a)3°(a) + b(a), (1.4)
over a finite interval.

In 2021, M. A. Alghamdi et al. [20, 21] employed dynamic
inequalities to derive results concerning the Hyers-Ulam
and Hyers-Ulam-Rassias stability of

3(a) + w(@)3(a) = b(a), (1.5)

and

A(a) = w(@)g(a) +b(a,3(a), 3@@)) +g@).  (1.6)

In 2022, Martin Bohner and Sanket Tikare [22] examined
the Ulam—-Hyers—Rassias stability of

() = w(@)7°(a) + b(a, §(@)). 1.7

Since the late 1990s, significant advancements have
been achieved in the analysis of differential equations and
differential inclusions that incorporate impulsive effects.
These types of equations are widely employed to represent
dynamic systems that undergo abrupt and discontinuous
changes during their evolution. The theory surrounding
such equations has seen significant advancement, with

numerous key books and research articles available (see
[24-31]). Recent years have witnessed considerable
development in the analysis and utilization of impulsive
dynamic equations (see [32, 34-37]). An important aspect
in the analysis of such dynamic systems is the study of
Ulam stability, which provides a foundational framework
for understanding the behavior of approximate solutions in
relation to exact ones. Ulam-type stability is essential for
evaluating the robustness of mathematical models under
small perturbations, especially in impulsive systems where
discontinuities are intrinsic.

In [40], authors introduced the Ulam stability for the
following equations:

() + w(@)7°(a) = b(a, g(a)),
2(ah) = 3a) = L(3a)), (1.8)
{(ap) = A ER.

In [44], the authors investigated stability properties,
including existence, uniqueness, and various forms of
Ulam-type stability for the following equations:

a b
(0) + (@7 (@) = f B(s, 7(=))As + f b(s,4())As,
2ah) - 1(a7) = 1(2(@D)), Lao) = A, (L9)

Motivated by these considerations, the present work
aims to examine the Hyers-Ulam and Hyers-Ulam-Rassias
stability of first-order nonlinear impulsive dynamic
equations defined on a time scale T, described by the
following system:

(@) — w(@7a) = (e, 3(0)), a€S\{a}ieN =
{1.2,......m} c N, 3(af) — 3(a7) = Li(3(ap)),
0(ap) =AER, (1.10)

where S: = [ay, T]y, 0 < ap < T < oo, and ¢:S — R is the
unknown function. The coefficient w:T - R is rd-
continuous and positively regressive, and h: S X R - R is
rd-continuous in the first variable and continuous in its
second. The points {a;}ienx € S, With ay < q; < aj34 < T,
indicates known impulse moments. The limits {(af) =
bli%l+<(ai +b) and {(aj) = bli,%l—qai — b) denote the right

and left limits of € at a;, with {(af") = {(q;) if q; is right-
scattered and {(aj") = {(q;) if q; is left-scattered. Here, 74
denotes the delta derivative, and I;: R — R characterizes
the discontinuity of ¢ at ;.

The structure of the paper is as follows: Section 2
outlines the fundamental definitions and key concepts
needed for the analysis. Section 3 provides auxiliary
results that will be utilized in deriving the main findings.
Section 4 focuses on examining the stability properties of
(1.1) over finite intervals of the time scale. Lastly, Section
5 concludes with an illustrative example demonstrating the
theoretical results.

2. Preliminaries
This section recalls key results from time scale calculus
that will be used throughout this work (see [41, 42]).

Definition 2.1 A time scale T is any nonempty closed
subset of R. For any q € T, the following are defined:
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* The forward jump operator: o(q) = inf {z € T:z > q};
* The backward jump operator: p(q) = sup{z € T:z < q};
* The graininess function: pu(q) = o(q) — g.

Definition 2.2 A point q € T with infT < q < supT is
classified as follows:

* Right-scattered if 6(q) > q;
* Left-scattered if p(q) < q;
« Right-dense if o(q) = q;

* Left-dense if p(q) = g.

Definition 2.3 A function Q: T - R is rd-continuous,
written as Q € C.4(T, R), if it is continuous at right-dense
points and has left limits at left-dense points of T.

Definition 2.4 For a time scale T, define

¢ = {'I[‘\{B}, if T has a left — scattered maximum B,
T, Otherwise.

Definition 2.5 Assume Q: T — R and ¢ € T*. The delta
derivative Q2(¢) is defined (if it exists) as the number
satisfying: v6>0, 3 A=(c—g¢+0)NT, >0 a
neighborhood, such that
[Q(c(9) - Q@) — RA()[0(s) — ]| < klo(s) -z

vz € A

We say Q is delta differentiable on T* if Q2(c) exists for
all g e T*.

Definition 2.6 A function w: T — R is regressive if
14+ p(Qw(g) # 0 Vge T~

Denote by R = R(T) = R(T,R) the set of all rd-
continuous regressive functions and by R* the subset of
functions that are both positively regressive and rd-
continuous.

Definition 2.7 For w € R, the exponential function
e» (s z) on T is given as

({(Slogll + VWO
exp (f TR
e (6, 7): =

kexp (fg w(L) Al),

For w, A € R, define the operations:
OPrA=w+A+pwr, B w=

wOA=w®d (ON.

l), ifu(y) # 0,

ifu(y) = 0.

—w
1+ pw

]

Theorem 2.1 Letw € Randg,,z€ T. Then
i ey(52) = = egu(z9);

ey (z5)

ii. e,(52)e,(z 1) =eu(sV;

iii. e,(0(),2) = (1 + u(9)w(s))e,(s 2);

ew(52z) .
1+u@w(2)’

V. (e,(,2)? = we,(.,2);

Vi. (605" = (6 wey(s,.).

iv. e,(5,0(z)) =

Now, let C(S,R) be the Banach space of all continuous
functions ¢: S — R with

Il ¢ II: = sup|¢(a)].
a€eS
Foreachi € IV, let
Jo:= [ag,a;] and J;: = (a, Qjpq]-
Define the following sets:
PC(S,R):={C: ¢
€ C(J;,R) and T(a"),l(a;) existwith T(aj)
={(ap), 1 € NV},
And
PCL(S,R): = {T € PC(S,R): I* € PC(S,R)}.

Clearly, both PC and PC? constitute a Banach space with
norms:

IS llpe:= max{ll ¢ I}, where Il ¢1I; = sup[¢(a)]

a€fj
and || T llpe1: = max{ll ¢ llpe, II T llpe}-

Definition 2.8 A function { € PC? is considered a solution
of (1.10), if it satisfies:

() — w(@3(@) =b(a,§(@), a € S\{a},i € NV, (2.1)

9(ai) = 3(a) = L(G(a)), Y(a) = A (2.2)

Definition 2.9 Equation (1.10) has Hyers-Ulam stability
(HUS) if 3 Ky, >0 such that for any & >0, every
£ € PC(S, R) satisfying

155(@) — w(a)§(a) = h(a, 5(0)| < 8, a €S \{a;}, (2.3)

15(ai) = §(a) —LGE(a)| <8, 1€, (2.4)

has a solution T € PC1(S, R) to (1.10) such that

[§(a) —Q(a)| < Kyn8, a€S. (2.5)

Here, Ky 5 is referred to as the HUS constant.

Definition 2.10 Equation (1.10) has generalized Hyers-

Ulam stability if 3 Zg, € C(R*,R*) with Z;(0) =0,
such that for any § > 0, every £ € PC1(S, R) satisfying

15%(0) — w(a)§(@) = b(a,5(a) <8, a€S\{a;}, (2.6)
§(ai") = §(ay) — Li(§(ai)| <6, €W, 27
has a solution T € PC1(S, R) of (1.10) such that

§(a) = ¢(a)| < Epx(8), a€S. (2.8)
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Definition 2.11 Equation (1.10) has Hyers-Ulam-Rassias
stability (HURS) with respect to (Q,Y) if 3 Ky q >0
such that for any nondecreasing Q € PC'(S,R*), § > 0,
and Y > 0, every § € PC(S, R) satisfying

[84(a) — w(@)E(a) — b(a,&(@)| < 8Q(a), a € S¥\{a;},
(2.9)

[§(ai") — &(ai) — Li§(ai)| < 8Y, i€V, (2.10)
admits a solution ¢ € PC*(J, R) of (1.10) such that

18(a) — Z(a)] < Kyn0 8(Qa) +Y), a€S. (2.11)
Here, Ky 5 q is referred to as the HURS constant.
Definition 2.12 Equation (1.10) has generalized Hyers-
Ulam-Rassias stability (GHURS) with respect to (Q,Y), if
3 Kpuo >0 such that for any nondecreasing Q€

PCL(S,RY),and Y = 0, every £ € PC(S, R) satisfying

|82(a) — w(@)E(a) — H(a,§(0))]| < Q(a), a € SK\{a;},

(2.12)
8(ai") — §(ai) — LG <Y, i€, (2.13)
admits a solution T € PC*(J, R) of (1.1) such that
[§(a) — C(a)] < Ky o(Q(a) +Y), a€S. (2.14)

Here, Ky 5 q is referred to as the GHURS constant.

Remark 2.1 A function § € PC(S,R) satisfies (2.3) if
and only if there exist g € PCI(S,R) and {g;}icy, both
depending on &, such that:

lg(a)| < 8, Va € Sand |g;| < 8. (2.15)

£4(0) — w(a)§(a) = h(a,§(a)) +g(a), Ya € S“\{a;}.
(2.16)

g(ai") — §(ap) = Li(§(a) + g (2.17)

Remark 2.2 A function £ € PC(S,R) satisfies (2.9) if
and only if there exist w € PC1(S,R) and {w;}ic»- both
depending on &, such that:

lw(a)| < 8Q(a), Va € S and |w;| < 8. (2.18)

&4(0) — w(a)¥(a) = h(a, §(a)) + w(a), a € S\{a;}.
(2.19)

&(a) —&(ai) = L;Gg(ap) + w;. (2.20)

The inequalities (2.6) and (2.12) can be treated using
similar arguments.

3. Auxiliary Result
In the following lemma, we derive the solution of
Equation (1.10) in the absence of impulsive effects.

Lemma 3.1 Let ¢, €T, AER, w € R(S,R), and b €
Cq(S X R,R). Then the solution ¢ to the initial-value
problem

%(a) — w(a)l(a) =h(a,i(a)), a€S,
Ua,) = A, (3.1)

can be written as
3(a) = Aey(a,0.) + f; e (a,0(2)D(z 4(z)Az.  (3.2)
Proof. Equation (3.1) can be reformulated as

3 (a) = w(@[T°(0) — p(@3* (@] +b(a,g(@). (3.3

Hence,

B@[1 + w(@p@)] = o@i’(@) +b(a, @), (34)

SO We can write

(@) + (© w)(a){°(a) = X _ (3.5)

1+w(@u@’

Multiplying (3.5) by eg,(a, ay), We get

L)Y a) = et
(Teoulr 802 (@) = e (@ ap) Tt (36)

Integrating (3.6) from a, to a yields

d(@)ege(a ap) _( Egig)eem(%x ap) =
a b(z,((z
fao er(Z, (10) WAZ (37)

Multiplying (3.7) by e, (a, ay) yields

_ a h(z.4(2)
3(a) = Aey(a,a0) + J,_€w(a,2) T@em A% (3.8)
From the properties of the exponential function, it follows
that

3(a) = Aey(0,a0) + J; eu(a,0(2)h(z §(2)0z.  (3.9)

Remark 3.1 Using Lemma 3.1, the solution of Equation
(1.10) in the presence of impulses can be represented by

U(a) = Aey(a,ap) + f: e(a,06(2))b(z 1(2))Az +
Za°<ai<a € (Cl, ai) Ii(((ai_))' Va€T. (3-10)

This formula extends the solution in the non-impulsive
case by adding the sum of terms representing the
cumulative effect of the impulses at points a;. Each
impulse contributes a jump term weighted by the
exponential function e,,.

4. Main results

This section focuses on the examination of Ulam
stability for the impulsive dynamic equation (1.10), where
we begin by stating some essential assumptions:

(C,) w € R*(S, R).
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(C,) HhEeC4(SxR,R) satisfies a Lipschitz condition
with Iy € C(S,R*), i.e.,

[5(a,) = h(a, D) < ly(a)[t— 1] YVaESand,T€R.
4.2

Define Ij: = sup I (a).
a€ES

(C3) I R = Riis such that

|Ii(L(ai_)) - Ii(‘t(ai_))| <ljft—t| YyT€ERandi€ N.
4.2)
with 1;, > 0.

(C,) Provided that Q € PC(S, R) is a nondecreasing, there
exists some 1 > 0 such that

[} 0@)Az <190(a) Va€S. (4.3)

(Cg) Let

0 < E, = suple,(a,a(z))| < oo. 4.9
Z,a€]

(Cg) Let

0<Ey= 3 les(aa)|<o. (45)
ap<aj<a

Theorem 4.1 Consider the equation (1.10). Under
assumptions (C;) — (Cy), the following hold:

m
i If Egly(T —a.) + Eg, X 1i; <1, then (1.10) possesses
i=1

a unique solution ¢ € PC(S, R)
with initial condition ¢(a,) = A forany A € R.

ii. Equation (1.10) has Hyers-Ulam stability, and the HUS
constant is Kyy = [Eu(T—a.) +E,m][] (1+
IEN

Emilli)eEwl; (T' ao) .

iii. Equation (1.10) possesses Hyers-Ulam-Rassias stability
with respect to (Q,Y), and the HURS constant is

Kon,a:= (Eplg + Eqm) [T (1 + Eg li)eg, 2 (T, a.).
. iewn b

Proof. i. Let A € R be fixed, and provide a definition of
the operator
G:PCY(S,R) » PCL(S,R) by

G[T](@): = ew (e, a.)A + [ ey (a,0(2)h(z 4(2))Az +
Y eo(@a)hiE). (4.6)

a,<aj<a

Based on Remark 3.1, the fixed points of G can be
identified as the solutions of (1.10). We proceed to verify
the existence of a fixed point by employing the contraction
mapping principle. For any ,§ € PC1(S,R), it follows
that

IG[Z](a) — GEl(a)| <
lew (@, a)I|A = Al + [ leq (0, 0(2)11(z §(2)) —
HCHONE A <§£<a lew (@ a)[11;(8(ai) — L (§(ai))]

(4.7)
(C2),(C3) o
< By [ @R - ¥z +
. <§<a lee (@, a) [l 1(SCai ) — Glai))I (4.8)

S Ely((T—a) +Ey; X 1) 1T—=8&llpct. (4.9)

aj

Hence, for all {, € € PC(S, R), we get

1G] = GIE] et < (Bly(T = 0.) + By X 1) 1S -

E llper. (4.10)

Since

(Eoly(T — a,) + Eg, » ) <1, (4.11)
i=1

then the operator G is a contraction on PC(S,R).
Accordingly, G possesses a unique fixed point €
PCL(S, R), which is the unique solution of (1.1) satisfying
¢"(a,) = A.

ii. Let & e PCI(S,R) fulfill (2.3) and let { € PC*(S,R)
represent the unique solution of (1.10) with {(a,) =

¢(a,) = A. By assumption (C;) and Remark 3.1, T can be
expressed as

{(a) = e, (a,a.)é(a,) + faa ew(a,0(2)h(z U(2))Az +
Y eu(aa)li(C(ai)), VGES. (4.12)

a,<aj<a

Now, since & fulfills (2.3), by Remark 2.1 it is possible to
write

58(a) — w(@)8(a) = b(a,5(a)) +g(a), Va € Sk\{a;},

(4.13)
and
§(ai) —§(a) = L) + g, 1EN, (4.14)
where
[g(a)] <6, Va€eS and |g;| <5, VieWN. (4.15)
Thus

Ea) = (e a)i(@) + J; ey (a,0(2)[b(zE@) +
g(2)]Az
+ 2 e(@a)iG@) +g) (4.16)
= €,(0,0.)8(a,) + [, e (0,0(2))b(2 §(2))Az +
[y eo(@o(@e@z + T eu(@a) (i) +

X ey(aa)g; (4.17)

a,<aj<a
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This gives
[5(0) — ew (@, a.)8(a,) + J; ew(a,0(2))b(2 §(2))Az —
Y ep(aa)liE(a)] (4.18)

a.<aj<a

< Jy lew(a,0(2)1g(2)|Az + X leo(@apligl| (4.19)

SE,S[ Az+Ew; ¥ gl (4.20)
° a,<aj<a

<E,8(a—a,)+ Ewymd (4.21)

< §[E,(a—a.) + E,m]. (4.22)

Now, for a € S, we may write

HOBX(OIE

18(a) — ew (0, a)E(a.) = [ ew(a, 0(2)D(z {(2))Az +

J; ew(a,0(2)b(z §(2))A2 — [ ey (e, 0(2))b(z §(2))Az —
E_ea@ah@@N+ T eo(@ (@) -

a,<aj<a

Y eu(aa)kE(an)] (4.23)

a,<aj<a

< I5(@) — e (6,050 - |

a

e, (0,0(2))h(z §(2))Az

- X aem(a.ai)li(i(af))lﬂa 2 aem(a:ai)li@(ai_))

a,<aj< <gj<

= D eu@aGENI+1 [ (@ 0@ i@

a.<gj<a

— [ ew(a,0(2)h(z ()| (4.24)
(4.22)

< 8E,(a—a)+E,m]+
I lew (a, 021Dz §(2)) — b(z 3(2)]Az +

T _lew(@a)lliG@) = @) (4.25)

a.<aj<a

(C2).(C3)
< S[Ey(a—a)+E,m]+

I y(@)lew (e, 0(2)1E(2) = §(2)|Az +
% Iileo (@ a)lfg(ar) — §(a)l (4.26)

a.<aj<a

< 8[Eq(a = a,) + Egm] + [ Eyly(2)§(2) — §(2)]Az +
2 _, Borliléa) = §(an)l- (4.27)

a,<aj<a

In light of [40, Theorem 3.1], it follows from (4.18) that

[§(a) = ¢(0)| < 8[Ep(a—a) +Eym] I (1+

a,<aj<a

Eyilieg,, (0 a0) (4.28)

< S[E, (T —a,) + E,,m] ‘]e'[N 1+ Ewilli)eEmlg (T,a,)
1
(4.29)

< 8Ky, (4.30)

Where
Ky n = [Eo(T — a.) + E,,;m] [[N 1+
1€
Emil,i)eﬁml;J (T, a,). Then (1.10) is Ulam-Hyers stable.

iii. Let &€ PCI(S,R) fulfill (2.9), and let T € PCL(S, R)
represent the unique solution of (1.10) that satisfies
U(a,) = &(a,) = A. Then in view of (C;), Remark 3.1
enables us to express

3(a) = eu(a,a.) + [ ey (a,0(2)h(z §(2)Az +
Y eo(@a)hE@). (4.31)

a,<aj<a

Given that, & € PC(S, R) fulfills (2.5) by Remark 2.2, it
is possible to write

58(a) — w(a)8(a) = h(a,5(a)) + w(a) Va € S\{aj},

(4.32)
and
&(af) —&(a) = LiGg(ay)) +w;, i€EN, (4.33)
Where

[w(a)| < 6Q(a), Va€S, and |w;| < 8Y, VieN,
(4.34)

SO
§a) =ey(aa.)8(a.) + faa e, (a,0(2))[b(z §(2)) +
w@)Az+ ¥ e,(aa)(L(E))) + w;) (4.35)

a,<aj<

= €4,(0,a.)8(a.) + [ ew(a,0(2)b(z §(2)Az +
[l es(@o@)w@bz+ T e,(aa)liE@) +

2 eu(aa)w; (4.36)

a,<aj<a

S0
18(a) — ew, (0, a)E(a.) + [ e, (0, 0(2))b(z §(2))0z —
Y ew(@a)EE) < J; lew (s 0(2)|Iw(2)|Az +

a.<aj<a

2 leg(aa)]lwil (4.37)
6. <gj<a
<E,8[ Q@Az+E, ¥ &Y (4.38)

° w,<aj<a

Cy
< E,,810Q(c) + mE,, 8Y (4.39)
= 8(E,loQ(c) + E,,mY). (4.40)

Now, for a € S, we can write
[8(a) — ()| = .
15(a) — e, (0, a)8(an) + J ew(a,0(2))b(z ¢(2))Az +

[} ew(a,0(2))b(2 5()Az —
i ea(00@)p(zE@)Az = ¥ enlo,a)h@a) +

. %}_Q e, (a,a)li(E(ai)) — . §<; INCENAECS)]

(4.41)

< JE(@) — e (@, 0.)E(.) + f

a

ew(a,0(2))b(z 8(2))Az
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- X ep(a o))+

| T @GN = T e@aGE@)l+

| ew(a,06(2))h(z, §(2)Az — [ e, (a,0(2))b(z {(2)Az]

(4.42)

(4.40)

< 8(EylpQ(a) + E,,mY) +
I lew (@, 0(@))115(z §(2)) — bz §(2)|Az +
I leo(@aplIi@(e) — iG@) (4.43)
C2,C3

< 8(EloQ(a) + E,mY) +
I 1) lew (0, 0(2))|18(2) — Y(2)]Az +

% Iile (e a)lga) — §a)| (4.44)

. <aj<a

< 8(EplaQ(a) + E,mY) + faa Eyly(2)18(z) — §(2)|Az +
Y Eylyl(ar) = §(a)I- (4.45)

a,<aj<a

According to [40, Theorem 3.1] we can write for all
a=a,

() = 8(0)] < 8(Eylaf(a) + E,mY) I (1+

a,<aj<a

Emilli)eEmlb (al ao) (446)

< (Bolg + Eom)(2(a) +Y) 1 (1 +Eyli)eg,; (T, a.)
iEN
(4.47)

< Ky 0(Q(a) + Y)§, (4.48)

where
Ky v a:= (Eulg + Eqm) HN (1 +Eglpeg,r; (T, a0,
1€.

which establishes that equation (1.10) exhibits Hyers-
Ulam-Rassias stability relative to (Q,Y).

Corollary 4.1 Suppose the equation (1.10). In light of the
assumptions  (C;) — (Cg), equation (1.10) exhibits
generalized Hyers-Ulam stability.

Proof. According to the proof of Theorem 4.1, we have
HUS constant as

Ky = [Eo(T —a2) + Egm] [T (1+ Eg/ler,(T,0.),
1

(4.49)
if we take Ep 5 = 8Ky 5, SO
Eb,N(S) =
8[Ew(T = 0.) + Egym] [T (1+ Ew i )eg, (T, 0.,
1
(4.50)

thereby concluding the proof.

Corollary 4.2 Suppose the equation (1.10). In light of the
assumptions  (C;) — (C¢), equation (1.10) exhibits
generalized Hyers-Ulam-Rassias stability relative to
(Q,Y), where the GHURS constant is given by

(Emlﬂ + Eu)im) H (1 + Emilli)eEle(T! a°)'
ieENV

Proof. Choosing 6 = 1 in the proof of part iii of Theorem
4.1 immediately yields the
stated conclusion.

5. Application
This section presents an example to demonstrate the main
results obtained in our study.

Example 5.1. Consider T = [0,2] U [3,4] and a, =0,
T=4a, = % and a, = 3. Then, take S: = [0,4]y. Let us
study the impulsive dynamic problem

A(a) — 2a) = —— (22 :
P -0 = 55 @E@ +3)2 +a

1
a € [0,4]T\{ay, a2, (ai) = Tlax) = (i),
k =1,2,4(0) =0, (5.1)

as well as its related inequality

1

168(a) — £(a) — 255 (B2(@) +3)7 —a < €,a € [04]¥\(ay, a2},

[§(a) — §(ap) — 8@l <€ k=12
(5.2)

Here, w(a)=1, for which 14 p(a)w(a) >0,
B(a,4(0)) = 55 (P (@) + 3)z + a, that verifies (C,) with

Iy = s and I (3(a)) = $3(ax) that verifies (Cs) with

I, = % With these values, we obtain

k

E, = sup |ey(a,0(2)|=e* (5.3)
7,0€[0,4]7

e (T,0y) = e, (4,2) = Ve, (5.4)

e,(T,a;) =e,(4,3) =e (5.5)

This leads to

Eolp(T — a.) + e (T, ap)ll, + [e (T, ax)lly, =

414 Ve ,e_ 4 Ve e
et s U-0+ -+ =+ +o<1 (5.6)

Therefore, all the assumptions of Theorem 4.1 are
fulfilled. Hence, (5.1), possesses a unique solution, which
can be represented as follows

1

4(@) = Jy ew(@0(@) (5 ((2(a) +3)2 + 2)Az +

7_ -
ew(a,g)@ﬂm(a, X2, ae o4} (5.7)
Next, let €€ PCI(S,R) act as a solution to (5.2).
According to Remark 2.1, it follows that there exists
g€ PCY(S,R) and g;,g, ER with |g(a)] <8 and
lg1]l <8, |g2| < 6 such that

1 1
g4 () —%(a) = 369 (& (@) +3)z + a+g(a),

a € [0,4]8{ay, a2}, &(af) — &(ai) = E(Z—k) + g
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k=12 (5.8)

In view of Remark 3.1, the unique solution of (5.8) is
represented by

§a) = J; ew(a U(Z))( 5 & () + 3)7 + 2+ g(2)z

7 z( £
+g2), a€[04]f

(5.9)

tee(a;

Now, from (5.7) and (5.9), it follows that

8() = 3@ = | [; ewla, G(Z))[( ;@ + 3)7 +2) —

(o5 (@) +3): + D18z +e1(a, 7)[‘“ D _6)

e HEL L4 ] + [} e1(a, 0(2)g(2)A7)
(5.10)

g+

< Jy les(a,6@)] 3515 — (@182 + ler (@ )IECG ) -
3G I+ len(@3)EBY) = 3B + les (e, )l gl +
les(a,3)1g1 + J; les (o, 0(@)]Ig()|Az (5.11)

v 8@ — @bz + VelsC ) —1C )l +

e|E(3 ) —1(3" )|+6\/—+e8+8f0 lew,(a,6(2))|Az
(5.12)

< &Ve + ed + Se* a+f —|E(z)—§(z)|Az+
\/_IE(; )—Z(2 ) +el§(37) =3I (5.13)

According to [40, Theorem 3.1], we have with a(a) =

(We+e+e*)s, w(z) =
have that

, and b —ez i=1,2,sowe

[&(a) —(a)] < 8(Ve+e+e*a)(1 +Ve)(1 +
e)e%(a, 0), a=0. (5.14)

Hence,

[£(a) — Ya)] < (Ve + e +4et)(1+e)(1 +
e)e%(4,0), a € [0,4]y, (5.15)

this implies that (5.1) possesses Hyers-Ulam stability with
HUS constant (ve + e + 4e*)(1 +Ve)(1 + e)e 1 _(4,0).
3ed

6. Conclusion

This work presents a thorough investigation into Ulam-
type stability with respect to a class of first-order nonlinear
dynamic equations with impulses, defined over finite in-
tervals of time scales. By employing fixed point theory
particularly the Banach contraction principle alongside
generalized integral inequality techniques on, we establish
the existence as well as the uniqueness of solutions under
appropriate conditions. Additionally, we derive explicit
estimates that describe the stability behavior of approxi-
mate solutions relative to exact ones. These results offer a
solid theoretical foundation for understanding the stability
characteristics of impulsive dynamic systems and contrib-

ute valuable analytical tools for investigating hybrid mod-
els that exhibit both continuous and discrete dynamics
with instantaneous changes.

Future research could extend these findings in several
directions. One promising avenue is the study of impulsive
dynamic systems with time delays or state-dependent im-
pulses, which frequently arise in biological and engineer-
ing applications. Another direction involves exploring
Ulam-type stability in the context of Banach and Hilbert
spaces, allowing the treatment of infinite-dimensional sys-
tems such as partial differential equations with impulses.
Furthermore, the development of numerical algorithms
that effectively capture the stability properties established
in theory would bridge the gap between analytical results
and computational practice. Finally, investigating the in-
terplay between Ulam stability and other stability notions
such as Lyapunov stability or Mittag-Leffler stability could
lead to a more unified framework for analyzing complex
dynamic systems on time scales.
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