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This paper investigates the Hyers-Ulam and Hyers-Ulam-Rassias stability of first-

order nonlinear impulsive dynamic equations defined on finite time scale intervals. 

Stability in the sense of Ulam addresses the behavior of approximate solutions and their 

closeness to exact ones, which is key to the qualitative examination of dynamic systems. 

The aim is to establish sufficient conditions ensuring such stability properties within the 

time scale framework that unifies discrete and continuous cases. To achieve this, we 

utilize tools from time scale calculus combined with an extended integral inequality 

technique to effectively handle impulsive effects. The analysis is carried out using a 

fixed-point approach based on the contraction mapping principle, which guarantees both 

existence and uniqueness of solutions. Explicit stability constants related to Hyers-Ulam 

and Hyers-Ulam-Rassias stability are derived. To validate the theoretical outcomes, an 

illustrative example is included. This study contributes to extending stability theory for 

nonlinear impulsive dynamic equations on time scales, offering a unified perspective for 

both continuous and discrete models.  

Keywords 

Impulsive dynamic equa-

tions 

Time scale 

Ulam stability 

Inequalities 

Graphical abstract 

 

https://ijtar.journals.ekb.eg/


601 International Journal of Theoretical and Applied Research, 2025, 4(1) 

 

1. Introduction 
Within the framework of dynamic equations, solution 

stability is broadly acknowledged as one of the most 

significant and fascinating qualitative attributes. Among 

the various types of stability, Ulam stability has garnered 

notable attention owing to its theoretical significance and 

broad range of applications. Both differential and 

difference equations are covered by numerous stability 

theories see, ([1-4]) and ([5, 6]). Ulam stability refers to 

the principle that an exact solution may exist near any 

approximate solution of a given equation. This concept is 

especially significant in scenarios where determining an 

exact solution is difficult or impossible through direct 

methods. It provides a theoretical foundation for analyzing 

approximate solutions and has been widely applied across 

different fields of mathematical analysis, especially in 

relation to functional and differential equations. The 

concept of this form of stability in functional equations 

was initially introduced by Ulam [7] and was investigated 

after one year by D.H.Hyers [8]. Since that time, many 

researchers have actively explored the Ulam stability of 

different types of differential and integral equations [9-15]. 

I.A. Rus [16] introduced four categories of Ulam stability 

for  

 

                                                                       (1.1) 

 

on both finite and infinite intervals. 

He later extended this classification by identifying four 

types of Ulam stability for the more general equation 

 

                                                             (1.2) 
 

in Banach spaces (see [17]). 

In [19], Y. Shen analyzed Ulam stability for the equation  

 

                                                              (1.3) 

 

and its adjoint  

 

                                                           (1.4)  

over a finite interval. 

In 2021, M. A. Alghamdi et al. [20, 21] employed dynamic 

inequalities to derive results concerning the Hyers-Ulam 

and Hyers-Ulam-Rassias stability of  

 

                                                               (1.5) 

 

and  

 

                                              (1.6) 

 

In 2022, Martin Bohner and Sanket Tikare [22] examined 

the Ulam–Hyers–Rassias stability of 

  

                 (      )                                 (1.7) 

 

Since the late 1990s, significant advancements have 

been achieved in the analysis of differential equations and 

differential inclusions that incorporate impulsive effects. 

These types of equations are widely employed to represent 

dynamic systems that undergo abrupt and discontinuous 

changes during their evolution. The theory surrounding 

such equations has seen significant advancement, with 

numerous key books and research articles available (see 

[24-31]). Recent years have witnessed considerable 

development in the analysis and utilization of impulsive 

dynamic equations (see [32, 34-37]). An important aspect 

in the analysis of such dynamic systems is the study of 

Ulam stability, which provides a foundational framework 

for understanding the behavior of approximate solutions in 

relation to exact ones. Ulam-type stability is essential for 

evaluating the robustness of mathematical models under 

small perturbations, especially in impulsive systems where 

discontinuities are intrinsic. 

In [40], authors introduced the Ulam stability for the 

following equations:  

 

                 (      )    

    
       

     (    
  )                                          (1.8) 

           
 

In [44], the authors investigated stability properties, 

including existence, uniqueness, and various forms of 

Ulam-type stability for the following equations:  

 

                ∫  
 

  

 (      )   ∫  
 

 

 (      )     

    
       

     (    
  )                              (1.9)        

 

Motivated by these considerations, the present work 

aims to examine the Hyers-Ulam and Hyers-Ulam-Rassias 

stability of first-order nonlinear impulsive dynamic 

equations defined on a time scale  , described by the 

following system: 

 

                (      )          {  }     

{            }        
       

     (    
  )    

                                                                     (1.10) 

 

where                       and       is the 

unknown function. The coefficient       is rd-

continuous and positively regressive, and         is 

rd-continuous in the first variable and continuous in its 

second. The points {  }       with               
indicates known impulse moments. The limits     

   
   

    
        and     

      
    

        denote the right 

and left limits of   at   , with     
         if    is right-

scattered and     
         if    is left-scattered. Here,    

denotes the delta derivative, and        characterizes 

the discontinuity of   at   . 

The structure of the paper is as follows: Section 2 

outlines the fundamental definitions and key concepts 

needed for the analysis. Section 3 provides auxiliary 

results that will be utilized in deriving the main findings. 

Section 4 focuses on examining the stability properties of 

(1.1) over finite intervals of the time scale. Lastly, Section 

5 concludes with an illustrative example demonstrating the 

theoretical results. 

 

2. Preliminaries 

This section recalls key results from time scale calculus 

that will be used throughout this work (see [41, 42]). 

 

Definition 2.1 A time scale   is any nonempty closed 

subset of   . For any    , the following are defined: 

  



El-Sharawy et al.     

 • The forward jump operator:          {       }; 
 

 • The backward jump operator:         {       }; 
 

 • The graininess function:            .  

  

Definition 2.2 A point     with             is 

classified as follows: 

  

 • Right-scattered if       ; 

 

 • Left-scattered if       ; 

 

 • Right-dense if       ; 

 

 • Left-dense if       .  

  

Definition 2.3 A function       is rd-continuous, 

written as             if it is continuous at right-dense 

points and has left limits at left-dense points of  .  

 

Definition 2.4  For a time scale  , define 

  

   {
  { }                                     

            
 

  

Definition 2.5  Assume       and     . The delta 

derivative       is defined (if it exists) as the number 

satisfying:     ,                      a 

neighborhood, such that  

| (    )                    |   |      | 

         
 

 We say   is delta differentiable on    if       exists for 

all     .  

 

Definition 2.6  A function       is regressive if 

                        
 

 Denote by               the set of all rd-

continuous regressive functions and by    the subset of 

functions that are both positively regressive and rd-

continuous.  

 

Definition 2.7 For    , the exponential function 

        on   is given as 

  

         

{
 
 

 
    (∫  

 

 

   |          |

    
  )           

   (∫  
 

 

       )           

 

  

 

For      , define the operations: 

                   
  

    
      

            
 

Theorem 2.1  Let     and          . Then 

i.         
 

       
         ; 

 

ii.                       ; 

 

iii.                               ; 

 

iv.            
       

          
; 

 

v.                    ; 

 

vi.                       .  

 

Now, let        be the Banach space of all continuous 

functions       with  

        
   

|    |  

 

For each      let 

  

                               
 

Define the following sets: 

  

         {   
                      

       
                      

  
          }  
And 

          {                    }  
 

Clearly, both    and     constitute a Banach space with 

norms:  

         
     

{    }                 
    

|    |  

               {            }  
 

Definition 2.8 A function       is considered a solution 

of (1.10), if it satisfies: 

  

                              {  }       (2.1) 

  

    
       

          
                                     (2.2) 

  

Definition 2.9  Equation (1.10) has Hyers-Ulam stability 

(HUS) if          such that for any    , every 

           satisfying 

  

|                        |             {  }   (2.3)  

  

|    
       

          
  |                                (2.4) 

 

 has a solution            to (1.10) such that 

  

|         |                                                   (2.5)  

 

 Here,      is referred to as the HUS constant.  

  

Definition 2.10 Equation (1.10) has generalized Hyers-

Ulam stability if                 with        , 

such that for any    , every            satisfying 

  

|                        |             {  }   (2.6)  

  

|    
       

          
  |                               (2.7) 

  

has a solution            of (1.10) such that 

  

|         |                                                 (2.8)  



603 International Journal of Theoretical and Applied Research, 2025, 4(1) 

 

 

 Definition 2.11  Equation (1.10) has Hyers-Ulam-Rassias 

stability (HURS) with respect to       if            

such that for any nondecreasing                   
and    , every            satisfying 

  

|                (      )|                 {  }        

                                                                                    (2.9)  

 

|    
       

          
  |                            (2.10) 

  

admits a solution            of (1.10) such that 

  

|         |                                      (2.11)  

  

Here,        is referred to as the HURS constant. 

  

Definition 2.12 Equation (1.10) has generalized Hyers-

Ulam-Rassias stability (GHURS) with respect to        if 
           such that for any nondecreasing   

           and    , every            satisfying 

  

|                (      )|                {  }                                               

                                                                                    (2.12)  
  

|    
       

          
  |                              (2.13) 

 

admits a solution            of (1.1) such that  

 

|         |                                        (2.14)  

 

Here,        is referred to as the GHURS constant. 

  

Remark 2.1 A function            satisfies (2.3) if 

and only if there exist            and {  }     both 

depending on  , such that: 

  

 |    |   ,      and |  |                                   (2.15) 

 

                                       {  }    
                                                                                    (2.16) 

 

     
       

          
                                       (2.17) 

  

Remark 2.2 A function            satisfies (2.9) if 

and only if there exist            and {  }     both 

depending on  , such that: 

  

 |    |       ,      and |  |                       (2.18) 

 

                                     {  }         
                                                                                    (2.19) 

 

     
       

          
                                      (2.20) 

  

The inequalities (2.6) and (2.12) can be treated using 

similar arguments. 

 

3. Auxiliary Result 

In the following lemma, we derive the solution of 

Equation (1.10) in the absence of impulsive effects. 

 

Lemma 3.1 Let                      and   
          . Then the solution   to the initial-value 

problem  

                                 

        
             (3.1)  

  

can be written as  

 

               ∫  
 

  
                            (3.2)  

 

Proof. Equation (3.1) can be reformulated as 

  

                                              (3.3) 
  

Hence,  

 

                                            (3.4) 
  

so we can write 

  

                   
         

          
                         (3.5)  

 

 Multiplying (3.5) by            we get 

  

            
              

         

          
                 (3.6)  

  

Integrating (3.6) from    to   yields 

  

                              

∫  
 

  
         

         

          
                                           (3.7)  

 

Multiplying (3.7) by          yields  

 

               ∫  
 

  
       

         

          
             (3.8)  

 

From the properties of the exponential function, it follows 

that  

 

               ∫  
 

  
                            (3.9) 

  

Remark 3.1 Using Lemma 3.1, the solution of Equation 

(1.10) in the presence of impulses can be represented by 

 

                ∫  
 

  
  (      ) (      )   

∑                         
                                    (3.10)                  

   

This formula extends the solution in the non-impulsive 

case by adding the sum of terms representing the 

cumulative effect of the impulses at points     Each 

impulse contributes a jump term weighted by the 

exponential function      
 

4. Main results 

This section focuses on the examination of Ulam 

stability for the impulsive dynamic equation (1.10), where 

we begin by stating some essential assumptions: 

  

 (  )          .                                                     
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 (  )              satisfies a Lipschitz condition 

with           , i.e.,  

 

|             |       |   |                                                                   

                                                                                    (4.1)  
    

    Define   
∗     

   
      . 

 

 (  )       is such that  

 

|  (    
  )    (    

  )|     |   |                                                               

                                                                                    (4.2)  

       with      . 

 

 (  ) Provided that           is a nondecreasing, there 

exists some      such that 

  

∫  
 

  
                                                         (4.3)  

  

(  ) Let 

 

        
     

|          |                                  (4.4) 

 

(  ) Let  

 

     
 ∑  

       
|        |                                (4.5) 

 

Theorem 4.1 Consider the equation (1.10). Under 

assumptions          , the following hold: 

  

i. If     
∗          

∑  
   

 

     , then (1.10) possesses 

a unique solution                

with initial condition         for any    . 

 

ii. Equation (1.10) has Hyers-Ulam stability, and the HUS 

constant is                   
  ∏  

   
   

   
         

∗      . 

 

iii. Equation (1.10) possesses Hyers-Ulam-Rassias stability 

with respect to        and the HURS constant is 

                 
  ∏  

   
      

         
∗      .  

 

Proof. i.  Let     be fixed, and provide a definition of 

the operator 

                     by  

 

                   ∫  
 

  
                      

∑  
       

               
                                                (4.6)  

  

Based on Remark 3.1, the fixed points of   can be 

identified as the solutions of (1.10). We proceed to verify 

the existence of a fixed point by employing the contraction 

mapping principle. For any             , it follows 

that  

 

|               |  

|        ||   |  ∫  
 

  
|          ||          

         |   ∑  
       

|        ||       
           

   |                     

         (4.7) 

 

 
         

  ∫  
 

  
     |         |   

∑  
       

|        |   |     
         

   |                      (4.8)         

  

                    
∑  

       
                (4.9) 

 

 Hence, for all               we get  

 

                    
∗          

∑  
   

 

       

                                                                                (4.10) 

 

 Since  

     
∗          

∑  
   

 

                                       (4.11) 

 

 then the operator   is a contraction on         . 

Accordingly,   possesses a unique fixed point  ∗  
        , which is the unique solution of (1.1) satisfying 

 ∗      . 

 

ii.  Let            fulfill (2.3) and let            

represent the unique solution of (1.10) with       
       . By assumption      and Remark 3.1,   can be 

expressed as  

 

                    ∫  
 

  
  (      ) (      )   

∑  
       

               
                                         (4.12) 

  

Now, since   fulfills (2.3), by Remark 2.1 it is possible to 

write 

  

                                        {  }                                              
                                                                                    (4.13) 
  

and 

  

    
       

          
                                 (4.14) 

 

 where 

  

|    |                   |  |                        (4.15) 

  

Thus 

 

                       ∫  
 

  
  (      )[ (      )  

    ]   

 ∑  
       

                
                                    (4.16) 

 

               ∫  
 

  
                      

∫  
 

  
                  ∑  

       
                

    

∑  
       

                                                                  (4.17) 
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 This gives 

 |                   ∫  
 

  
                      

  ∑  
       

               
   |                                         (4.18) 

 

 ∫  
 

  
|          ||    |   ∑  

       
|        ||  |  (4.19) 

 

    ∫  
 

  
      ∑  

       
|  |                                   (4.20) 

 

                                                           (4.21) 

 

               
                                             (4.22)  

 

 Now, for    , we may write 

 

|         |    

|                   ∫  
 

  
                      

∫  
 

  
                      ∫  

 

  
                      

∑  
       

               
    ∑  

       
               

    

∑  
       

               
   |                                          (4.23) 

 |                   ∫  
 

  

                      

 ∑  
       

               
   |  | ∑  

       
               

                                                   

 ∑ 

       

               
   |  |∫  

 

  

                      

 ∫  
 

  
                     |                                    (4.24) 

 

  
      

             
   

∫  
 

  
|          ||                   |   

∑  
       

|        ||       
           

   |                    (4.25) 

 

                                             

 
         

              
   

∫  
 

  
     |          ||         |   

∑  
       

   |        ||    
       

  |                            (4.26)  

 

                                                    

               
   ∫  

 

  
       |         |   

∑  
       

   
   |    

       
  |                                       (4.27) 

 

In light of [40, Theorem 3.1], it follows from (4.18) that  

 

|         |                
  ∏  

       
   

   
         

                                                             (4.28) 

 

               
  ∏  

   
      

         
∗                                                                  

                                                                                    (4.29) 
 

                                                                           (4.30) 

  

Where  

                  
  ∏  

   
   

   
         

∗      . Then (1.10) is Ulam-Hyers stable. 

 

iii.  Let            fulfill (2.9), and let            

represent the unique solution of (1.10) that satisfies 

             . Then in view of     , Remark 3.1 

enables us to express  

 

              ∫  
 

  
                      

∑  
       

               
                                                (4.31) 

 

 Given that,            fulfills (2.5) by Remark 2.2, it 

is possible to write  

 

                                       {  }                                              
                                                                                    (4.32) 
 and  

     
       

          
                                (4.33) 

  

Where 

  

|    |                      |  |                                                            
  (4.34) 

 

 so  

                      ∫  
 

  
                     

        ∑  
       

        (  (    
  )    )             (4.35) 

 

 

               ∫  
 

  
                      

∫  
 

  
                 ∑  

       
               

    

∑  
       

                                                                 (4.36) 

 

so  

|                   ∫  
 

  
                      

    ∑  
       

               
   |  ∫  

 

  
|          ||    |   

∑  
       

|        ||  |                                           (4.37)                                     

 

    ∫  
 

  
          

∑  
       

                               (4.38) 

 
  

              
                                              (4.39) 

 

               
                                              (4.40)  

  

Now, for      we can write   
|         |  

|                   ∫  
 

  
  (      ) (      )   

∫  
 

  
  (      ) (      )   

∫  
 

  
  (      ) (      )   ∑  

       
               

    

∑  
       

               
    ∑  

       
               

   |  

                  (4.41) 

 |                   ∫  
 

  

  (      ) (      )   
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 ∑  
       

               
   |  

 | ∑  
       

               
    ∑  

       
               

   |  

| ∫  
 

  
                      ∫  

 

  
                     |

  

                                                                     (4.42) 

 
      

              
    

∫  
 

  
|          ||                   |   

∑  
       

|        ||       
           

                        (4.43) 

 

                                                         

 
     

              
    

∫  
 

  
     |          ||         |   

∑  
       

   |        ||    
       

  |                            (4.44)                 

 

                
    ∫  

 

  
       |         |   

∑  
       

   
   |    

       
  |                                       (4.45)                        

 

According to [40,  Theorem 3.1] we can write for all 

      

 

|         |                
   ∏  

       
   

   
                                                                      (4.46) 

 

           
          ∏  

   
      

         
∗                                       

                                                                                    (4.47) 
 

                                                                 (4.48)  

  

where  

                 
  ∏  

   
      

         
∗      , 

which establishes that equation (1.10) exhibits Hyers-

Ulam-Rassias stability relative to      .  

  

Corollary 4.1 Suppose the equation (1.10). In light of the 

assumptions          , equation (1.10) exhibits 

generalized Hyers-Ulam stability.  

 

Proof. According to the proof of Theorem 4.1, we have 

HUS constant as 

  

                  
  ∏  

   
      

         
∗                                                

                                                                                    (4.49) 
 

 if we take           , so  

 

        

              
  ∏  

   
      

         
∗                                                             

           (4.50)               
                                                                                     

thereby concluding the proof.  

 

Corollary 4.2  Suppose the equation (1.10). In light of the 

assumptions          , equation (1.10) exhibits 

generalized Hyers-Ulam-Rassias stability relative to 

     , where the GHURS constant is given by 

           
  ∏  

   
      

         
∗      .  

 

Proof. Choosing     in the proof of part iii  of Theorem 

4.1 immediately yields the  

   stated conclusion. 

  

5. Application 

  This section presents an example to demonstrate the main 

results obtained in our study. 

 

Example 5.1.  Consider               and     , 

   ,    
 

 
, and     . Then, take          . Let us 

study the impulsive dynamic problem 

 

           
 

   
         

 
     

          {     }     
       

   
 

 
    

    

                                                                   (5.1) 
                                                                                     

as well as its related inequality  

 

|           
 

   
         

 

   |            
  {     } 

|    
       

   
 

 
    

  |              
                

                                                                                    (5.2) 
  

Here,       , for which             , 

          
 

            
 

   , that verifies      with 

  
∗  

 

     and        
    

 

 
    

   that verifies      with 

    
 

 
. With these values, we obtain  

 

      
          

|          |                                    (5.3) 

  

              
 

 
  √                                          (5.4) 

  

                                                              (5.5) 
 

 This leads to 

  

     
∗       |        |    |        |    

   

   
      

√ 

 
 

 

 
 

 

     
√ 

 
 

 

 
                 (5.6) 

                                                                                    

 Therefore, all the assumptions of Theorem 4.1 are 

fulfilled. Hence, (5.1), possesses a unique solution, which 

can be represented as follows  

 

     ∫  
 

 
           

 

            
 

       

     
 

 
 

 (
 

 

 
)

 
        

     

 
             

                 (5.7) 

 

Next, let            act as a solution to (5.2). 

According to Remark 2.1, it follows that there exists 

           and         with |    |    and 

|  |   , |  |    such that  

           
 

   
         

 
           

  [     
 {     }     
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                                                                              (5.8) 
  

In view of Remark 3.1, the unique solution of (5.8) is 

represented by 

  

     ∫  
 

 
           

 

            
 

           

      
 

 
  

  
 

 

 
 

 
             

     

 
                 

  

                                            

                                                                                    (5.9) 
  

Now, from (5.7) and (5.9), it follows that 

  

|         |  | ∫  
 

 
            

 

            
 

     

 
 

            
 

              
 

 
  

  
 

 

 
 

 
 

  
 

 

 
 

 
     

        
     

 
 

     

 
     ∫  

 

 
                |   

                                                       (5.10) 
 

  ∫  
 

 
|          |

 

   |         |   |     
 

 
 ||  

 

 

 
  

  
 

 

 
 |  |       ||           |  |     

 

 
 ||  |  

|       ||  |  ∫  
 

 
|          ||    |                     (5.11) 

                                                                       

 ∫  
 

 

 

    |         |   √ |  
 

 

 
    

 

 

 
 |  

 |           |   √      ∫  
 

 
|          |     

                                                                                    (5.12) 
 

  √          ∫  
 

 

 

    
|         |   

√ |  
 

 

 
    

 

 

 
 |   |           |                      (5.13) 

 

 According to [40, Theorem 3.1], we have with      

 √         ,      
 

     , and     
 

 ,      , so we 

have that  

 

|         |    √           √     
    

    
                                                                (5.14) 

  

Hence, 

  

|         |    √        (  √ )   

    

    
                                                              (5.15) 

 

 this implies that (5.1) possesses Hyers-Ulam stability with 

HUS constant  √           √         

    
     .  

 

6. Conclusion 

This work presents a thorough investigation into Ulam-

type stability with respect to a class of first-order nonlinear 

dynamic equations with impulses, defined over finite in-

tervals of time scales. By employing fixed point theory 

particularly the Banach contraction principle alongside 

generalized integral inequality techniques on, we establish 

the existence as well as the uniqueness of solutions under 

appropriate conditions. Additionally, we derive explicit 

estimates that describe the stability behavior of approxi-

mate solutions relative to exact ones. These results offer a 

solid theoretical foundation for understanding the stability 

characteristics of impulsive dynamic systems and contrib-

ute valuable analytical tools for investigating hybrid mod-

els that exhibit both continuous and discrete dynamics 

with instantaneous changes. 

Future research could extend these findings in several 

directions. One promising avenue is the study of impulsive 

dynamic systems with time delays or state-dependent im-

pulses, which frequently arise in biological and engineer-

ing applications. Another direction involves exploring 

Ulam-type stability in the context of Banach and Hilbert 

spaces, allowing the treatment of infinite-dimensional sys-

tems such as partial differential equations with impulses. 

Furthermore, the development of numerical algorithms 

that effectively capture the stability properties established 

in theory would bridge the gap between analytical results 

and computational practice. Finally, investigating the in-

terplay between Ulam stability and other stability notions 

such as Lyapunov stability or Mittag-Leffler stability could 

lead to a more unified framework for analyzing complex 

dynamic systems on time scales. 
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