

Original Article

Effects of silverside and sorghum meals on growth performance, proximate composition and histological features of Thinlip Grey Mullet (*Liza ramada*, Risso, 1826) fingerlings

Abdel-Moneim M. Yones^{1*}, Ataallah A. Metwalli¹, Abdel Salam Elbattal¹, El-Sayed I. Attia¹, Hamed H.E. Saleh^{1*}, Yaseen A. Abdel-Tawwab², Mohamed F. A. Abdel-Aziz^{3*}

- ¹National Institute of Oceanography and Fisheries (NIOF), Aquaculture Division, Cairo, Egypt.
- ²National Institute of Oceanography and Fisheries (NIOF), Fisheries Division, Cairo, Egypt.

ABSTRACT

Future aquaculture growing may be constrained by fishmeal availability, which is influenced by environmental factors (such as climate changes). As a result, finding cheap sources of carbohydrates or alternative animal protein has become essential for aquaculture production to be sustainable. A total of 1200 fingerlings of Mullet (*L. ramada*) were obtained from the private farm at Fayoum Governorate and transported to the National Institute of Oceanography and Fisheries (NIOF) to use the local ingredients from silverside and sorghum to replace imported fish meal and yellow corn in mullet diets. The experiment was applied using a completely randomized design. Fingerlings were distributed in twelve fiberglass tanks with a volume of 2 m3 with a stocking density of 100 fingerlings/ tank with an initial average weight of (3.8 ± 0.1g). Four experimental diets were used: Control (D0), which contains fish meal and yellow corn, the second, third, and fourth diets incorporated each silverside and sorghum meals to replace, 50, 75, and 100% (D50, D75 and D100) of fish meal and yellow corn. The results showed that D100 gave the best gain and growth performance, followed by D75 without a significant difference between them. However, less performance was obtained with D0 and D50. The proximate carcass composition and muscle fatty acids contents of fish were not significantly affected by the incorporation of silverside and sorghum meals in mullet diets. In the same trend, the intestinal villi from the experimental groups did not show any changes in the mucosal layer, immune cells, and lymphatic vessels between tested groups. The present results confirmed that the incorporation of 100% silverside and sorghum meals can be used in mullet diets to spare the expensive imported meals from fish meals and yellow corn

Keyword: Mullet, Liza ramada, Fingerlings, Growth performance, Histological features.

1. INTRODUCTION

By 2050, there will be 10 billion people on the earth, indicating that 70–100% more food and meat must be produced to meet demand (FAO, 2020).

The growing greenhouse gas emissions and the scarcity of agricultural land and water provide many obstacles for the world's food production system in satisfying this demand. Due to the scarcity of water in the primary production regions, competition from

plant production, the high cost of conventional feed materials, and the disruptions brought on by climate change, which have a detrimental impact on the supply of certain feed ingredients like fishmeal, new technologies are thought to be required in the production of fish protein. In light of this, new sustainable protein sources will allay these worries (Godfray *et al.*, 2010; Nyachoti *et al.*, 1997).

Correspondence: Abdel-Moneim M. Yones Mail: yones_55200010@yahoo.com 1National Institute of Oceanography and Fisheries (NIOF), Aquaculture Division, Cairo, Egypt

Received: Oct. 20, 2025 Revised: Nov. 5, 2025 Accepted: Nov. 13, 2025

³Department of Aquaculture and Biotechnology, Faculty of Aquaculture and Marine Fisheries, Arish University, Arish, North Sinai, Egypt.

Sorghum is a drought-resistant cereal grain typically cultivated in semi-arid environments. In terms of production and planted area, this grain is rated fifth globally after wheat, corn, rice, and barley (Stamenkovic *et al.*, 2000; Aderolu *et al.*, 2009; Valin *et al.*, 2014).

The production of sorghum reached 59.71 million MT in 2023/2024 (USDA-NASS, 2024), and accounted for 2.2% of global grain production in 2013 (Bean *et al.*, 2016). The United States is considered the main producer of sorghum, with 8.7 million metric tons while Egypt produces to 750 thousand MT. According to Jiddere and, Filli (2015) sorghum is used more than other cereal grains because of its unique qualities, which are useful in poor agricultural conditions.

Additionally, the fact that it is mostly farmed by subsistence farmers, its resilience to wild plants, weather and soil conditions. Sorghum has long been a principal food crop and a major source of protein, energy, and minerals for millions of people in Asia and Africa (Obizoba and Atii et al., 1991; Mohammed et al., 2011). The elaboration of fish diets has included increasing quantities of plant-based ingredients, which are in some cases its exclusive components, justified by their low cost, wide availability, and easiness of acquisition (Guimarães et al., 2008). As a consequence, the food industry has been testing processes to promote higher availability of nutrients in plantbased foods, which due to the presence of phytic acid, tannin, gossypol, and others, inhibit the action of several enzymes, making several minerals unavailable and compromising protein absorption of diets (Bergamin et al., 2013). Though sorghum is a potentially adequate ingredient for diets, it contains anti-nutritional factors like phytic acid, which form stable in vitro complexes with many minerals, thus inhibiting their absorption (Duarte et al., 2011). Low-tannin sorghum has nutrients similar to corn, with higher levels of crude protein and starch, as well as a higher fraction of amylose and a high antioxidant effect (Ratnavathi et al., 2016; Rostagno et al., 2017). However, numerous energy ingredients that may be used in animal diets. Aquaculture's

diversification has been considered for the last decades as one of the major tools for a greater and more sustainable expansion of the sector. Among the different fish species considered for aquaculture diversification, mullets (Family Mugilidae) are great candidates due to their euryhaline, eurythermal, and opportunistic feeding nature, which have propitiated its extensive culture for centuries in different regions worldwide (Quiros-Pozo *et al.*, 2023).

Mullets are—very significant marine species, occupied both fresh water and brackish water and expressed as omnivorous, particularly opportunistic feeders, successful on all accessible foods (El-Dahhar, 2007; El-Dahhar *et al.*, 2013). Egypt is the first country in the world to produce the mullet. However, this fish has not yet been commercially applied hatched. The fry of the grey mullet (*L. ramada*) is collected from natural sources and incubated in nursery ponds for a period of 6 to 12 months (FAO, 2022).

Furthermore, Mullets have been very considerably high fish species due to their high productivity for various types of culturing methods like pond, cage, and pen culture in various parts of the world such as China, Egypt, Italy, and Japan (El-Dahhar *et al.*, 2023).

Grey Mullet (L. ramada) can be farmed in Egypt mainly in polyculture systems because of their high growth rate, tolerance of a wide range of environmental conditions, resistance to disease and stresses, and high ability to benefit from the natural food cycles in the pond and the ability to utilize the formulated pellets, regardless of their protein content (Toutou et al., 2023). The present study was detected to evaluate the effect of incorporation silverside and sorghum meals to replace fish meal and yellow corn on growth performance, proximate composition intestine histology of Mullet (L. ramada) fingerings.

2.Material and Methods

2.1. Ethics approval

All experimental procedures including, rearing, handling, sampling, and euthanasia, followed the guidelines of the Committee for Ethical Care and Use of Animals/Aquatic Animals of the National Institute of Oceanography and Fisheries (NIOF, Egypt) which approved this study with a code (NIOF-IACUC, Code: NIOF-AQ4-F-24-R-021). The authors confirm that all methods were performed in accordance with the relevant guidelines and regulations and that the study is reported in accordance with the ARRIVE guidelines.

2.2.. Fish and experimental design

Thinlip Mullet (*L. ramada*) fingerlings were purchased from the private farm located in Fayoum Governorate, Egypt. Fish were transported to Aquatic Research Station Lab. National Institute of Oceanography and Fisheries, Fayoum, Egypt. Fish were acclimated to laboratory conditions and fed with a commercial feed for 2 weeks before starting the trial. After 24 hours of starvation, 1200 fish (initial body weight $(3.8 \pm 0.1g)$ were randomly selected from the acclimatized fish and allocated into 12 rectangular tanks (size of each pond was 2 m³) in equal number (stocking rate of 50 fish/m³).

Each experimental diet is presented in three-replicates. During the experiment, fish were fed the experimental diets to apparent satiation twice daily (9:00 a.m. and 5:00 p.m.). The water system includes two pumps and upstream sandy filter units at a point between the water source (Earthen pond) and tanks. The pumps were drowning the water to the storage tanks and forced it through polyvinyl chloride (PVC) tubes in to the rearing in open system. The experimental period lasted 120 days after start. Physicochemical properties of water tanks were examined every week according to (APHA, 2005).

2.3. Experimental diets

Four isonitrogenous diets (27% crude protein) were formulated. The control diet (D0) consisted of fish meal and yellow corn as protein and carbohydrate sources. Three experimental diets (D50, D75, D100) were formulated with silverside and sorghum meals were used to substitute 50, 75 and 100% of the fish meal and

yellow corn in the control formulation, respectively.

Table 1 gives the ingredient composition of each of the diets. All diet ingredients were ground to a fine powder by a 150-µm mesh sieve. A suitable amount of water was then added to the powder to create a stiff dough, which was then pelleted using a 2-mm diameter die using a California type pellet mill. The pellets were air-dried and then kept at -20 o C until use.

Table (1). Ingredients and proximate composition of the experimental diets (% DM basis).

Ingredients with % crude	D0	D50	D75	D100
protein				
Fish meal (69.9 % CP)	6.00	3.00	2.00	0.00
Silverside meal (69 % CP)	0.00	3.00	4.00	6.00
Yellow corn (8.1% CP)	32.00	16.00	8.00	0.00
Sorghum meal (9.2% CP)	0.00	16.00	24.00	32.00
Soybean meal (46% CP)	23.00	23.00	23.00	23.00
Gluten meal (62% CP)	10.00	10.00	10.00	10.00
Wheat bran (14.8% CP)	23.80	23.80	23.80	23.80
Fish oil	3.00	3.00	3.00	3.00
Vit. Min. Mix. ¹	2.00	2.00	2.00	2.00
Methionine	0.20	0.20	0.20	0.20
Proximate composition				
Crude protein	27.20	27.40	27.60	27.50
Crude lipid	6.26	6.35	6.36	6.45
Total carbohydrate	61.56	61.20	60.96	60.94
Ash	4.96	5.03	5.06	5.09
Tannin ²	0.06	0.12	0.18	0.24
Gross energy (MJ g ⁻¹ diet) ³	19.83	19.85	19.87	19.87

1-Vitamin, mineral premix (g/kg of mixture): L-ascorbic acid monophosphate-120.0;

L-α-tocopherylacetate-20.0; thiamin hydrochloride-4.0; riboflavin-9.0; pyridoxine hydrochloride-4.0; niacin-36.0; D-pantothenic acid hemicalcium salt-14.5; myoinositol-40.0; D-biotin-0.3; folic acid-0.8; menadione-0.2; retinyl acetate-1.0; cholecalciferol-0.05; cyanocobalamin-0.01; MgSO₄·7H₂O-80.0; Na H 2PO₄·2H₂O-370.0; KCl-130.0; FeSO₄·7H₂O-40.0; ZnSO₄·7H₂O-20.0; Calactate-356.5; CuSO₄-0.2; AlCl₃·6H₂O-0.15; Na₂Se₂O₃-0.01; MnSO₄·H₂O-2.0; CoCl₂·6H₂O-1.0.

- 2- Tannin=percent tannin on a catechin equivalent basis.
- 3- Gross energy (MJ Kg-1 diet) was calculated by using the following calorific values: 23.9, 39.8 and 17.6 KJ g-1 diet for protein, ether extract and nitrogen free extract, respectively (NRC, 1993)

2.4. Chemical analysis

Twenty fish from the same replicate were chosen at random prior to the experiment in order to determine the initial whole-body proximate composition. Fish were starved for a day before sampling at the end of the feeding period. Fish in each tank were weighed and counted for growth performance, feed efficiency and survival evaluation. Twenty fish from each tank were randomly selected and anesthetized with tricaine methane sulfonate (MS-222, 50 mg/L) for individual weight measurements. Then, the fish were quickly dissected for organ and tissue sampling. Finally, twenty fish per tank were randomly collected for determination of final whole-body proximate composition. Dry matter was determined by drying samples in an oven at 105°C until constant weight, crude protein was determined by measuring nitrogen (N ×6.25) after acid digestion using the Kjeldahl method, crude lipid was determined by petroleum ether extraction using the Soxhlet method, and ash was determined by incineration in a muffle furnace at 550°C for 16h (Bhatnagar et al., 2013). Tannin content of sorghum starch was determined using a modified version of Price's vanillin-HCl assay (AOAC, 2010). One gram of sorghum starch was placed in a 50 ml conical flask and 50 ml of analytical grade methanol was added. The flask was covered with a cork stopper, shaken thoroughly every few minutes for 2 hours and then left to stand at room temperature for an additional 20 h. Two ml of 2% vanillin, 4% HCl were added to one of the test tube and 5 ml of 4% HCl to other. The differences in two optical densities (the 4% HCl acting as the blank) were read on a Beckman spectrophotometer at 500 nm, and then compared to catch in standard curve.

2.5. Lipid profile analysis

Total lipid in samples was extracted after homogenisation, using an ultra turrax tissue disrupter (Fisher Scientific, Loughborough, UK), ten volumes of chloroform-methanol (2:1,v/v) containing 0.01%butylated hydroxytoluene antioxidant, basically as according to (Price et al., 1978) and essentially as described by (Christie, 1982).

Fatty acid methyl esters were prepared from aliquots of total lipids by acid-catalysed transmethylation for 16 h at 508°C, using tricosanoic acid (23:0) as internal standard (Folch *et al.*, 1957).

Fatty acid methyl esters were extracted and purified as described previously (Turchini et al., 2007) and were separated using a Hewlett-Packard 5890A series II gaschromatograph (Hewlett-Packard, Barcelona, Spain) equipped with a chemically bonded (PEG) supelcowax-10 fused silica wall coated capillary column (30m £ 0.32mm i.d.; SupelcoInc., Bellefonte, PA, USA), using an 'on column' injection system and flame ionization detection. Hydrogen was used as the carrier gas with an oven thermal gradient from an initial 508°C to 1808°C at 258°C/min and then to a final temperature of 23 to 58°C at 38°C/ min, with the final temperature maintained for 10 min. Individual fatty acid methyl esters were identified by comparison with known standards quantified by means of a direct-linked PC and Hewlett-Packard Chem. Station Software.

2.6. Growth evaluation

Growth performance and diets efficiency were assessed by using these equations:

Body gain= [Final body mass-initial body mass]. Specific growth rate (SGR, %/day) =100×(ln final weight-ln initial weight)/time.

Feed conversion ratio (FCR) = (feed given per fish)/ (weight gain per fish).

Protein efficiency ratio (PER)= (weight gain per fish)/ (protein intake per fish).

Net protein Utilization (NPU%) = 100 (Final body protein - initial body protein)/protein intake).

Hepatosomatic index (HSI%) = (liver weight)/ (fish weight) $\times 100$.

2.7. Histological indices

Fish were killed by immersion in anesthetic baths (same procedure as aforementioned) and the cross-section of the intestine was collected. The samples were fixed in Bouin solution at 10% for 24h, after which were transferred to70% ethanol for the preparation of the histological slides. For the preparation of the slides all gonads were cut into 0.5-cm segments, dehydrated in increasing concentrations of alcohol, diaphanized in xylol, and embedded in paraffin, to be sectioned to the

5μ thickness and stained by hematoxylin-eosin (HE) (Genten et al., 2009). The measurements were performed under light microscopy, AX10 Zeiss, Axio Cam MRC camera, with the aid of the ZEN 2012 software.

2.8. Statistical analyses

Statistical analyses were carrying out using SPSS version 23, SPSS Institute, Cary, NC, USA). Fish

3.RESULTS

Water temperature, pH, dissolved oxygen, and salinity were recorded daily, and water ammonia was measured weekly. Water temperature ranged from 26 to 28°C, dissolved oxygen ranged from 6.53 to 7.86 mg/L, salinity ranged from 5.2 to 5.6, water pH ranged from 7.4 to 8 mg/L, total ammonia ranged from 0.523 to 0.741 mg/L, nitrite from 0.041 to 0.056 mg/L and nitrate 0.112 to

performance data were tested for treatment effect using one –way analysis of variance (ANOVA). Significant differences ($P \le 0.05$) between means were revealed using Duncan test. The results are expressed as means \pm standard error (SE).

0.222 mg/L. Water quality parameters were maintained within the acceptable ranges as recorded by (Bhatnagar et al., 2009).

The results presented in (Tables, 1,2) showed that the all tested diet contain the recommended values from crude protein and essential fatty acids, which cover the requirements of this specie (Hua et al., 2019; NRC, 2011).

Table (2). Fatty acid composition (% total fatty acid) of experimental diets (Mean \pm S.E. n=3).

Fatty acids	Diets					
·	D0	D50	D75	D100		
14:0	4.2±0.2	3.8±0.1	3.4 ± 0.2	3.5±0.3		
16:0	10.2 ± 0.1	10.8 ± 0.1	9.6 ± 0.2	10.1 ± 0.1		
18:0	2.6 ± 0.3	2.5 ± 0.2	2.1 ± 0.1	2.1 ± 0.2		
Σ- saturated	17.0 ± 0.2	17.1 ± 0.1	15.1 ± 0.2	15.7 ± 0.2		
16:1n-7	5.2 ± 0.2	5.4 ± 0.1	5.6 ± 0.2	5.0 ± 0.3		
18:1n-9	11.6 ± 0.3	11.2 ± 0.1	11.6 ± 0.1	11.1 ± 0.2		
Σ-mono-unsaturated	16.8 ± 0.2	16.6 ± 0.1	17.2 ± 0.1	16.1 ± 0.2		
18:2n-6	2.4 ± 0.1	2.4 ± 0.4	2.4 ± 0.1	2.5 ± 0.1		
20:2n-6	0.5 ± 0.1	0.4 ± 0.1	0.5 ± 0.1	0.5 ± 0.1		
20:4n-6	1.4 ± 0.1	1.3±0.1	1.2 ± 0.1	1.4 ± 0.1		
Σ-n-6fatty acids	4.3 ± 0.1	4.1 ± 0.1	4.1 ± 0.1	4.4 ± 0.1		
18-3-n3	1.6 ± 0.1	1.5±0.1	1.6 ± 0.1	1.6 ± 0.1		
18-4n-3	0.5 ± 0.1	0.5 ± 0.1	0.5 ± 0.1	0.5 ± 0.1		
20-5n-3	6.6 ± 0.2	6.5 ± 0.2	6.4 ± 0.2	6.5 ± 0.2		
22-5n-3	1.2 ± 0.2	1.2 ± 0.2	1.2 ± 0.2	1.1 ± 0.2		
22-6n-3	8.5 ± 0.4	8.5 ± 0.4	8.6 ± 0.4	8.5 ± 0.4		
Σ-n-3fatty acids	18.4 ± 0.2	18.2 ± 0.2	18.3 ± 0.2	18.2 ± 0.2		
n-3:n-6 ratio	4.27 ± 0.1	4.44 ± 0.1	4.46 ± 0.1	4.14 ± 0.1		

As can be seen in (Table, 3) final weight and weight gain did not significantly differ among all the groups D100, D75, D25 and D0. In the same line, no significance differences in the other parameters of SGR, FCR, CF, PER and NPU as presented in the same table.

Photomicrographs of the intestinal villus from the experimental groups not showed any changes in mucosal layer, immune cells and lymphatic vessel between tested groups as illustrated in (Plate, 1).

Yones et al.

The carcass analysis of *L. ramada* fed different experimental diets not significantly different between them as presented in (Table, 4). There was no significant variation (P<0.05) in the muscle content of fish from varied fatty acid diets (Table, 5). While Σ -mono-unsaturated, Σ -n-6 fatty

acids, and the n-3: n-6 ratio in muscles fish fed D100 were completely similar with D0, Σ -n-3 fatty acids recorded the greatest average with D100. In the same concern, statistical analysis didn't reveal any significant differences among the tested diets.

Table (3). Growth performance mean values (Mean \pm S.E n=3) of L. ramada fed on different experimental diets for 120 days.

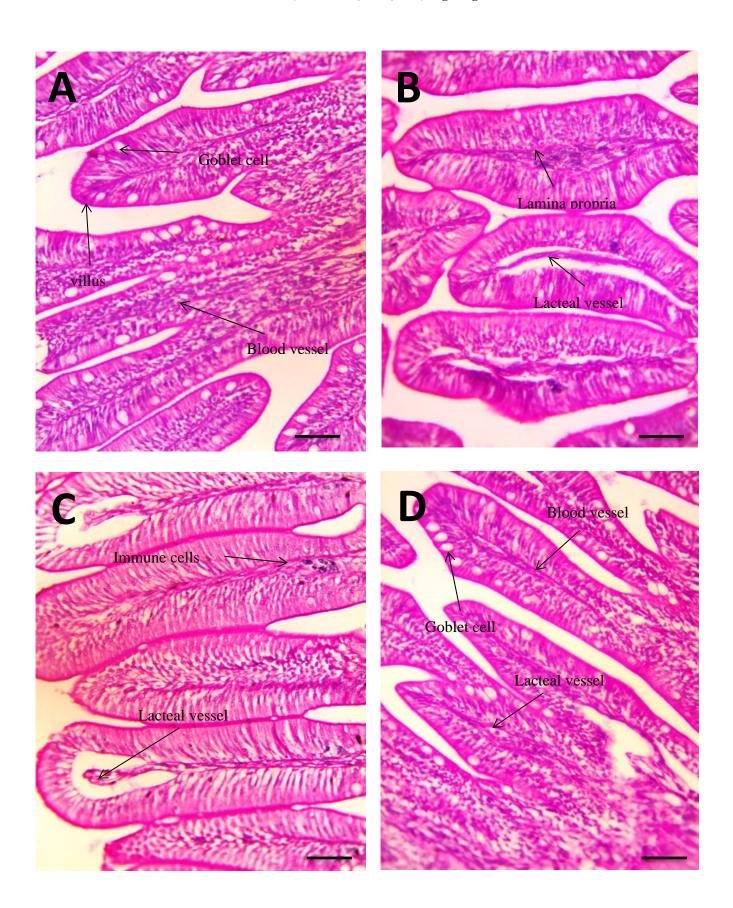

Parameters	Diets			
	D0	D50%	D75%	D100%
Initial weight (g /fish)	3.8 ± 0.12	3.9 ± 0.10	3.9 ± 0.10	3.8±0.08
Final Weight (g /fish)	38.2 ± 1.4	38.6 ± 1.2	40.4 ± 1.5	41.3±1.6
Weight gain (g /fish)	34.4±1.2	34.7 ± 1.2	36.5 ± 1.4	37.5±1.2
SGR %/day	1.54 ± 0.2	1.56 ± 0.1	1.58 ± 0.2	1.62 ± 0.2
FCR	1.65 ± 0.1	1.66 ± 0.2	1.62 ± 0.2	1.65 ± 0.1
CF (g/cm-3)	1.55 ± 0.2	1.58 ± 0.1	1.61 ± 0.2	1.63 ± 0.2
PER	1.43 ± 0.1	1.54 ± 0.1	1.56 ± 0.2	1.61 ± 0.1
NPU (%)	24.5 ± 1.2	24.8 ± 1.1	25.1 ± 1.2	25.4±1.1
HSI (%)	1.56 ± 0.2	1.54 ± 0.1	1.64 ± 0.2	1.67±0.1

Table (4). Carcass analysis (% w/w basis) of *L. ramada* fed on the experimental diets, (Mean \pm S.E, n=3)

Items		Diets			
	Initial	D0	D50	D75	D100
Dry matter	26.30±0.20	28.90±0.30	27.80±0.2	28.90±0.1	28.10±0.2
Protein	17.60 ± 0.20	17.60 ± 0.10	17.80 ± 0.1	17.50 ± 0.2	17.50 ± 0.3
Lipid	5.40 ± 0.10	7.80 ± 0.20	7.60 ± 0.3	7.40 ± 0.3	7.60 ± 0.1
Ash	3.20 ± 0.20	3.70 ± 0.10	3.60 ± 0.1	3.80 ± 0.1	3.60 ± 0.2

Table (5). Muscle fatty acid composition (% total fatty acid) of *L. ramada* fed different experimental diets (Mean \pm S.E., n=3).

Fatty acids	Diets					
•	D0	D50	D75	D100		
14:0	7.5±0.1	7.4±0.1	7.6±0.2	7.8±0.3		
16:0	3.6 ± 0.2	3.8 ± 0.1	3.6 ± 0.2	3.4 ± 0.1		
18:0	3.4 ± 0.2	3.5 ± 0.2	3.1 ± 0.1	3.3 ± 0.2		
Σ- saturated	14.5 ± 0.2	14.7 ± 0.1	14.3 ± 0.2	14.5 ± 0.2		
16:1n-7	9.6 ± 0.1	9.4 ± 0.1	9.3 ± 0.2	9.5 ± 0.3		
18:1n-9	11.2 ± 0.3	11.1±0.1	11.2 ± 0.1	11.2 ± 0.2		
Σ-mono-unsaturated	20.8 ± 0.2	20.5±0.1	20.5±0.1	20.7 ± 0.2		
18:2n-6	2.5 ± 0.2	2.4 ± 0.4	2.5 ± 0.1	2.6 ± 0.1		
20:4n-6	3.4 ± 0.1	3.3 ± 0.1	3.4 ± 0.1	3.5 ± 0.1		
Σ-n-6fatty acids	5.9 ± 0.1	5.7±0.1	5.9 ± 0.1	6.1 ± 0.1		
18-3-n3	1.4 ± 0.1	1.5 ± 0.1	1.4 ± 0.1	1.6 ± 0.1		
18-4n-3	2.4 ± 0.2	2.5 ± 0.1	2.7 ± 0.1	2.4 ± 0.1		
20-5n-3	7.1 ± 0.3	7.3 ± 0.2	7.1 ± 0.2	7.4 ± 0.2		
22-5n-3	3.0 ± 0.2	3.2 ± 0.2	3.2 ± 0.2	3.1 ± 0.2		
22-6n-3	4.2 ± 0.2	4.4 ± 0.4	4.3 ± 0.4	4.1 ± 0.4		
Σ-n-3fatty acids	18.1 ± 0.1	18.9 ± 0.2	18.7 ± 0.2	18.6 ± 0.2		
n-3:n-6 ratio	3.06 ± 0.2	3.31 ± 0.1	3.17 ± 0.1	3.05 ± 0.1		

Yones et al.

Plate 1: Photomicrographs of the intestinal villus from the experimental groups stained with hematoxylin and eosin (H&E, X 400). (A: D0) control showing: normal organization of mucosal layer, also Goblet cells with their clear mucous droplets are interspersed between these enterocytes. The lamina propria supports the epithelial cells and makes up the core of the villus. Present in this layer are blood vessels, immune cells, and a lymphatic vessel, or lacteal were observed; (B: D50) showing: normal organization of mucosal layer, also atrophy and shrinkage the lamina propria, and disappearance of goblet cells were recorded, present in this layer are blood vessels, immune cells, and a lymphatic vessel, or lacteal were observed; (C: D75) showing: normal organization of mucosal layer, also atrophy and shrinkage the lamina propria, and disappearance of goblet cells were recorded, present in this layer are blood vessels, immune cells, and a lymphatic vessel, or lacteal were observed; (D: D100) showing: normal organization of mucosal layer, also atrophy and shrinkage the lamina propria, and disappearance of goblet cells were recorded, present in this layer are blood vessels, immune cells, and a lymphatic vessel, or lacteal were observed. Scale bar = 500µm.

4. DISCUSSION

In aquaculture, feed accounts for about 60% of overall expenses. Fish meal is a major protein component in the diet of fish. It has non-antinutritional components, high protein content, well-balanced essential amino acid profile, and good nutritional digestibility. However, it is the primary cause of feed price increases brought on by high market prices and strong demand (Hua et al., 2019). Efforts by fish nutritionists and feed producers to prepare feeds at a lower cost have had a direct impact on the economics of fish farms. By using less expensive plant protein sources to partially or completely replace fishmeal, many studies have been conducted in the past decades (Yones et al., 2016a; Mambrini et al., 1999).

At present, the challenge is not limited to facing the high prices and unavailability of fish meal. Another challenge facing aquafeeds is providing traditional raw materials for plant sources of carbohydrates and proteins, such as raspberries and soybeans. Hence, scientific research in recent years has tended to find alternatives such as soy bean (Abdel-Aziz *et al.*, 2019), azolla meal (Ahmed *et al.*, 2023), and seaweed (Abdel-Aziz *et al.*, 2017).

Our study investigated the potential use of silverside as a substitute for fish meal and sorghum as a substitute for yellow corn. One of these promising ingredients is sorghum grain, which is produced widely throughout the world and has appropriate nutritional value (Lemlioglu-Austin *et al.*, 2014). But when utilized as an aquafeed, sorghum has benefits and drawbacks just like any other food. According to several studies, cooked sorghum protein is less digestible than that of other grains like corn (Duodu *et al.*, 2002). Where in reduced digestibility is primarily

associated with the formation of disulfide bonds (Damodaran, 2008). Protein digestion may be hampered by this interaction between proteins and non-starch polysaccharides, which may result in indigestible complexes or decreased accessibility to enzymes (Damodaran, 2008). The size, shape, and range of sorghum starch granules are comparable to those of corn (Wall and Blessin, 1969). Besides, the rate at which sorghum's starch and sugar are released is slower than that of other cereals (Lodge *et al.*, 1997).

Interestingly, the growth performance in our study revealed that the use of 100% from sorghum and silverside meal in *L. ramada* recorded the high performance. Despite limited studies are available regarding the application of sorghum as an aquafeed ingredient, there are several possibilities to justify this finding, firstly, the capacity of the digestive tract for protein or carbohydrate digestion and absorption appeared to be utilized to a greater extent when fed the mixed proteins or starch sources or than when fed only a single source. Hence, starch digestibility also varies depending on the combination of starch sources in the diet (Hamaker *et al.*, 1986).

Secondly, Sorghum varieties are further classified into α -, β -, γ -, and δ -kafirin. α -Kafirin is the main protein store in sorghum (80–84%) (Watterson *et al.*, 1970). Increasing the α -kafirin ratio can improve the protein digestibility (Dowling *et al.*, 2002). This protein is rich in nonpolar amino acids and is found primarily as monomers and oligomers. Sorghum contains high levels of minerals, ranging from less than 1% for some forms of iron to greater than 90% for sodium and potassium. In silver Catfish (*Rhamdia quelen*), the inclusion of sorghum in diet led to increased FCR, likely linked to its adverse effects on nutrient absorption in the fish. The predominant protein in

sorghum is kafrin, which exhibits a rigid structural configuration within the starch protein matrix, low solubility, and an imbalanced amino acid profile, contributing to reduced food digestibility (Rodrigues *et al.*, 2020).

Furthermore, sorghum is a rich source of B-complex vitamins, contains fat-soluble vitamins, namely D, E, and K, and is not a rich source of vitamin C. The concentrations of thiamin, riboflavin, and niacin in sorghum are high (Bean *et al.*, 2016).

Thirdly, the chemical composition of sorghum diets showed low concentrations of tannins and then there are agreeing with (Aderolu et al., 2009) who reported that low-tannin sorghum can fully replace corn in diets for silver catfish C. without affecting the animal's gariepinus development. Fourthly, fatty acids profile in the D50, D75, and D100 compared to D0 did not significantly vary especially in Σ -n-6fatty acids, Σ -n-3 fatty acids, and n-3: n-6 ratio. In the same context, sorghum lipids are valuable nutrients that influence the taste and storage time of sorghum meals; they consist primarily of unsaturated fatty acids, with polyunsaturated fatty acids being the most abundant (Xiong et al., 2019). The major lipid class in sorghum seeds is triacylglycerols (accounting for approximately 90% of total lipids), with linoleic acid being the predominant fatty acid. Generally, sorghum oil is similar to corn oil, and due to its higher content of essential fatty acids, sorghum has a high potential to be used as another grain in human and animal nutrition (Osman et al., 2000).

Fifthly, feeding behavior of the fish species and morphological digestive system tract are very important factors in benefiting from feedstuff that contain a high level of non-polysaccharides. Wherein omnivorous fish such as carp and tilapia can digest and metabolize sorghum-based diets. In silver catfish, the sorghum dry matter and protein digestibility are higher than corn (Signor *et al.*, 2016), suggesting that sorghum is a favorable ingredient in catfish feed. Other work confirmed herbivorous and omnivorous species can consume sorghum as the main feed ingredient without negative impacts on growth and digestibility.

Beneficial microorganisms in guts of herbivorous and omnivorous species showed a vital role for utilizing the contents of sorghum from protein and carbohydrate through the disruption in intestinal microbiota induced by feeding habit via diet usually affects digestive host functions through disturbance in bacterial digestive enzyme production (Ghanbari *et al.*, 2015).

The higher amylase activity in the herbivorous fish studied is related to carbohydrate utilization of *Ctenopharyngodon idella* in the diet. Similarly, omnivorous fish are capable of using higher carbohydrate levels than carnivorous fish (Li *et al.*, 2015).

Mullet primarily forage on detritus and microalgae that are undergoing microbial decomposition (Galvão *et al.*, 1997). However, it is unknown if the mullet is able to use any fibrous fraction of the detritus or if ingesting this material is a strategy for consuming the microbial matter that decomposes it.

Histological analysis of the mullet stomach demonstrated that the pyloric region – with deep folds, highly developed muscles, and no digestive glands - has the primary function of grinding food, comparable to the gizzard in birds. The absence of secretory glands for both enzymes and hydrochloric acid in the pyloric region creates a proper environment for microbial colonization, which could explain the high bacterial density in the stomachs of these animals. Thus, it is very likely that *L. ramada* utilizes the bacterial biomass produced after the decomposition of consumed food. If this is the case, mullet fish should have a ruminant-like feeding behavior, with incorporation of bacteria into its biomass (Galvão et al., 1997). Overall, this finding agrees with the previous results of Toutou et al. (2020) with using different carbohydrate sources in L. ramada diets. In the same manner Yones et al. (2016b) recorded enhancement in growth performance in red tilapia O. mossambicus \times O. niloticus fed sorghum meal. Also, the growth performance in pangasius is not affected when cassava and corn are replaced with sorghum (US et al., 2017).

On the other side, the incorporation of silverside fish improves diets palatability, as previously suggested with sole (Yones et al., 2014) and other fish species (Cabral et al., 2011; Espe et al., 2006; Zhang et al., 2012) fed on plant protein-based diet supplemented with palatable material such as squid meal and protein fish hydrolyses meal. Similarity, a study of (Gumus, 2011) showed that no significant in growth performance between the use of sand smelt meal (SSM) at a rate of 100% and the control this is due to sand smelt in Egyptian water containing essential amino acid proportions with convergent Herring fish meal where he excels in the proportions of certain acids such as (Arginine, Leucine, Tyrosine, Valine and Tryptophan) and SSM has a favorable effect on the lipid composition in the muscle of fish. Increase in n-6 levels, the other is the constant n-3: n-6 ratio. Both are thought as important factors that affected the nutritional quality of fish muscle. Further research should be conducted on usage of SSM as a substitute of FM to determine acceptable fatty acid composition for large pond fish. Moreover, Gumus (2011) stated that sand smelt meal (SSM), among other sources of animal origin, is a rich protein source. He also reported adequate growth increase in the Nile tilapia fry, fed with diets replaced by SSM for FM. Similarly, when used as replacement of FM as protein source has supplied for mirror carp fry. It is unknown how replacement rates of SSM would affect the fatty acid composition of fish muscle, and consequently their fat quality.

Additionally, progressively higher SSM protein percentages also resulted in higher PUFA levels in the diet and the fish. This was due to an increasingly higher total content of n-6 fatty acids of D50, D75 and D100 that included different proportion of SSM compared D0. Hence, these observations were in agreement with findings that were showed in Table (4). As it's known that, marine fish generally cannot transform 18C fatty acids into HUFA so they must obtain these nutrients from the diet as it covered in the diets and correct n3/n6 ratios may be taken under consideration (Table, 4). However, it has been described how high availabilities of HUFA precursors increase elongation can and

desaturation processes in some fish species (Ling et al., 2006; Jaya-Ram et al., 2008).

In addition, it has been defined a certain capacity of HUFA biosynthesis for mullets (Garrido et al., 2019; Galindo et al., 2021), including fatty acyl desaturase 2 with n-6 activity in L. aurata (Quiros-Pozo et al., 2023). Also, as described for L. aurata juveniles, this finding was agreed with Liza ramada in the present study. histopathological evaluation demonstrated normal construction of the intestine's segments in the control and the groups fed different diets as shown in (Fig. A, B, C and D). Sorghum inclusion levels not affected intestinal villi and the intestinal wall appeared intact without any deteriorating changes. The intestinal mucosal lining displayed an improved morphological appearance in the form of an increased number of intestinal villi and augmented villous surface area as well as an abundant number of goblet cells. The present results were in agreement with the previous results in Liza ramada fed laminarin supplement (Abdel Mawla et al., 2023). In the same line, incorporation of sorghum in silver catfish didn't effect on histomorphometry indices (Rodrigues et al., 2020) but polysaccharides-rich additives enhanced the intestinal morphological features in hybrid red tilapia (Abdelrahman et al., 2022).

On the other hand, the inclusion of 50 % VMO (Veramaris®algal oil) in Atlantic salmon had improved intestinal structures.

Regarding, carcass chemical composition, total proximate composition data are important for nutritionists and food scientists to help them in dietary formulations, nutrient labeling, processing and fish quality. Usually, the measurements of the carcass composition refer to the level of nutrient metabolism and accumulation in the entire fish body. No marked effects were observed on the carcass composition contents of fish fed different diets. Similar results were recorded in mullet species (Abdel Mawla et al., 2023; Abdelrahman et al., 2022) in same trend, Yones et al., (2016b) the fish fed on the sorghum-based diet was not statistically significant differences (P>0.05) comparing to the other fish fed on Zea maize. This observation agrees with the reported results of (De

et al., 2012). In the same trend, the muscle body contents from fatty acids refer to will utilization by 100% inclusion levels from sorghum and silverside meal. The present results were agreeing with the results of (Mourente and Tocher, 1993). Additionally, as previously observed by Yones et al. (2014) the dietary on silverside meal (SM) in the present study didn't significantly effect on the proximate body composition. However, this mechanism varies among fish species and can be related to the diet composition and feeding behavior (De Carvalho et al., 2010).

CONCLUSION

The present study confirmed that the inclusion 100% of silverside and sorghum meals in mullet diets led to increased growth performance of *Liza ramada*. Also, the carcass composition and muscle fatty acids contents of fish not affected with the inclusion level of these meals. The histopathological evaluation demonstrated normal construction of the intestine's segments in the control and the groups fed different diets. From the economic point of view, it can be recommended that dietary silverside and sorghum meals as local and less expensive ingredients can spare in diets costs of mullet fish.

Data availability

Data available on request from the author

Competing interests

Authors declare no competing interests.

Funding:

No funding

REFERENCES

Abdel-Aziz, M. F. & Ragab, M. A. 2017. Effect of use fresh macro algae (seaweed) *Ulva fasciata* and *Enteromorpha flaxusa* with or without artificial feed on growth performance and feed utilization of rabbitfish (*Siganus rivulatus*) fry. *J. Aquacul. Res & Dev*, 8(4), 1000482.

Abdel-Aziz, M.F., Yones, A.& Metwalli, A. 2019. Effect of fasting and inclusion plant protein on growth and feed efficiency of hybrid red tilapia (*Oreochromis mossambicus*× *Oreochromis niloticus*) fry. *Int. J. Fish &Aquat. Stud.*; 7(5): 54-61.

Abdel-Mawla, M.S., Magouz, F.I., Khalafalla, M.M., Amer, A.A., Soliman, A., Amr, I., Zaineldin, A.I., Gewaily, M.S., & Dawood, M.A. 2023. Growth performance, intestinal morphology, blood biomarkers, and immune response of Thinlip Grey Mullet (*Liza ramada*) fed dietary laminarin supplement. *J Appl Phycol*; 35: 1801-1811.

Abdelrahman, A.M., Ashour, M., Al-Zahaby, M.A., Sharawy, Z.Z., Nazmi, H., Zaki, M. A., Ahmed, N. H., Ahmed, S. R., El-Haroun, E., Van Doan, H. & Goda, 2022. A M. Effect of polysaccharides derived from brown macroalgae (*Sargassum dentifolium*) on growth performance, serum biochemical, digestive histology and enzyme activity of hybrid red tilapia. *Aquacult*. *Rep.*; 25:101212.

Aderolu, A. Z., Kuton, M.P. & Odu-Onikosi, S.G. 2009. Substitution effect of sorghum meal for maize meal in the diet of catfish (*Clarias gariepinus*, Burchell, 1822) juvenile. *Res. J. Fis. Hyd.*; 4(2): 41-45.

Ahmed, I., Khan, Y. M., Lateef, A., Jan, K., Majeed, A. & Shah, M.A. 2023. Effect of fish meal replacement by Azolla meal on growth performance, hemato-biochemical and serum parameters in the diet of scale carp, *Cyprinus carpio* var. communes. J World Aquacult Soc., 2023; 54(5): 1301-1316.

AOAC. (2010). Official methods of analysis of AOAC International agricultural chemicals 2010. APHA. (2005). Standard methods for the examination of water and wastewater, 21st ed. American Public Health Association; American Water Works Association; Water Environment Federation, Washington, DC.

Bean, S., Wilson, J., Moreau, R., Galant, A., Awika, J., Kaufman, R., Adrianos, S. & Ioerger B. 2016. Structure and composition of the sorghum grain. In Sorghum: State of the Art and Future Perspectives. *Amer Soc Agron.*,: Madison, WI, USA.

Bergamin, G.T., Veiverberg, C. A, da Silva LP, Pretto A, Siqueira, L.V. & Radünz-Neto J. (2013). Extração de antinutrientes e aumento da qualida denutricional dosfarelos de girassol,

- canola e soja para alimentação de peixes. *Ciência Rural*.; 43:1878–1884.
- Bhatnagar A. and Devi P. Water quality guidelines for the management of pond fish culture. *Int. J of environ sci.*, 2013 3(6), 1980-2009.
- Cabral, E.M, Bacelar, M., Batista, S., Castro-Cunha, M., Ozório, R.O. & Valente, L.M. 2011. Replacement of fishmeal by increasing levels of plant protein blends in diets for Senegalese sole (*Solea senegalensis*) juveniles. *Aquacult.*, 2011; 322: 74-81.
- **Christie, WW. 1982.** Lipid Analysis, 2nd ed. Oxford, Pergamon Press.1982.
- **Damodaran S. 2008.** Amino acids, peptides and proteins. Fennema's food chemistry. 2008; 4, 425-439.
- **De Carvalho, C.V., Bianchini, A., Tesser, M. B.** & Sampaio, L.A. 2010. The effect of protein levels on growth, postprandial excretion and tryptic activity of juvenile mullet *Mugil platanus* (Günther). *Aquacult Res.* 2010; 41: 511-518.
- **De, D., Ghoshal, T.K. & Kundu, J. 2012.** Effect of feeding different levels of protein on growth performance, feed utilization and digestive enzyme of grey mullet (*Mugil cephalus L*). *Anim Nutr & Feed Technol.*; 12: 179-186.
- **Dowling, L.F., Arndt, C.& Hamaker, B.R. 2002.** Economic viability of high digestibility sorghum as feed for market broilers. *Agron J.*, 2002; 94(5): 1050-1058.
- **Duarte, J.O, Garcia, J.C.& de Miranda, R.A. 2001.** Mercado ecomercialização. In:Cruz JC, editor. Cultivo do milho. 7ª Ed. Sete Lagoas: Embrapa Milhoe Sorgo (Embrapa Milhoe Sorgo. Sistema de produção, 1). Disponívelem: http://sistemasdeproducao. cnptia.embrapa.br/FontesHTML/Milho/CultivodoMiho_7ed/mercad o.htm.2011.
- **Duodu, K.G, Nunes, A., Delgadillo, I, Parker, M.L., Mills, E.N., Belton, P.S. & Taylor, J.R. 2002.** Effect of grain structure and cooking on sorghum and maize in vitro protein digestibility. *J Cereal Sci.*, 2002; 35(2): 161-174.
- **El-Dahhar, A. A, Salama, M.E, Moustafa, Y.T.** & **El-Morshedy, E.M. 2013.** Effect of using sea weeds in grey mullet (*Liza ramada*) larval diets on

- growth performance and feed utilization. *J Arab Aquacult Soc.*, 2013; 8: 217-228.
- **El-Dahhar, AA. 2007.** Review article on protein and energy requirements of Tilapia and Mullet. *J Arab Aquacult Soc.*, 2: 1-28.
- Espe, M., Lemme, A., Petri, A. & El-Mowafi, A. 2006. Can Atlantic salmon (*Salmo salar*) grow on diets devoid of fish meal? *Aquacult*. 255(1-4), 255-262.
- **FAO. 2020.** Stat statistical database; Food and Agriculture Organisation of the United Nations: Rome, Italy. 2020. https://doi.org/10.1038/s41598-019-47709-0.
- **Folch, J., Lees, M. & Sloane-Stanley, GH. A.1957.** simple method for the isolation and purification of total lipids from animal tissues. *J. Biol. Chem.*, 226: 497-509.
- Galindo, A., Garrido, D., Monroig, O., Perez, J.A., Betancor, M.B., Acosta, N.G., Kabeya N., Marrero, M.A., Bolanos, A. & Rodríguez, C. 2021. Polyunsaturated fatty acid metabolism in three fish species with different trophic level. *Aquacult..*, 530: 735761. https://doi.org/10.1016/j. Aquaculture, 735761.
- Galvão, M.S., Feneric-Verani, N., Yamanaka, N. & Oliveira, I.R. 1997. Histologia do sistemadigestivo da tainha Mugil platanus Günther, 1880 (Osteichthyes, Mugilidae) durante as fases larval e juvenil. *Boletim do Instituto da Pesca*, 1997;24, 91–100.
- Garrido, D., Kabeya, N., Betancor, M.B. Perez, J.A., Acosta NG, Tocher DR, Rodríguez C. & Monroig O. 2019. Functional diversification of teleost Fads2 fatty acyl desaturases occurs independently of the trophic level. *Sci. Rep.*, 9 (1): 1-10.
- Genten, F., Terwinghe, E. & Danguy, A. 2009. Atlas of fish histology. Science Publishers, En field, NH, USA, An imprint of Edenbridge Ltd. 2009.
- **Ghanbari, M., Kneifel, W., Domig, K.J. 2015.** A new view of the fish gut microbiome: advances from next-generation sequencing. *Aquacult.*, 2015; 448: 464-475.
- Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D. Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M. & Toulmin, C.

- **2010**. Food security: The challenge of feeding 9 billion people. *Sci*, 327: 812-818.
- Guimarães, I.G., Pezzato, L.E., Barros, M.M. & Tachibana, L. 2008. Nutrient digestibility of cereal grain products and by-products in extruded diets for Nile tilapia. *J. World Aquacult. Soc.*, 2008; 39: 781-789.
- **Gumus, E. 2011.** Fatty acid composition of fry mirror carp (*Cyprinus carpio*) fed graded levels of sand smelt (*Atherina boyeri*) meal. Asian-Australasian *J Anim Sci.*, 2011; 24(2): 264-271.
- Hamaker, B. R., Kirleis, A. W., Mertz, E.T. & Axtell, J.D. 1986. Effect of cooking on the protein profiles and in vitro digestibility of sorghum and maize. *Journal of Agricultural and Food Chemistry*, 34(4): 647-649.
- Hua, K., Cobcroft, J.M., Cole, A. Condon, K., Jerry, D.R., Mangott, A., Praeger, C., Vucko, M.J., Zeng, C., Zenger, K. & Strugnell, J. M. 2019. The Future of Aquatic Protein: Implications for Protein Sources in Aquaculture Diets. *One Earth*, 22, 323, 2019.
- Jaya-Ram, A., Kuah, M.K., Lim, P.S., Kolkovski, S. &Shu-Chien, A.C. 2008. Influence of dietary HUFA levels on reproductive performance, tissue fatty acid profile and desaturase and elongase mRNAs expression in female zebrafish (*Danio rerio*). *Aquacult.*, 2008; 277 (3-4): 275-281.
- **Jiddere, G. &Filli, K.B. 2015.** The effect of feed moisture and barrel temperature on the essential amino acids profile of sorghum malt and bambara groundnut based extrudes. J. Food Processing Technol., 2015; 6, 1000448.
- Kari, Z. A., Goh, K. W., Edinur, H. A., Mat, K., Khalid, H. N. M., Rusli, N. D., ... & Dawood, M. A. 2022. Palm date meal as a non-traditional ingredient for feeding aquatic animals: a review. *Aquaculture Reports*, 25, 101233.
- **Lemlioglu-Austin, D. 2014.** Sorghum: obliging alternative and ancient grain. *Cereal Foods World*, 59(1): 12-20.
- Li, Z., Xu, L., Liu, W., Liu, Y., Ringø, E., Du, Z. & Zhou, Z. 2015. Protein replacement in practical diets altered gut allochthonous bacteria of cultured cyprinid species with different food habits. *Aquacult Int.*, 2015; 23: 913-928.

- **Ling, S., Kuah, M.K., Muhammad, T.S.T., Kolkovski, S., Shu-Chien, A.C. 2006.** Effect of dietary HUFA on reproductive performance, tissue fatty acid profile and desaturase and elongase mRNAs in female swordtail (*Xiphophorus helleri*). *Aquacult.*; 261: 204–214.
- **Lodge, S.L., Stock, R.A., Klopfenstein, T.J., Shain, D.H., Herold, D.W. 1997.** Evaluation of corn and sorghum distillers by products. *J Anim Sci.*, 1997 75(1): 37-43.
- Mambrini, M., Roem, A.J., Carvedi, J.P., Lallès, J.P.&Kaushik, S.J. 1999. Effects of replacing fish meal with soy protein concentrate and of DL-methionine supplementation in high-energy, extruded diets on the growth and nutrient utilization of rainbow trout, *Oncorhynchus mykiss*. J anim sci., 77(11): 2990-2999.
- Mohammed, N.A., Ahmed, I.A.M., Babiker, E.E. 2011. Nutritional evaluation of sorghum flour (*Sorghum bicolor* L. Moench) during processing of injera. *World Acad. Sci. Eng. Technol.*, 2011; 51: 99-103.
- Mourente, G. & Tocher, D.R. 1993. Incorporation and metabolism of 14C-labelled polyunsaturated fatty acids in wild-caught juveniles of golden grey mullet, *Liza aurata*, *in vivo*. *Fish Physiol*. *Biochem*., 1993; 12 (2): 119-130.
- **NRC. 2011.** Nutrient requirements of fish and shrimp. The National Academic Press, Washington, D.C. 2011.
- **Nyachoti, C., Atkinson, J.& Leeson, S. 1997.** Sorghum tannins: A review. *World's Poult. Sci. J.*, 53: 5-21.
- **Obizoba, I.C. & Atii, J.** (1991). Effect of soaking, sprouting, fermentation and cooking on nutrient composition and some anti-nutritional factors of sorghum (Guinesia) seeds. *Plant Foods Hum. Nutr.*; 41: 203-212.
- Osman, R.O., Abd El-Gelil, F.M., El-Noamany, H.M., Dawood, M.G. 2005. Oil content and fatty acid composition of some varieties of barley and sorghum grains. *Grasas y aceites*, 51(3): 157-162.
- **Price, M.L., Vanscoyoc, S. & Butler, L.G. 1978.** A critical evaluation of the vanillin reaction as an assay for sorghum grain. *J. Agric. Food Chem.*, 1978; 26: 1214-1218.

- **Quiros-Pozo, R., Robaina, L., Calderon, G. A.** & Filgueira, J. 2023. Reproductive management of the mugilid *Liza aurata* and characterization of proximate and fatty acid composition of broodstock tissues and spawning's. *Aquacult.*, 2023; 564.
- Ratnavathi, C.V., Komala, V.V., Sorghum grain quality. In: Ratnavathi, C.V. Patil, J.V.& Chavan, U.D. 2016. editors. Sorghum biochemistry: An Industrial Perspective. 1st Edition. London: Academic Press; p. 1-61.
- Rodrigues, M., Sanchez, M.S., Pessini, J.E., Weiler, K.A., Deparis, A., Boscolo, W.R. & Signor, A. 2020. Replacement of corn by sorghum and phytase supplementation in silver catfish (*Rhamdia quelen*) diets: growth performance, physiological variables and bone mineralización. *J. of Appl. Anim. Res.*, 48(1): 142-150.
- **Rostagno, H.S. 2017.** Tabelas brasileiras para avese suínos:composição de alimentos e exigênciasnutricionais. 4^{ed}. Viçosa:Editora da UFV.2017.
- **Signor, A., Lewandowski, V., Silva, R.D., Fries, E.M.** & **Schuller, J.M.** 2016. Effect of phytase on digestibility of corn, sorghum and wheat bran by silver catfish (*Rhamdia voulezi*). *Acta Scientiarum. Anim Sci.*, 38: 355-359.
- Stamenkovic, O.S., Siliveru, K., Veljkovic, V.B., Bankovic-Ilic, I.B., Tasic, M.B., Ciampitti, I.A., Đalovic, I.G., Mitrovic, P.M., Sikora, V.Š. & Prasad, P.V. 2000. Production of biofuels from sorghum. *Renew. Sustain. Energy Rev.*, 124, 109769.
- **Toutou, M.M. & Farrag, M.S. 2023**. Carbohydrate sources influence growth and intestinal enzyme activity in thin-lip grey mullet (*Liza ramada*) fry. *Sci Afri.*, 2023, 21.
- **Turchini, G.M. Francis, D.S. & De Silva, S.S. 2007.** A whole body, in vivo, fatty acid balance method to quantify PUFA metabolism (desaturation, elongation and betaoxidation). *Lipids*, 2007; 42: 1065-1071.
- **US GC. 2017.** Sorghum as source of ingredient to replace cassava for feeding Pangasius in Vietnam.2017.

- **USDA-NASS. 2024.**Crop Production, Summary.2024 Available online:
- Valin, H., Sands, R.D., Van der Mensbrugghe, D., Nelson, G.C., Ahammad, H., Blanc, E., Bodirsky, B., Fujimori, S., Hasegawa, T. & Havlik, P. 2014. The future of food demand: Understanding differences in global economic models. *Agric. Econ.*, 45: 51-67.
- Wall, J.S. &Blessin, C.W. 1969. Composition and structure of sorghum grains.
- Watterson, J., Shull, J. & Kirleis, A. 1970. Opaque Endosperm of Sorghum bicolor. *Cereal. Chem.*, 70(4): 452-457.
- **Xiong, Y., Zhang, P., Warner, R.D. & Fang, Z. 2019.** Sorghum grain: From genotype, nutrition, and phenolic profile to its health benefits and food applications. *Comprehensive Reviews in Food Science and Food Safety*, 2019; 18(6): 2025-2046.
- Yones, A.M., Metwalli, A. & Al-Jilany, S.A. 2016. Effect of artificial diets on growth performance, body composition and gonad maturation of mullet (*Liza ramada*). *Inter J of Fish & Aquacult Res*, 2(2): 28-49.
- **Yones, A.M.& Metwalli, A. 2016.** Influence of dietary sorghum starch on growth performance, digestibility coefficient and some hepatic enzyme activities in Hybrid red tilapia (*Oreochromis mossambicus* × *Oreochromis niloticus*) fingerlings. *Fish Aquac J.*, 2016; 7:1
- Yones, A.M. & Metwalli, A. 2014. Incorporation of silverside meal to enhance diet palatability, growth performance and body composition of fingerlings sole *Solea aegyptiaca* (Chabanaud, 1927). *Egypt. J. Aquat. Biol. & Fish*, 18(4): 81-94.
- Zhang, Y., Øverland, M., Xie, S., Dong, Z., Lv, Z., Xu, J. & Storebakken T. 2012. Mixtures of lupin and pea protein concentrates can efficiently replace high-quality fish meal in extruded diets for juvenile black sea bream (*Acanthopagrus schlegeli*). *Aquacult.*, 2012; 354, 68-74.