Epoxy Granite: Fracture Mechanics, Failure Analysis, and Applications in Machine Element Foundations: A Comprehensive Review

Mohammed Y. Abdellah^{1, □}, Ahlam Ebrahim^{2,3}, Hassan Yousef ^{4,5}, Somia Alfatih¹, Galal Al- Mekhlafi⁶, Neama Hassan⁷

Abstract— Epoxy granite is a composite material that is increasingly being used in high-precision engineering as a replacement for cast iron and steel in machine frames. This composite overcomes the limitations of solid granite and efficiently combines the favorable mechanical properties of both components. The combination of epoxy resin with granite aggregates results in excellent vibration damping, thermal stability, and mechanical performance. This composite has several applications in the mechanical engineering field, including high-precision machine bases, optical equipment, vibration-sensitive instrumentation, medical devices, and precision grinding machines. This review article provides a comprehensive examination of epoxy granite production, mechanical and thermal properties, fracture mechanics, failure mechanisms, and applications in machine element foundations. Through an overview of current studies and industry practices, the article highlights optimization strategies, failure analysis approaches, and case studies that demonstrate the benefits of epoxy granite in high-performance machine tool structures. This article presents a valuable resource for researchers, engineers, and manufacturers interested in the and development of applications high-performance Epoxy granite composites.

Received: 10 June 2025/ Accepted: 31 October 2025

☐ Corresponding Author: Mohammed Y. Abdellah, mohammed.ahmed@alasala.edu.sa

Ahlam Ebrahim, engahlam05@gmail.com

Hassan Yousef, hassan.youssef@alasala.edu.sa

Somia Alfatih, somia.alfatih@alasala.edu.sa

Galal Al- Mekhlafi, galal.almekhlafi@alasala.edu.sa

Odiai Ai- Mekillali, galai.alillekillali[@alasala.edu.sa

Neama Hassan, neama.omar@alasala.edu.sa

- 1. Mechanical Engineering Department, College of Engineering, Alasala Colleges, King Fahd Bin Abdulaziz Rd., Dammam 31483, Saudi Arabia
- 2. Mechanical Engineering Department, Faculty of Engineering, South Valley University, Qena 83521, Egypt
- 3. Mechanical Engineering Department, Faculty of Engineering, Sphinx University, New Assiut, Egypt
- 4. Department of Architecture, College of Engineering, Alasala Colleges, King Fahd Bin Abdulaziz Rd., Dammam 31483, Saudi Arabia
- 5. Department of Architecture Engineering Al-Safwa high institute of Engineering, Cairo, Egypt
- 6. Department of Civil Engineering, College of Engineering, Alasala Colleges, Dammam 32324, Saudi Arabia
- 7. Interior Design Department, College of Engineering, Alasala Colleges, Dammam 31483, Saudi Arabia

Keywords: Epoxy granite; Composite; Failure; Machine foundation; Machine tool structures.

1 Introduction

Composite materials research continuously multi-objective optimization, and related characteristics such as sustainability and performance to meet the requirement for superior mechanical properties [1-4], presenting the adaptable nature of material science to varied engineering requirements. This study investigates the critical role of epoxy in enhancing the integrity and performance of granite as a foundational material. Epoxy granite, a polymer concrete composed of granite aggregates bound with epoxy resin, has emerged as an innovative material for industrial applications demanding high dimensional stability, mechanical strength, and damping characteristics [5]. Unlike traditional cast iron or steel, epoxy granite offers enhanced vibration suppression, corrosion resistance, and processability [6]. These properties make it ideal for structural components of precision equipment such as CNC machines and Coordinate Measuring Machines (CMMs) [5-7].

In contrast to conventional cement-based concretes, epoxy granite demonstrates low shrinkage and high surface finish, making it particularly suitable for high-precision foundations [8]. The increasing adoption of epoxy granite in high-tech industries motivates the need for a thorough understanding of its manufacturing, behavior under load, and long-term performance.

Abdellah et al [9] investigated the influence of particle size on the mechanical properties and fracture toughness of epoxy granite, finding that finer granite particles enhanced composite performance. Omar et al. [10] examined varying epoxy content and particle size, concluding that epoxy granite outperforms cement concrete, polyester concrete, and natural granite, making it a viable alternative to cast iron in machine tools. Studies on the vibration behavior of epoxy granite highlight the effects of matrix content and particle size distribution on damping properties [11,12]. Mahendrakumar et al. [13] and Selvakumar et al. [14] demonstrated that epoxy granite offers superior mechanical

stiffness and vibration damping compared to cast iron, with added benefits in weight reduction and dimensional stability under oil and water exposure. Incorporation of granite particles improves damage tolerance and vibration response, while combining them with other fillers like polycarbonate further enhances mechanical performance [15, 16]. Research also emphasizes the impact of foundation vibration on machine tool precision, with epoxy granite reinforced by steel showing improved stiffness and Alternatives durability [17-19]. such fiber-reinforced polymer concrete and epoxy matrices reinforced with artificial granite or fly ash have shown promising technical and economic advantages [20-22]. Tribological studies reveal that granite particles enhance erosion and wear resistance in epoxy composites, with similar improvements observed when fly ash, red mud, or rice husks are used as fillers [23-33]. Nallusam and Karthikevan [34] confirmed that increasing granite powder content improves wear resistance in glass fiber-reinforced epoxy composites. Overall, these studies underscore the significant role of particle size, filler content, and matrix composition in optimizing the mechanical, vibrational, and tribological performance of epoxy granite composites.

Machine tool structures often suffer from vibrations at high operating speeds, resulting in positional errors and reduced surface finish quality of machined parts [35]. Traditional metallic materials such as cast iron and steel lack sufficient stiffness and damping capacity [36], prompting the development of alternative materials like polymer concrete using unsaturated polyester or epoxy resins, which offer significantly higher compressive, tensile, and flexural strengths than cement concrete [37]. The damping ratio of polymer concrete is primarily influenced by curing time and resin volume fraction [38], making it a promising candidate for machine tool bases and columns due to its cost-effectiveness and vibration-damping potential [39-43]. Granite-epoxy composites are particularly favored for their lightweight and superior damping ability compared to metals [5, 44]. Arjun et al. enhanced the natural frequencies of steel-reinforced epoxy granite columns by 20% through topology optimization and finite element analysis [45], while Shanmugam et al. optimized the static and dynamic responses of granite-epoxy composites based on granite mass ratios and particle size using TOPSIS [8].

Building on the established advantages of epoxy granite in precision engineering applications, this study hypothesizes that the integration of nano-reinforcements (e.g. graphene or carbon nanotubes) and the use of sustainable components such as bio-based epoxy resins and recycled aggregates can significantly improve the fracture toughness, environmental performance and long-term reliability of epoxy granite composites [5, 46, 47].

To confirm this hypothesis, the study has two main objectives:

• First, to experimentally investigate the mechanical, thermal, and damping properties of modified epoxy granite

formulations with different nano-reinforcements and environmentally friendly constituents to determine the optimal compositions for improved performance.

• Secondly, advanced Multiphysics simulation tools will be used to model and predict the behavior of these materials under realistic operating conditions, including dynamic loading and thermal cycling, to provide a reliable design framework for their application in high-precision machine tool structures.

In contrast to previous reviews that focus primarily on traditional formulations and static performance, this study introduces a forward-looking perspective by hypothesizing that the integration of nano-reinforcements (such as graphene and carbon nanotubes) and eco-friendly constituents (including bio-based resins and recycled aggregates) can significantly enhance the fracture fatigue resistance, and environmental toughness, sustainability of epoxy granite composites. Moreover, the proposed use of advanced multiphysics simulation tools to model material behavior under dynamic and thermal conditions represents a novel contribution. This dual focus on sustainability and predictive modeling distinguishes this work from existing literature and offers a strategic direction for future research.

The hypothesis proposed in this study, that nano-reinforcements and eco-friendly materials can enhance the mechanical and environmental performance of epoxy granite, is directly aligned with the objectives These include investigating outlined. modified formulations through experimental findings in literature and proposing advanced simulation tools for predicting behavior under real-world conditions. This connection ensures that the hypothesis drives the focus and direction of the review. This comprehensive analysis demonstrates that a precise understanding of epoxy and its interaction with granite is critical for advancing machine element foundations, paving the way for more effective and consistent engineering solutions.

2 Manufacturing Techniques of Epoxy Granite

2.1 Raw materials: epoxy resin, granite aggregates, and additives

Epoxy granite is typically manufactured by combining three primary constituents: epoxy resin, granite aggregates, and additives. The epoxy resin, often a bisphenol-A-based formulation with low viscosity, acts as the binding agent and is polymerized using curing agents such as amine-based hardeners [48]. Granite aggregates, serving as the bulk filler and mechanical backbone, are carefully graded to optimize packing density and minimize voids, with particle sizes commonly ranging from 0.1 mm to 10 mm [49]. Additives such as flow agents, accelerators, and coupling agents like silanes are incorporated to enhance interfacial bonding and reduce void formation [50]. The ratio of resin to aggregate is critical in determining the final

properties of the composite, with epoxy content typically kept below 20% by weight to balance mechanical strength and cost-effectiveness [51, 52] (see Fig. 1).

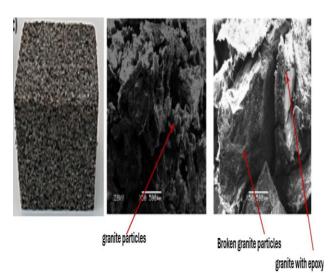


Fig. 1 Constituents and typical microstructure of epoxy granite composite, showing a mixture of granite aggregates bound with epoxy resin ,highlighting optimal particle gradation and resin content used in high-performance machine foundation applications. This schematic is adapted from Abdellah et al. [9].

2.2 Mixing, casting, and curing processes

Mixing is typically performed using a planetary or vertical shaft mixer under vacuum conditions to prevent air entrapment, starting with dry blending of aggregates followed by the gradual addition of resin and additives [53]. The resulting mixture is then cast into molds that are often lined or coated to ease demolding, with vibration or vacuum-assisted casting employed to minimize voids and improve compaction [54, 55]. While room temperature curing is common, post-curing at elevated temperatures, such as 60–80°C, is often applied to increase crosslink density and enhance the mechanical properties of the final epoxy granite composite [56, 57].

2.3 Optimization of composition and processing parameters

Numerous studies have focused on optimizing epoxy granite mix designs to enhance performance and sustainability. Particle packing theory, particularly the Andreasen and Andersen model, is widely used to maximize density while minimizing resin consumption [58]. Techniques such as Response Surface Methodology (RSM) and Design of Experiments (DOE) have been applied to evaluate how variables like resin content, curing time, and temperature affect compressive strength and thermal conductivity [59, 60]. Increasingly, attention is being given to incorporating recycled aggregates and eco-friendly resins to reduce environmental impact [61]. For example, Ghosh et al. [62] examined the impact of coarse aggregate size on metakaolin-based geopolymer and Portland cement concretes, finding that larger aggregates

decreased compressive strength in the former but increased it in the latter. Yardimci et al. [63] investigated the effect of fine-to-coarse aggregate ratios on the rheology and fracture energy of steel fiber-reinforced self-compacting concrete, although specific strength values were not reported. Piratelli-Filho and Shimabukuro [64] used DOE to characterize granite-epoxy composites, achieving a peak compressive strength of 114.23 MPa at 20 wt% epoxy content [64]. Meanwhile, a synthetic granite composite study noted key material parameters but did not provide detailed data on resin content, aggregate size, curing conditions, or mechanical properties. Optimized formulations and Properties from different studies are shown in Table 1 [65].

Table 1: Summary of Optimal Formulations and Resulting Properties from Recent Studies.

Study / Reference	Resin Content (wt%)	Aggregate Size Range (mm)	Compressive Strength (MPa)	flextural Strength (MPa)
Omar et al. [10]	80:20, 85:15	0.15-8	Up to 72.15	Up to 20.1
Piratelli-Filho & Shimabukuro [64]	15-20	00.45-10 [11]	Up to 114.23	Not reported
Abdellah et al. [9]	12	≤0.6, 0.6–1.18, 1.18–2.36	18.1	20.1

3 Mechanical, Wear, and Thermal Properties of Epoxy Granite

Understanding the mechanical and thermal properties of epoxy granite is crucial to evaluating its performance in precision and load-bearing applications. Mechanical properties of epoxy granite composites from recent studies are shown in **Table 2**. Unlike traditional materials like cast iron or steel, epoxy granite exhibits a unique combination of moderate strength, excellent damping, and thermal stability, which makes it suitable for high-precision applications [13, 9, 66].

3.1 Compressive and Tensile Strength

Epoxy granite's mechanical strength depends significantly on the composition, aggregate size distribution, and resin content. The compressive strength typically ranges from 72.15 MPa [67] to 140 MPa [68], making it suitable for static and dynamic loads in machine foundations [69, 70]. However, its tensile strength is considerably lower, typically 61 MPa, due to the brittle nature of the epoxy matrix and weak aggregate-matrix interfaces [67]. **Figure 2** compares the stress-strain behavior of epoxy granite, cast iron, and epoxy resin. Cast iron exhibits higher strength, followed by epoxy granite, while plain epoxy resin shows considerably lower stress resistance.

 Table 2 Typical mechanical properties of epoxy granite

 composites from recent studies

Property	Value Range	Reference
Compressive Strength, MPa	61.33 - 72.15	Omar et al. [10]
Flexural Strength, MPa	21.18-19.79	Abdelrhman et al.[13, 10]
Flextural Modulus, GPa	2.12-2.87	Omar et al. [10]

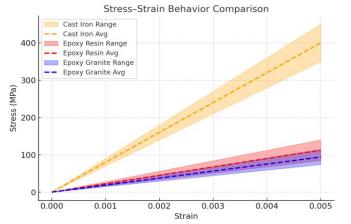
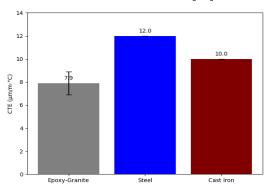


Fig. 2 Stress-strain curves comparing epoxy granite, plain epoxy resin, and cast iron under compression testing, highlighting differences in elastic modulus and failure modes. Data derived from [9-11], [64]

Key factors influencing mechanical strength:

- Aggregate Size Distribution: Well-graded aggregates enhance packing density, reduce voids, and increase load-bearing capacity [71, 72].
- Resin Content: An optimal resin content (~10–15 wt%) balances strength and cost. Excess resin reduces stiffness and may induce shrinkage cracks [73].
- Surface Treatment of Aggregates: Use of silane coupling agents significantly improves interfacial bonding and tensile properties [50, 74, 75].

3.2 Wear properties of epoxy granite


Recent studies have consistently demonstrated that combining various fillers, including SiC, graphite, Al₂O₃, granite powder, and natural fibers, significantly augments the wear resistance, mechanical strength, and stiffness of fiber-reinforced polymer composites, epoxy/glass systems. For example, specific research on glass fiber epoxy composites, incorporating 0-5 wt% granite powder, found that adding 5 wt% granite noticeably enhanced wear resistance, a finding further established by specific wear rate measurements and SEM analysis [34], [76-78]. Optimal filler content, typically about 5 wt%, is vital to avoid increased wear. While ceramic and metallic fillers pointedly enhance wear resistance, fine aggregates like granite powder notably provide strong interfacial bonding. Furthermore, hybrid and nano-filler systems enhance toughness, reduce wear loss, and enable cost-effective designs, often optimized via Taguchi analysis [79-82].

3.3 Thermal expansion and stability

One of the critical advantages of epoxy granite over metal alloys is its low coefficient of thermal expansion (CTE). Fig. 3 demonstrates the favorable thermal expansion characteristics of epoxy granite when compared to traditional materials such as steel and cast iron. Notably, epoxy granite exhibits a significantly lower Coefficient of Thermal Expansion (CTE) at 8.5 µm/m/°C, emphasizing its excellent dimensional stability and making it as a valuable material for applications requiring minimal thermal distortion [66, 83, 84]. This low CTE is essential for minimizing thermal deformation and maintaining dimensional accuracy in CNC machines and other precision equipment. Additionally, epoxy resins used in epoxy granite generally exhibit low thermal conductivity, approximately 0.2 W/(m·K) [85, 86], which helps in thermal insulation. The glass transition temperature (Tg) of the epoxy matrix typically ranges from 80 to 120 °C, depending on the curing agent, with post-curing processes further enhancing the material's thermal resistance [87-89].

3.4 Damping characteristics for vibration control

A standout advantage of epoxy granite is its superior vibration-damping capabilities, with damping ratios typically ranging from 15 to 22%, markedly higher than those of cast iron and steel structures [13].

Fig. 3 Comparison of thermal expansion behavior for epoxy granite, steel, and cast iron over a temperature range of 20–100 °C, illustrating the lower coefficient of thermal expansion (CTE) of epoxy granite. Data adapted from [9, 76]

Figure 4 shows the vibration response of epoxy granite and cast-iron bases throughout modal analysis. Epoxy granite consistently exhibits lower vibration amplitudes, emphasizing its superior damping capabilities. The loss factor (η) of epoxy granite falls between 0.05 and 0.15, compared to less than 0.01 for metals [90], highlighting its exceptional energy dissipation capacity. This enhanced damping behavior is primarily attributed to the viscoelastic nature of the epoxy matrix combined with internal friction at the aggregate-matrix interfaces. As a result, epoxy granite significantly reduces machining chatter, leading to improved surface finish and extended tool life in precision manufacturing applications [11, 91].

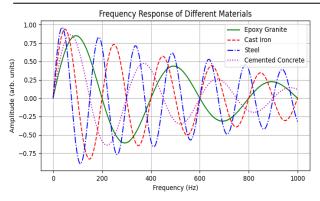


Fig. 4 Modal analysis results showing vibration amplitude decay for cast iron and epoxy granite machine bases under identical excitation conditions, demonstrating superior damping performance of epoxy granite. Based on simulation data from [9]

4 Fracture Mechanics of Epoxy Granite

Fracture mechanics plays a crucial role in the safe design and life prediction of epoxy granite structures. The heterogeneous nature of the composite results in complex fracture behaviors under static and dynamic loads [92].

4.1 Crack initiation and propagation

Crack initiation in epoxy granite frequently originates at defect sites such as voids, resin-rich areas, and aggregate boundaries, where stress concentrations are highest. Due to the brittle nature of the epoxy matrix, which lacks plastic deformation capacity, the material is prone to sudden fracture [92-95]. Micro-cracking typically begins in regions of high stress or through interfacial debonding between the matrix and aggregates, with cracks propagating preferentially along these weak interfaces caused by poor adhesion or thermal expansion mismatch. Additionally, surface flaws serve as critical stress concentrators that can significantly accelerate crack growth, undermining the structural integrity of the material.

4.2 Stress intensity factors and fracture toughness

The Fracture Toughness (KIC) of epoxy granite typically exceeds 24.73 MPa·\ranglem, although this value varies depending on the specific formulation and characteristics of the aggregates used [9, 34]. The critical stress intensity factor is influenced by several factors, including the type and toughness of the aggregate, the stiffness of the resin matrix, and the presence of micro voids or inclusions that act as stress concentrators. Experimentally, fracture toughness is commonly determined using Single Edge Notch Bending (SENB) and Compact Tension (CT) tests [96, 97], while Digital Image Correlation (DIC) techniques are increasingly employed to accurately monitor crack initiation and propagation during testing [9, 34, 98, 99]. A SEM for a typical fracture surface feature, including interfacial debonding and river patterns in a brittle polymer matrix (see Fig. 5).

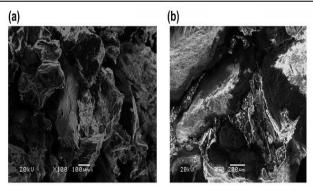


Fig. 5 Conceptual illustration showing typical fracture surface characteristics in epoxy granite, such as interfacial debonding. These features are representative of the failure mechanisms a) coarse grainite, b) medium size particles reported in the literature [9]

4.3 Influence of aggregate size, resin content, and processing defects

The structural integrity of epoxy granite is highly sensitive to its microstructural quality and composition. Large aggregate particles, if not properly bonded to the resin matrix, can act as stress concentrators and initiate cracks under load. Achieving the right resin content is also critical—low resin content increases brittleness by reducing matrix continuity, while excessively high resin content can lead to void formation and shrinkage issues during curing. Additionally, defects such as air bubbles, incomplete wetting of aggregates, and particle segregation during casting significantly diminish fracture resistance, emphasizing the need for precise control over material processing and mix design [95-97].

5 Failure Mechanisms in Epoxy Granite Structures

Understanding failure mechanisms in epoxy granite is crucial for predicting its long-term performance, especially under operational conditions with fluctuating loads, thermal fluctuations, and environmental exposure.

5.1 Common failure modes: brittle fracture, fatigue, and environmental degradation

a) Brittle fracture

Epoxy granite is inherently brittle due to the nature of its thermoset polymer matrix, which lacks the

ability to undergo significant plastic deformation before failure. When the material is subjected to stress beyond its fracture limit, it tends to fail abruptly, posing risks in structural applications that demand high reliability.

Brittle fracture in epoxy granite commonly originates from stress concentrators such as sharp internal corners or notches, voids caused by improper casting processes, and weak interfaces between the resin and aggregates, all of which act as initiation points for crack propagation under load [100, 101].

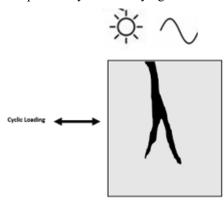
b) Fatigue failure

Under cyclic or dynamic loading, epoxy granite is susceptible to the development and propagation of micro-cracks over time, which can eventually lead to fatigue failure. Studies have demonstrated that the material exhibits limited fatigue life, particularly under high-amplitude stress reversals [102]. However, high-cycle fatigue tests indicate that the incorporation of short fibers or nano-silica fillers into the matrix can significantly enhance fatigue resistance by delaying crack initiation and slowing propagation rates [103, 104]. The crack growth rate (da/dN) is influenced by several factors, including loading amplitude, frequency, and operating temperature, all of which must be carefully considered in fatigue-prone applications.

c) Environmental degradation

Exposure to environmental factors such as moisture, UV radiation, and chemicals can significantly degrade the polymer matrix of epoxy granite composites. Water absorption causes plasticization of the epoxy, leading to a reduction in both strength and modulus [105], while prolonged thermal aging above the glass transition temperature (Tg) can result in post-curing and subsequent embrittlement of the material. Additionally, chemical attack, particularly from substances like machine coolants, can weaken surface regions and compromise long-term performance [106, 107], highlighting the importance of protective coatings and environmental resistance in design considerations.

5.2 Impact of cyclic loading and temperature variations


Thermo-mechanical fatigue presents a critical challenge in industrial environments characterized by frequent start-stop cycles, where components are repeatedly subjected to fluctuating thermal and mechanical loads. The mismatch in thermal expansion coefficients between the aggregates and the resin in epoxy granite leads to the development of temperature-induced stresses, which can compromise structural integrity over time. Research indicates that cyclic loading at elevated temperatures significantly accelerates crack propagation and matrix degradation, underscoring the need for careful material selection and thermal management in high-temperature applications [7], see **Fig. 6**.

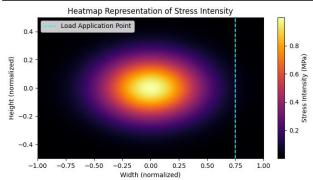
5.3 Experimental and numerical modeling approaches

a) Experimental approaches

Fatigue life assessment of epoxy granite and related composites is typically conducted using rotating beam tests, three-point bending, or Compact Tension (CT) specimens to evaluate performance under cyclic loading. To detect internal damage and monitor crack initiation in real time, non-destructive techniques such as Acoustic Emission (AE) and infrared thermography are widely applied. Post-failure analysis is often carried out using

Scanning Electron Microscopy (SEM), which provides detailed insights into fracture surface morphology and helps identify the underlying failure mechanisms [1].

Fig. 6 Schematic illustration of fatigue crack propagation in epoxy granite under cyclic mechanical loading with thermal fluctuations. The diagram reflects mechanisms discussed in the literature related to thermomechanical fatigue and resin–aggregate interface behavior [9, 98, 99]


b) Numerical modeling

Finite Element Analysis (FEA) is extensively employed to model stress distribution (see **Fig. 7**), crack initiation, and propagation paths in epoxy granite and similar composite materials.

capture complex failure mechanisms such as delamination and matrix cracking, Cohesive Zone Models (CZM) are commonly utilized [6, 13, 58, 75, 93], [108-110]. Additionally, multiscale modeling approaches that integrate microstructural and macrostructural characteristics have been developed to enhance the predictive accuracy of simulations, offering deeper insights into the material's behavior under various loading conditions [78]. Researchers and manufacturers have employed simulation techniques to predict wind turbine blade performance using CAD models based on NACA profiles. Experimentally obtained mechanical properties of composite materials serve as boundary conditions in these simulations. Finite Element Modeling (FEM), as demonstrated by Rajadurai et al. [111] and Jensan et al. [112], effectively captures blade behavior under service loading, with results showing strong agreement with established data for standard blade configurations These failure mechanics perceptions are essential for predicting material performance, and in the following section, a specific industrial application where these characteristics are particularly relevant will be explored.

6 Applications for Epoxy Granite in Machine Element Foundations

Epoxy granite's mechanical, thermal, and damping properties make it a preferred material in the manufacturing of structural components for machine tools and precision equipment.

Fig. 7 Heatmap plot showing normalized stress intensity distribution across the width and height of an epoxy granite machine base under applied load. The peak intensity region is centered, while the dashed line indicates the approximate load application point. This schematic is based on general stress modeling concepts discussed in [6, 13, 58, 75, 93], [108-110]

6.1 Role of epoxy granite in machine tool beds and bases

Epoxy granite is increasingly being adopted as a substitute for cast iron in CNC machine tool beds, vertical machining centers, and grinding machines [51, 71, 83, 90, 108], [113-118], owing to its superior material properties (see Fig. 8). Its high stiffness combined with a low damping time constant significantly enhances machining accuracy and extends tool life. To accommodate mechanical components and provide design flexibility, pre-embedded steel inserts are commonly integrated into the structure, enabling greater customizability and modularity in machine configurations [9, 83, 93, 108], [119-122]. Figure 8 shows a Cross-sectional schematic of a CNC machine tool base constructed from epoxy granite, including embedded aluminium inserts. These inserts are pre-positioned in the mold before casting and become rigidly bonded within the composite. They serve as structural anchorage points for mounting mechanical components and play a critical role in transferring loads from external assemblies into the epoxy granite structure. The illustration is based on design principles reported in [60, 76, 104].

6.2 Vibration damping and precision stability in CNC machines

Machine vibrations negatively impact surface finish and accelerate tool wear, posing challenges to precision machining. Epoxy granite structures offer a significant advantage in this regard, providing vibration damping that is 6 –10 times more effective than traditional steel or cast iron. Modal analysis of machine tools built with epoxy granite reveals notably lower resonance amplitudes and faster vibration decay, contributing to improved machining performance and extended tool life [123].

6.3 Other industrial applications for epoxy granite

While epoxy granite is distinguished for its use in CNC machine bases due to its exceptional vibration-damping, stiffness, and thermal stability, its unique

properties lend themselves to applications in other industries such as measurement and metrology equipment optics industry, medical devices, and semiconductor industry [21, 113, 92], [124-127].

Fig. 8 Cross-sectional schematic of a CNC machine tool base constructed from epoxy granite, showing embedded aluminium inserts and structural layout considerations. The illustration is based on general design features and integration techniques reported in [127]

7 Conclusion and Future Directions

Epoxy granite has emerged as a high-performance material widely used in machine foundations and precision structural applications due to its exceptional mechanical strength, thermal stability, and superior vibration damping. The material's performance is heavily influenced by its manufacturing process, particularly the optimization of mixed design, defect control, and curing strategies. Despite its high compressive strength, careful attention must be paid to its fracture and fatigue behavior during design. Its widespread industrial adoption is driven by its ability to maintain dimensional precision and dampen vibrations effectively. Future research is focusing on enhancing sustainability using bio-based epoxy resins and recycled improving fracture aggregates, toughness nano-reinforcements such as graphene and carbon nanotubes, and leveraging advanced multi-physics simulation tools for predictive modeling under complex loading scenarios. Investigating the failure patterns in epoxy granite machine foundations offers direct guidance for more powerful and reliable designs. Designers can utilize this knowledge to:

- Optimize structural integrity: by designing better geometries, determining optimal wall thicknesses, and deliberately surrounding steel inserts in high-stress areas to ensure effective load transfer and inhibit premature failure.
- Enhance dynamic performance: Realizing epoxy granite's failure mechanisms, exhibiting its exceptional vibration-damping, will ease design foundations that better reduce vibrations, boosting machine accuracy and tool life.
- Inform maintenance and endurance: The failure investigation findings can assist designers in estimating component life cycle and advancing proactive maintenance approaches.

Substantially, this review simply describes material behavior; it presents the fundamental "why" behind failures, permitting engineers and developers to inhibit these issues in the future by designing enhanced materials and structures. Emphasizing economic and sustainability benefits: This comprehensive understanding also highlights epoxy granite's cost-effectiveness owing to reduced machining and material waste, besides its environmental advantages throughout lower energy consumption in manufacturing compared to conventional materials.

References

- [1] M. Pawar, A. Patnaik, and R. Nagar, "Investigation on mechanical and thermo - mechanical properties of granite powder filled treated jute fiber reinforced epoxy composite," *Polymer Composites*, vol. 38, pp. 736-748, 2017.
- [2] R. Chaturvedi, A. Pappu, P. Tyagi, R. Patidar, A. Khan, A. Mishra, et al., "Next-generation high-performance sustainable hybrid composite materials from silica-rich granite waste particulates and jute textile fibres in epoxy resin," *Industrial Crops and Products*, vol. 177, p. 114527, 2022.
- [3] A. Ebrahim, M. Y. Abdellah, A. M. A. Gomaa, M. Kourmpetis, H. A. Hassan Youssef, and G. T. Abdel-Jaber, "Enhancing polymer composites with date palm residues for sustainable innovation: a review," *International Journal of Materials Research*, vol. 116, pp. 225-239, 2025.
- [4] A. E. Ali, M. Gronfula, and G. Abdel-Gaber, "Reinforcing Polymers with Date Palm Seeds: A Path to Greener Composites—A Review," SVU-International Journal of Engineering Sciences and Applications, vol. 6, pp. 1-16, 2025.
- [5] V. R. Mula, A. Ramachandran, and T. Pudukarai Ramasamy, "A review on epoxy granite reinforced polymer composites in machine tool structures–Static, dynamic and thermal characteristics," *Polymer Composites*, vol. 44, pp. 2022-2070, 2023
- [6] P. Dhanabal, V. P. Raja, M. Kalayarasan, and S. Mohanraj, "Dynamic performance enhancement of machining center with epoxy granite base: Experiments and finite element simulations," *Precision Engineering*, vol. 88, pp. 943-957, 2024.
- [7] M. Y. Abdellah, A. Abdelhaleem, H. A. Ghulman, and G. T. Abdel-Jaber, "Vibration and tribological properties of epoxy-granite composites used as novel foundations for machine elements," *Journal of Polymer Engineering*, vol. 42, pp. 856-867, 2022.
- [8] S. Chinnuraj, T. P. Ramaswamy, M. P. Venkatachalam, M. Nataraj, R. Murugan, M. Selvakumar, et al., "Optimization of process parameters of epoxy granite for strength and damping characteristics using TOPSIS method," *Journal of Testing and Evaluation*, vol. 49, pp. 1956-1975, 2021.
- [9] M. Y. Abdellah, A. Abdelhaleem, I. A. Alnaser, G. Abdel-Jaber, and A. Abdal-hay, "Flexural, compression and fracture properties of epoxy granite as a cost-effective structure materials: new machine element foundation," AIMS Materials Science, vol. 8, pp. 82-98, 2021.
- [10] M. Omar, Y. Abdelrhman, I. M Hassab, and M. Khierldeen, "EXPERIMENTAL STUDY ON COMPRESSIVE STRENGTH AND FLEXURAL RIGIDITY OF EPOXY GRANITE COMPOSITE MATERIAL," *JES. Journal of Engineering Sciences*, vol. 49, pp. 198-214, 2021.
- [11] A. Piratelli-Filho and F. Levy-Neto, "Behavior of granite-epoxy composite beams subjected to mechanical vibrations," *Materials research*, vol. 13, pp. 497-503, 2010.

- [12] S. Swamy, B. Sreedhar, V. Kalas, and K. Chandan, "Experimental studies on compression and vibration characteristics of granite epoxy-An alternative material for precision machine tool beds, Int," *Journal of Pure and Applied Research in Engineering and Technology*, vol. 2, pp. 120-135, 2014.
- [13] Y. Abdelrhman, M. Omar, I. M. Hassab-Allah, W. Shewakh, W. M. Khierldeen, M. Hedaya, et al., "Mechanical properties and damping characteristics of Egyptian granite-epoxy composite material," *Materials Research Express*, vol. 11, p. 066501, 2024.
- [14] A. Selvakumar, K. Ganesan, and P. Mohanram, "Dynamic analysis on fabricated mineral cast lathe bed," *Proceedings of* the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 227, pp. 261-266, 2013.
- [15] A. Selvakumar and P. Mohanram, "Analysis of alternative composite material for high speed precision machine tool structures," *Annals of the Faculty of Engineering Hunedoara*, vol. 10, p. 95, 2012.
- [16] A. A. Kareem, "Mechanical properties of granite powder as a filler for polycarbonate toughened epoxy resin," *International Journal of Pharma Sciences*, vol. 3, pp. 254-257, 2013.
- [17] P. R. Venugopal, P. Dhanabal, P. Thyla, S. Mohanraj, M. Nataraj, M. Ramu, et al., "Design and analysis of epoxy granite vertical machining centre base for improved static and dynamic characteristics," Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol. 234, pp. 481-495, 2020.
- [18] P. R. Venugopal, M. Kalayarasan, P. Thyla, P. Mohanram, M. Nataraj, S. Mohanraj, et al., "Structural investigation of steel-reinforced epoxy granite machine tool column by finite element analysis," Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol. 233, pp. 2267-2279, 2019.
- [19] S. Chinnuraj, P. Thyla, S. Elango, P. R. Venugopal, P. Mohanram, M. Nataraj, et al., "Static and dynamic behavior of steel-reinforced epoxy granite CNC lathe bed using finite element analysis," Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol. 234, pp. 595-609, 2020.
- [20] T. Wang, J. Zhang, W. Bai, and S. Hao, "Forming process and mechanical properties of fibers-reinforced polymer concrete," *Journal of Reinforced Plastics and Composites*, vol. 32, pp. 907-911, 2013.
- [21] M. L. P. Gomes, E. A. Carvalho, T. J. Demartini, E. A. de Carvalho, H. A. Colorado, and C. M. F. Vieira, "Mechanical and physical investigation of an artificial stone produced with granite residue and epoxy resin," *Journal of Composite Materials*, vol. 55, pp. 1247-1254, 2021.
- [22] S. R. Rama and S. Rai, "Mechanical and fractrographic studies on fly ash-filled hydroxyl-terminated polyurethane-toughened epoxy composites," *Journal of composite materials*, vol. 43, pp. 3231-3238, 2009.
- [23] S. Gangwar and V. K. Pathak, "A critical review on tribological properties, thermal behavior, and different applications of industrial waste reinforcement for composites," Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol. 235, pp. 684-706, 2021.
- [24] A. K. Rout and A. Satapathy, "Study on mechanical and erosion wear performance of granite filled glass-epoxy hybrid composites," *Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications*, vol. 229, pp. 38-50, 2015.
- [25] N. Miyazaki, "Solid particle erosion of composite materials: a critical review," *Journal of Composite Materials*, vol. 50, pp. 3175-3217, 2016.

[26] V. Srivastava and A. Pawar, "Solid particle erosion of glass fibre reinforced flyash filled epoxy resin composites," *Composites Science and Technology*, vol. 66, pp. 3021-3028, 2006.

- [27] A. Patnaik, A. Satapathy, and S. Mahapatra, "Study on erosion response of hybrid composites using Taguchi experimental design," *Journal of engineering materials and technology*, vol. 131, 2009.
- [28] S. Biswas and A. Satapathy, "A comparative study on erosion characteristics of red mud filled bamboo-epoxy and glass-epoxy composites," *Materials & Design*, vol. 31, pp. 1752-1767, 2010.
- [29] A. K. Rout and A. Satapathy, "Study on mechanical and tribo-performance of rice-husk filled glass—epoxy hybrid composites," *Materials & Design*, vol. 41, pp. 131-141, 2012.
- [30] I. Gunes, T. Uygunoglu, and A. G. Çelik, "Tribological Properties of Fly Ash Blended Polymer Composites," *Matéria* (*Rio de Janeiro*), vol. 26, 2021.
- [31] W. Xu, X. Ma, N. Tang, L. Zhu, W. Li, and Y. Ding, "Effect of post-welding heat treatment on wear resistance of cast-steel die with surfacing layer," *Manufacturing Review*, vol. 2, p. 25, 2015.
- [32] S. Chauhan, A. Kumar, I. Singh, and P. Kumar, "Effect of fly ash content on friction and dry sliding wear behavior of glass fiber reinforced polymer composites-a taguchi approach," *Journal of Minerals and Materials Characterization and* engineering, vol. 9, p. 365, 2010.
- [33] S. Kulkarni, "Effects of surface treatments and size of fly ash particles on the compressive properties of epoxy based particulate composites," *Journal of Materials Science*, vol. 37, pp. 4321-4326, 2002.
- [34] S. Nallusamy and A. Karthikeyan, "Synthesis and wear characterization of reinforced glass fiber polymer composites with epoxy resin using granite powder," in *Journal of Nano Research*, 2017, pp. 1-9.
- [35] M. Siddhpura and R. Paurobally, "A review of chatter vibration research in turning," *International Journal of Machine tools and manufacture*, vol. 61, pp. 27-47, 2012.
- [36] D. D. Ubale, R. V. Nimbalkar, and V. R. Chavan, "Stiffness and Damping of Epoxy Granite," *International Journal of Engineering and Advanced Technology*, vol. 9, pp. 1105-1108, 2020.
- [37] P. Mani, A. Gupta, and S. Krishnamoorthy, "Comparative study of epoxy and polyester resin-based polymer concretes," *International journal of adhesion and adhesives*, vol. 7, pp. 157-163, 1987.
- [38] T. K. M. Dang, M. Nikzad, R. Arablouei, S. Masood, D.-K. Bui, V. K. Truong, et al., "Experimental study and predictive modelling of damping ratio in hybrid polymer concrete," Construction and Building Materials, vol. 411, p. 134541, 2024.
- [39] P. Boral, T. Nieszporek, and R. Gołębski, "The welded CNC machine tool frame," in MATEC Web of Conferences, 2018, p. 01003.
- [40] A. Vivek, V. Holla, and M. Krupashankara, "Polymer concretes for machine tool structures—a review," *International Journal of Innovative Research in Science, Engineering and Technology*, vol. 5, 2016.
- [41] S. Orak, "Investigation of vibration damping on polymer concrete with polyester resin," *Cement and concrete research*, vol. 30, pp. 171-174, 2000.
- [42] M. Troncossi, G. Canella, and N. Vincenzi, "Identification of polymer concrete damping properties," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 236, pp. 10657-10666, 2022.
- [43] M. F. Younes, "Compound mass liquid column Damper for Attenuating the Vibration of the Structures," SAE Technical Paper 0148-7191, 2020.

- [44] M. V. Ramana, P. Thyla, N. Mahendrakumar, and K. Praveena, "Selection of resin and aggregates for particulate polymer concrete machine tool structures-A review," *Materials Today: Proceedings*, vol. 46, pp. 8621-8628, 2021.
- [45] V. Arjun, A. Arun Thiyagarajan, S. Mohanraj, M. Kalayarasan, V. P. Raja, and M. Thivagar, "Multi-objective topology optimization of steel reinforcement for epoxy granite VMC column," in Advances in simulation, product design and development: proceedings of AIMTDR 2021, ed: Springer, 2022, pp. 343-355.
- [46] M. A. Abouelnour, M. A. Abd EL-Aziz, K. M. Osman, I. N. Fathy, B. A. Tayeh, and M. E. Elfakharany, "Recycling of marble and granite waste in concrete by incorporating nano alumina," *Construction and Building Materials*, vol. 411, p. 134456, 2024.
- [47] B. Ramesh, S. S. Kumar, A. H. Elsheikh, S. Mayakannan, K. Sivakumar, and S. Duraithilagar, "Optimization and experimental analysis of drilling process parameters in radial drilling machine for glass fiber/nano granite particle reinforced epoxy composites," *Materials Today: Proceedings*, vol. 62, pp. 835-840, 2022.
- [48] K. B. Tator, "Epoxy resins and curatives," in *Protective Organic Coatings*, ed: ASM International, 2015, pp. 63-79.
- [49] M. Anson-Cartwright, Improving Concrete Sustainability and Durability by Optimization of Aggregate Particle Packing and Use of Microfine Fillers: University of Toronto (Canada), 2015.
- [50] P. G. Pape and E. P. Plueddemann, "Methods for improving the performance of silane coupling agents," *Journal of adhesion science and technology*, vol. 5, pp. 831-842, 1991.
- [51] I. Rafique, A. Kausar, Z. Anwar, and B. Muhammad, "Exploration of epoxy resins, hardening systems, and epoxy/carbon nanotube composite designed for high performance materials: A review," *Polymer-Plastics Technology and Engineering*, vol. 55, pp. 312-333, 2016.
- [52] W. Ferdous, A. Manalo, T. Aravinthan, and G. Van Erp, "Properties of epoxy polymer concrete matrix: Effect of resin-to-filler ratio and determination of optimal mix for composite railway sleepers," *Construction and Building Materials*, vol. 124, pp. 287-300, 2016.
- [53] T. S. Piwonka, "Aggregate molding materials," ASM Handbook., vol. 15, pp. 208-211, 1988.
- [54] S. Kumar, D. Kumar, I. Singh, and D. Rath, "An insight into ultrasonic vibration assisted conventional manufacturing processes: A comprehensive review," *Advances in Mechanical Engineering*, vol. 14, p. 16878132221107812, 2022.
- [55] W. Abdul Karem, "Vibration assisted filling of thin section castings," University of Birmingham, 2009.
- [56] R. Carbas, L. Da Silva, E. Marques, and A. Lopes, "Effect of post-cure on the glass transition temperature and mechanical properties of epoxy adhesives," *Journal of Adhesion Science* and Technology, vol. 27, pp. 2542-2557, 2013.
- [57] Y. Jahani, M. Baena, C. Barris, R. Perera, and L. Torres, "Influence of curing, post-curing and testing temperatures on mechanical properties of a structural adhesive," *Construction and Building Materials*, vol. 324, p. 126698, 2022.
- [58] S. Indhumathi, S. P. Kumar, and M. Pichumani, "Reconnoitring principles and practice of Modified Andreasen and Andersen particle packing theory to augment Engineered cementitious composite," *Construction and Building Materials*, vol. 353, p. 129106, 2022.
- [59] M. Ali, A. Kumar, A. Yvaz, and B. Salah, "Central composite design application in the optimization of the effect of pumice stone on lightweight concrete properties using RSM," Case Studies in Construction Materials, vol. 18, p. e01958, 2023.
- [60] N. Bheel, B. S. Mohammed, I. Abdulkadir, M. Liew, and N. A. W. A. Zawawi, "Effects of graphene oxide on the properties of engineered cementitious composites: Multi-objective optimization technique using RSM," *Buildings*, vol. 13, p. 2018, 2023.

- [61] W. Xing, V. W. Tam, K. N. Le, J. L. Hao, and J. Wang, "Life cycle assessment of recycled aggregate concrete on its environmental impacts: A critical review," *Construction and Building Materials*, vol. 317, p. 125950, 2022.
- [62] A. Ghosh, G. Ransinchung, and P. Kumar, "Influence of key parameters on the performance of RAP-inclusive geopolymer concrete pavements: An approach integrating sensitivity analysis," *Construction and Building Materials*, vol. 414, p. 134705, 2024.
- [63] M. Y. Yardimci, B. Baradan, and M. A. Taşdemir, "Effect of fine to coarse aggregate ratio on the rheology and fracture energy of steel fibre reinforced self-compacting concretes," *Sadhana*, vol. 39, pp. 1447-1469, 2014.
- [64] A. Piratelli-Filho and F. Shimabukuro, "Characterization of compression strength of granite-epoxy composites using design of experiments," *Materials Research*, vol. 11, pp. 399-404, 2008.
- [65] Epoxy Granite Machine Frame Knowledge," Precision Granite, Mar. 11, 2018. Accessed [Date you accessed this], from. https://www.precisiongranitecn.com/info/epoxy-granite-machine-frame-24353377.htm.
- [66] S. Paul, S. Chattopadhyaya, A. Raina, S. Sharma, C. Li, Y. Zhang, et al., "A review on the impact of high-temperature treatment on the physico-mechanical, dynamic, and thermal properties of granite," Sustainability, vol. 14, p. 14839, 2022.
- [67] D. D. Ubale and A. P. Shah, "Effect of Fibre Reinforcement on Compressive Strength and Compressive Modulus of Epoxy Granite," in *IOP Conference Series: Materials Science* and Engineering, 2024, p. 012016.
- [68] V. Saravanan Veera Sena, H. Arumugam, K. Mohamed Mydeen, B. Krishnasamy, M. Mohamed Iqbal, and A. Muthukaruppan, "Industrial cutting waste granite dust reinforced cardanol benzoxazine/epoxy resin hybrid composites for high - voltage electrical insulation applications," *Polymers for Advanced Technologies*, vol. 34, pp. 568-577, 2023.
- [69] J. A. V. Gonçalves, D. A. T. Campos, G. d. J. Oliveira, M. d. L. d. S. Rosa, and M. A. Macêdo, "Mechanical properties of epoxy resin based on granite stone powder from the Sergipe fold-and-thrust belt composites," *Materials Research*, vol. 17, pp. 878-887, 2014.
- [70] J. F. P. Lovo, M. P. G. Pedroso, R. Erbereli, B. d. M. Purquerio, and C. A. Fortulan, "Synthetic granite composite for precision equipment structures," *Matéria (Rio de Janeiro)*, vol. 23, p. e12229, 2018.
- [71] Y. Xiao and E. Tutumluer, "Gradation and packing characteristics affecting stability of granular materials: aggregate imaging-based discrete element modeling approach," *International Journal of Geomechanics*, vol. 17, p. 04016064, 2017.
- [72] N. R. Norbidin, "Packing density and reactivity of waste quarry dust as a supplementary cementitious material," University of Sheffield, 2024.
- [73] L. F. J. Schneider, L. M. Cavalcante, and N. Silikas, "Shrinkage stresses generated during resin-composite applications: a review," *Journal of dental biomechanics*, vol. 2010, p. 131630, 2009.
- [74] T. Aziz, A. Ullah, H. Fan, M. I. Jamil, F. U. Khan, R. Ullah, et al., "Recent progress in silane coupling agent with its emerging applications," *Journal of Polymers and the Environment*, pp. 1-17, 2021.
- [75] Y. Xie, C. A. Hill, Z. Xiao, H. Militz, and C. Mai, "Silane coupling agents used for natural fiber/polymer composites: A review," *Composites Part A: Applied Science and Manufacturing*, vol. 41, pp. 806-819, 2010.
- [76] The Engineering ToolBox, "Metals Temperature Expansion Coefficients," The Engineering ToolBox, 2005. [Online]. Available:https://www.engineeringtoolbox.com/thermal-expansion-metals-d_859.html [Accessed: 28-Aug-2025].

- [77] Ole Døssing, Structural Testing Part II: Modal Analysis and Simulation, Brüel & Kjær Technical Publication BR0507, March 1988..
- [78] S. Basavarajappa and S. Ellangovan, "Dry sliding wear characteristics of glass-epoxy composite filled with silicon carbide and graphite particles," wear, vol. 296, pp. 491-496, 2012
- [79] S.-Y. Fu, B. Lauke, E. Mäder, C.-Y. Yue, and X. Hu, "Tensile properties of short-glass-fiber-and short-carbon-fiber-reinforced polypropylene composites," *Composites Part A: Applied Science and Manufacturing*, vol. 31, pp. 1117-1125, 2000.
- [80] S. Nallusamy, "Characterization of epoxy composites with TiO2 additives and E-glass fibers as reinforcement agent," *Journal of Nano Research*, vol. 40, pp. 99-104, 2016.
- [81] S. Nallusamy, "Thermal conductivity analysis and characterization of copper oxide nanofluids through different techniques," *Journal of Nano Research*, vol. 40, pp. 105-112, 2016.
- [82] B. Raju, B. Kanthraj, B. Suresha, and R. Swamy, "Three-body abrasive wear behaviour of silicon carbide filled glass-fabric reinforced epoxy composites using Taguchi method," Advances in polymer science and technology, vol. 3, p. 2013, 2013
- [83] P. D. Jablonski and D. E. Alman, "Oxidation resistance and mechanical properties of experimental low coefficient of thermal expansion (CTE) Ni-base alloys," *International journal of hydrogen energy*, vol. 32, pp. 3705-3712, 2007.
- [84] A. K. Singh, "Effective thermal conductivity of epoxy matrix composites filled with granite dust," 2014.
- [85] Y.-H. Song, L.-J. Yin, S.-L. Zhong, Q.-K. Feng, H. Wang, P. Zhang, et al., "A processable high thermal conductivity epoxy composites with multi-scale particles for high-frequency electrical insulation," Advanced Composites and Hybrid Materials, vol. 7, p. 115, 2024.
- [86] Z. Li, L. N. Y. Wong, and C. I. Teh, "Influence of thermal and mechanical loading on development of microcracks in granite," *Rock Mechanics and Rock Engineering*, vol. 53, pp. 2035-2051, 2020.
- [87] O. Startsev, Y. M. Vapirov, M. Lebedev, and A. Kychkin, "Comparison of glass-transition temperatures for epoxy polymers obtained by methods of thermal analysis," *Mechanics of Composite Materials*, vol. 56, pp. 227-240, 2020.
- [88] G. Wisanrakkit and J. Gillham, "The glass transition temperature (Tg) as an index of chemical conversion for a high - Tg amine/epoxy system: chemical and diffusion controlled reaction kinetics," *Journal of Applied Polymer Science*, vol. 41, pp. 2885-2929, 1990.
- [89] A. J. Lesser and E. Crawford, "The role of network architecture on the glass transition temperature of epoxy resins," *Journal of applied polymer science*, vol. 66, pp. 387-395, 1997.
- [90] D. Ubale, R. V. Nimbalkar, and V. R. Chavan, "Stiffness and damping of epoxy granite," *Int. J. Eng. Adv. Technol*, vol. 9, pp. 1105-1108, 2020.
- [91] S. Ghorbani, V. Rogov, A. Carluccio, and P. Belov, "The effect of composite boring bars on vibration in machining process," *The International Journal of Advanced Manufacturing Technology*, vol. 105, pp. 1157-1174, 2019.
- [92] Mohammed Y. Abdellah, Mustafa Gamal, Hamzah Alharthi, and Gamal Abdel-Jaber, Mechanical, thermal, and acoustic properties of natural fibre-reinforced polyester composites, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, vol. 238, no. 3, pp. 1–13, 2023. DOI: 10.1177/09544089231157638.
- [93] A. C. Garg and Y.-W. Mai, "Failure mechanisms in toughened epoxy resins—A review," *Composites Science and Technology*, vol. 31, pp. 179-223, 1988.

[94] J. S. Jayan, A. Saritha, and K. Joseph, "Innovative materials of this era for toughening the epoxy matrix: a review," *Polymer Composites*, vol. 39, pp. E1959-E1986, 2018.

- [95] H. Abdellaoui, M. Raji, R. Bouhfid, and A. el kacem Qaiss, "Investigation of the deformation behavior of epoxy-based composite materials," in *Failure analysis in biocomposites*, fibre-reinforced composites and hybrid composites, ed: Elsevier, 2019, pp. 29-49.
- [96] Y. Huang and X. Wang, "On the fracture toughness testing for single-edge notched bend specimen of orthotropic materials," composite Structures, vol. 281, p. 114970, 2022.
- [97] W. Khor, "Crack tip opening displacement (CTOD) in single edge notched bend (SEN (B))," Brunel University London, 2018.
- [98] C. Shanmugam, P. Thyla, N. M. Kumar, S. J. Rabik, R. R. Krishna, and S. V. Kumar, "Experimental studies on mechanical properties of epoxy granite for machine tool structure using design of experiments," *Asian Journal of Research in Social Sciences and Humanities*, vol. 7, pp. 1333-1342, 2017.
- [99] X.-P. Zhou, G.-Q. Li, and H.-C. Ma, "Real-time experiment investigations on the coupled thermomechanical and cracking behaviors in granite containing three pre-existing fissures," *Engineering Fracture Mechanics*, vol. 224, p. 106797, 2020.
- [100] M. Hu, C. Zhou, G. Sun, B. Hofko, J. Mirwald, and D. Sun, "Molecular-Atomic Scale Insight on Asphalt—Aggregate Interface Interaction and Seawater Erosion with Different Aging-Resistant Materials Using Molecular Dynamics Simulations," *Energy & Fuels*, vol. 38, pp. 9438-9457, 2024.
- [101] J. Xu, B. Ma, S. Zhou, W. Mao, and X. Wang, "Wetting model of rough solid surfaces and the effect of aggregate properties on epoxy resin binder-aggregate interface wetting," *Construction and Building Materials*, vol. 394, p. 132251, 2023.
- [102] D. Song, G. Kang, Q. Kan, C. Yu, and C. Zhang, "Effects of peak stress and stress amplitude on multiaxial transformation ratchetting and fatigue life of superelastic NiTi SMA micro-tubes: Experiments and life-prediction model," *International Journal of Fatigue*, vol. 96, pp. 252-260, 2017.
- [103] M. Kamble, A. S. Lakhnot, S. F. Bartolucci, A. G. Littlefield, C. R. Picu, and N. Koratkar, "Improvement in fatigue life of carbon fibre reinforced polymer composites via a Nano-Silica Modified Matrix," *Carbon*, vol. 170, pp. 220-224, 2020.
- [104] J. Ding and L. Cheng, "Ultra-high three-point bending fatigue performance of nano-silica-reinforced CFRP," *International Journal of Fatigue*, vol. 145, p. 106085, 2021.
- [105] M. Y. Abdellah, B. M. Fadhl, H. Abu El-Ainin, M. K. Hassan, A. H. Backar, and A. F. Mohamed, "Experimental evaluation of mechanical and tribological properties of segregated Al-Mg-Si alloy filled with alumina and silicon carbide through different types of casting molds," *Metals*, vol. 13, p. 316, 2023
- [106] K. Z. Yang, A. Pramanik, A. Basak, Y. Dong, C. Prakash, S. Shankar, et al., "Application of coolants during tool-based machining—A review," Ain Shams Engineering Journal, vol. 14, p. 101830, 2023.
- [107] R. C. Chu, R. E. Simons, M. J. Ellsworth, R. R. Schmidt, and V. Cozzolino, "Review of cooling technologies for computer products," *IEEE Transactions on Device and materials* Reliability, vol. 4, pp. 568-585, 2004.
- [108] E. Barbero, J. Fernández-Sáez, and C. Navarro, "Statistical analysis of the mechanical properties of composite materials," *Composites Part B: Engineering*, vol. 31, pp. 375-381, 2000.
- [109] B. D. Brouer, C. V. Karsten, and D. Pisinger, "Optimization in liner shipping," *4OR*, vol. 15, pp. 1-35, 2017.

[110] A. H. Chow and A. Pavlides, "Cost functions and multi-objective timetabling of mixed train services," *Transportation Research Part A: Policy and Practice*, vol. 113, pp. 335-356, 2018.

- [111] J. S. Rajadurai, T. Christopher, G. Thanigaiyarasu, and B. N. Rao, "Finite element analysis with an improved failure criterion for composite wind turbine blades," *Forschung im Ingenieurwesen*, vol. 72, pp. 193-207, 2008.
- [112] F. Jensen, B. Falzon, J. Ankersen, and H. Stang, "Structural testing and numerical simulation of a 34 m composite wind turbine blade," *Composite structures*, vol. 76, pp. 52-61, 2006.
- [113] M. Y. Abdellah, R. Alfattani, I. A. Alnaser, and G. Abdel-Jaber, "Stress distribution and fracture toughness of underground reinforced plastic pipe composite," *Polymers*, vol. 13, p. 2194, 2021.
- [114] H. Almujibah and J. Preston, "The total social costs of constructing and operating a high-speed rail line using a case study of the riyadh-dammam corridor, Saudi Arabia," Frontiers in Built Environment, vol. 5, p. 79, 2019.
- [115] J. Campbell, "Entrainment defects," *Materials science and technology*, vol. 22, pp. 127-145, 2006.
- [116] J. Kaczmar, K. Pietrzak, and W. Włosiński, "The production and application of metal matrix composite materials," *Journal* of materials processing technology, vol. 106, pp. 58-67, 2000.
- [117] Z. Li, A. Shalaby, M. J. Roorda, and B. Mao, "Urban rail service design for collaborative passenger and freight transport," *Transportation Research Part E: Logistics and Transportation Review*, vol. 147, p. 102205, 2021.
- [118] A. Pavlides and A. H. Chow, "Multi-objective optimization of train timetable with consideration of customer satisfaction," *Transportation Research Record*, vol. 2672, pp. 255-265, 2018.
- [119] "Chapter 12 Individual Fitness," in *Bayesian Inference*, W. A. Link and R. J. Barker, Eds., ed London: Academic Press, 2010, pp. 271-286.
- [120] W. B. Powell, H. P. Simao, and B. Bouzaiene-Ayari, "Approximate dynamic programming in transportation and logistics: a unified framework," EURO Journal on Transportation and Logistics, vol. 1, pp. 237-284, 2012.
- [121] L. Scrucca, "GA: A package for genetic algorithms in R," Journal of Statistical Software, vol. 53, pp. 1-37, 2013.
- [122] M. Ünal, H. Hashim, H. Gökçe, P. Ayough, F. Köksal, A. El-Shafie, et al., "Physical and mechanical properties of pre-treated plant-based lightweight aggregate concretes: A review," Construction and Building Materials, vol. 444, p. 137728, 2024.
- [123] S.-M. Wang, Q.-S. Lu, Q. Wang, and P. Xu, "Reducing the amplitude of vibration at resonances by phase modulation," *Journal of Sound and Vibration*, vol. 290, pp. 410-424, 2006.
- [124] R. Thandavamoorthy, J. K. Alagarasan, V. Mohanavel, P. Velmurugan, F. O. Al-Otibi, I. Hossain, et al., "Fabrication of green composite made by Cannabis sativa fiber reinforced granite filler blended epoxy matrix composite—Antimicrobial and structural analysis," Journal of Materials Research and Technology, vol. 32, pp. 2474-2481, 2024.
- [125] J. T. Liedes, "OPTICAM machine design," in *Advanced Optical Manufacturing and Testing II*, 1992, pp. 216-222.
- [126] S. Fouad, K. Easawi, T. Mahmoud, and M. Nabil, "Essential tips for enhancing the opto-electrical performance of CdSe (NPs)/Epoxy resin," *Journal of Non-Crystalline Solids*, vol. 608, p. 122252, 2023.
- [127] Shandong Sincere Precision Machinery Co., Ltd., "Epoxy Granite Machine," accessed September 27, 2025, https://www.precisiongranitecn.com/info/epoxy-granite-machine-23471170.html.