Vol. 3, No. 2, pp. 105-116, (December 2025)

DOI: 10.21608/astb.2025.409269.1028

ASWAN SCIENCE AND TECHNOLOGY BULLETIN (ASTB)

Online ISSN: 3009-7916, Print ISSN: 1110-0184

Journal homepage: https://astb.journals.ekb.eg/
E-mail: essamshaalan@sci.aswu.edu.eg

Original Article

Alterations in Renal Function and Serum Electrolytes in Diabetic Patients

Amira Elsawy. 1* , Weaam Gouda. 2, Mie Afify. 2 , Mohamed Diaa El-Din Abdelmaksoud. 2 , Samir Azazy. 3 , and Naglaa S. Mohamed. 1

Received: 06/09/2025 Revised: 21/10/2025 Accepted: 03/11/2025

Abstract

Diabetic kidney disease (DKD) is becoming a significant cause of morbidity and mortality, and its incidence is rising globally. Early diagnosis of DKD may prevent the progression of renal disease. Both functional and structural markers are used to diagnose and classify DKD. In this study, we investigated the effect of diabetes mellitus on kidney function and electrolytes. A total of 120 subjects were enrolled in the study and classified into three groups: (Group I) 40 normal healthy subjects, (Group II) 40 DKD patients without end-stage renal disease (ESRD), and (Group IIII) 40 DKD patients with ESRD. There was a significant increase in the results of random blood glucose, Hemoglobin A1C (HbA1C), serum urea, and creatinine in patients (Group II and Group III) than in controls (Group I). Estimated glomerular filtration rate (eGFR) and hemoglobin levels were significantly lowered in Group III and Group II compared to Group I. Electrolyte levels, mainly sodium, potassium, and ionized calcium, were significantly deranged in DKD patients with or without ESRD.

Keywords: Diabetic kidney disease (DKD), kidney, Estimated glomerular filtration rate (eGFR), End-stage renal disease (ESRD), Electrolytes

Corresponding author*: E-mail address: ameraelsawy4883@sci.aswu.edu.eg

¹Chemistry Department, Faculty of Science, Aswan University, Egypt.

²Biochemistry Department, Biotechnology Research Institute, National Research Centre, Egypt.

³Surgical Urology Department, faculty of medicine, Ain shams university, Egypt.

ASWAN SCIENCE AND TECHNOLOGY BULLETIN (ASTB)3(2), pp.105-116, (December 2025).

Online ISSN: 3009-7916, Print ISSN: 1110-0184. https://astb.journals.ekb.eg/

Introduction

Diabetic kidney disease is a serious complication of type 1 and type 2 diabetes mellitus. DKD occurs in approximately 40% of diabetic patients and is the principal cause of chronic kidney disease worldwide (Alicic et al., 2017). Through its progressive nature to end-stage renal disease (ESRD), DKD is becoming a major morbidity and mortality concern worldwide (Selby & Taal, 2020). The incidence of DKD is on the rise globally by 2045, it's predicted to increase to 783 million (12%) (Hoogeveen, 2022).

The classical phenotype DKD is characterized by major structural changes in the kidney, including hyperfiltration, thickening of glomerular basement membrane, mesangial expansion, podocyte injury, along with tubular damage, all of which lead to glomerular sclerosis and renal fibrosis (Raval et al., 2020). It can be defined clinically as a progressive deterioration of renal function measured as glomerular filtration rate (GFR) (Lin et al., 2018).

The glomerular filtration rate is demarcated as the amount of fluid, which is filtered by all nephrons of both kidneys/ min, which is normally equal to 125 ml/min or 180 L/day (Provenzano et al., 2024). It can be measured using clearance of exogenous filtration markers, which is called measured GFR or using endogenous filtration markers, which is called estimated GFR (Tuttle & Levey, 2024).

The gold standard for assessing kidney function is still the indirect measurement of GFR by clearance of exogenous filtration markers. But because of its complexity, time, expense, and invasiveness, this method isn't the best for normal practice or research (Lopez-Giacoman & Madero, 2015). Therefore, in clinical practice, endogenous markers like cystatin C and serum creatinine are used to assess eGFR and kidney function. Yet, variables unrelated to glomerular filtration, like muscle mass, age, gender, and race, can influence serum creatinine levels. In contrast, measuring cystatin C is difficult, costly, and lacks standardization (Inker et al., 2021).

Early diagnosis of DKD may prevent the progression of renal disease (Nascimento & Domingueti, 2019). Both functional and structural markers are used to diagnose and classify DKD, with eGFR being used for functional assessment, as stated by the Kidney Diseases: Improving Global Outcomes (KDIGO) guideline (Jung & Yoo, 2022).

Materials and methods

A case-control study was performed in the Nephrology Department at Ain Shams University Hospitals. Informed consent was obtained in writing from all subjects before taking

ASWAN SCIENCE AND TECHNOLOGY BULLETIN (ASTB)3(2), pp.105-116, (December 2025).

Online ISSN: 3009-7916, Print ISSN: 1110-0184. https://astb.journals.ekb.eg/

part in the study. They were allocated into three groups (40 individuals in each group) as follows:

Group I: 40 normal healthy subjects (control).

Group II: 40 DKD patients without ESRD.

Group III: 40 DKD patients with ESRD.

The estimated Glomerular filtration rate was calculated using the Modification Diet in Renal Disease (MDRD) Equation. This calculator uses the 4-variable equation from **Levey et al. (2005):** sex, age, race, and serum creatinine in mg/dL (SCr):

GFR = $175 \times (SCr) - 1.154 \times (age) - 0.203 \times (0.742 \text{ if female}) \times (1.212 \text{ if Black})$.

Participants with the following criteria were excluded from the study: Pregnant females, chronic kidney disease patients due to obstructive uropathy, Polycystic kidney disease, or autoimmune diseases like systemic lupus erythematosus, rheumatoid arthritis, and individuals with a history of drug addiction / NSAIDs. Other exclusion criteria are: thyroid disorders and active urinary tract infection.

Sampling

Five milliliters of venous blood were taken and stored from each patient for the biochemical tests. Samples were left at room temperature for 30-min clotting for 10-min then centrifuged at 3000 g to separate the serum. Then the top yellow serum layer was pipetted off and carefully collected into a new tube.

Chemicals

Serum sodium, ionized calcium, and potassium levels were measured using an ion-selective electrode (ISE) method with the RAPIDLab 348EX analyzer (Siemens Healthcare Diagnostics Manufacturing Ltd, UK) (Fonseca et al., 2016). Random blood glucose was measured using glucometer kits (Trinder, 1969). Glycosylated hemoglobin A1c was measured using the Human Hemoglobin A1c (HbA1c) Assay Kit (Jeppsson et al., 2002). Serum urea was measured by using the enzymatic colorimetric method (BIO-MED Kit) (Fawcett & Scott, 1960). Serum creatinine was measured by using the Jaffe colorimetric method (kit from Reactivos GPL, Barcelona, Españ) (Jaffé, 1886).

Statistical analysis:

It was performed using IBM-SPSS 21(IBM_SPSS. Statistical Package for Social Science. Ver. 21. Standard version. Copyright © SPSS Inc., NY, USA. 2012). Descriptive statistics: Means, standard errors were calculated. One-way ANOVA was carried out to compare the means of the groups. $P \le 0.05$ was considered significant.

Results

Socio-demographic characteristics of the study participants

There was no statistically significant difference between groups concerning age and gender (P= 0.322, 0.171, respectively) (**Figures 1 and 2**).

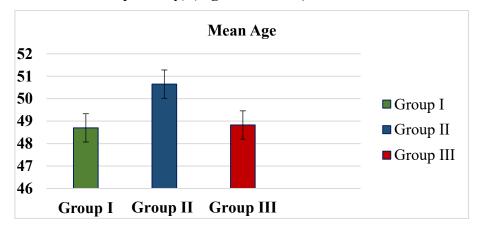


Figure 1: Mean age (years) in different groups

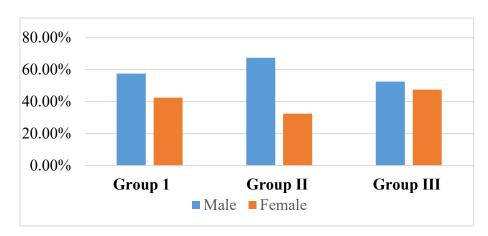


Figure 2: Gender differentiation between different groups

Glucose levels and HbA1C between different groups

There are significant differences in the results of random blood glucose (RBG) and HbA1C between controls (Group I) and patients (Group II and Group III) (p < 0.001) (Figures 3 and 4).

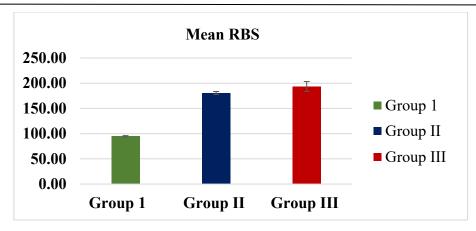


Figure3: Mean RBS (mg/dL) in different groups

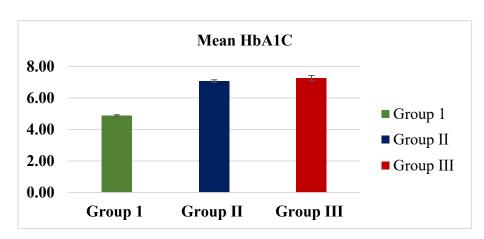


Figure 4: Mean HbA1C in different groups

Renal function and electrolytes between different groups

Regarding kidney function, Serum urea in DKD patients was significantly high (Group III: 143.05 ± 5.821 ; Group II: 81.53 ± 3.857) compared to the control population (Group I: 23.63 ± 0.566 , p < 0.001) (Figure 5). Serum creatinine in Group III (7.61 ± 0.3865) and Group II (1.99 ± 0.0486) was markedly elevated in comparison to the control population (Group I: 0.79 ± 0.0146 , p < 0.001) (Figure 6). Accordingly, eGFR was significantly lowered in Group III: (7.57 ± 0.4812) and Group II (33.97 ± 1.288) compared to the control population (Group I: 93.21 ± 0.7306 , p < 0.001) (Figure 7).

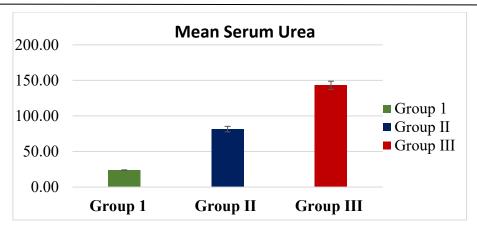


Figure 5: Mean serum Urea (mg/dL) in different groups

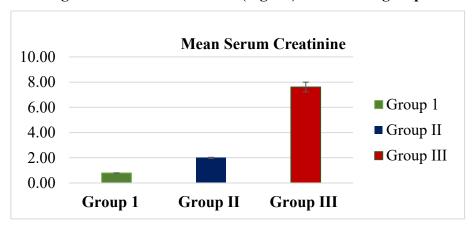


Figure 6: Mean serum Creatinine (mg/dL) level in different groups

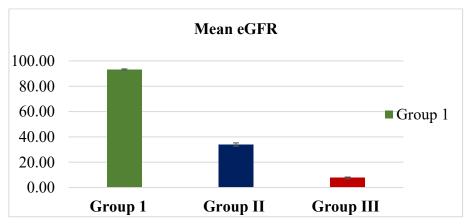


Figure 7: Mean eGFR in different groups

Serum sodium levels in DKD patients were significantly lowered (Group III: 134.05 ± 0.586) compared to the control population (Group I: 141.65 ± 0.652) and Group II (140.68 ± 0.412 , p < 0.001) (Figure 8). Serum potassium in Group III was significantly higher (5.07 ± 0.1515) compared to that of the control population (Group I: 4.25 ± 0.0653) and Group II (4.09 ± 0.043 , p < 0.001) (Figure 9). Serum ionized calcium in Group III (1.16 ± 0.0114) was lower

compared to that of the control group (Group I: 1.18 ± 0.0076) and Group II (1.20 ± 0.095 , p=0.013) (Figure 10).

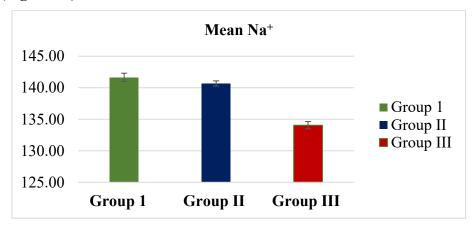


Figure 8: Mean Na+level (mEq/L) in different groups

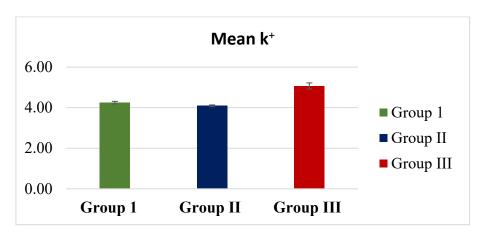


Figure 9: Mean serum K⁺ level (mEq/L) in different groups

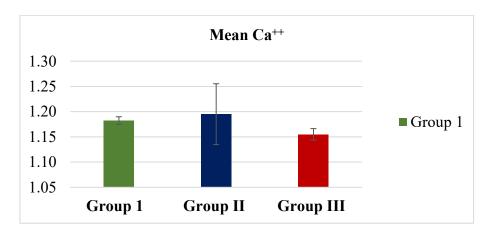


Figure 10: Mean ionized Calcium (mmol/L) level in different groups

Hemoglobin levels between different groups

Mean hemoglobin (Hb) levels in Group III (9.13 \pm 0.2046) and Group II (11.95 \pm 0.157) were significantly lower in comparison to the control population (Group I: 13.01 \pm 0.1249) (p < 0.001) (Figure 11).

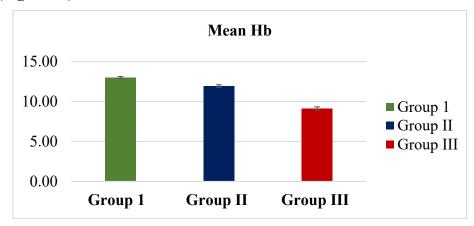


Figure 11: Mean Hb (g/dl) in different groups

Discussion

The study indicated higher serum urea and creatinine levels and accordingly lowered eGFR in DKD without ESRD and DKD with ESRD groups than the control group. This outcome stems from the fact that serum urea and creatinine are common indicators of GFR (Ebert et al., 2021). This result is consistent with the findings of earlier investigations (Coca et al., 2017; Lalla et al., 2020).

Mean hemoglobin level was significantly lower in the DKD without ESRD and DKD with ESRD groups than in the control group. These results are supported by Mohanram et al. (2004), who reported that among type 2 diabetics with nephropathy, anemia is an independent predictor of the development of ESRD. Anemia occurs earlier and more severely in DKD patients than in others due to more complex mechanisms, such as increased bleeding tendency linked to antiplatelet effect, reduced oxygen sensing from autonomic neuropathy, or using inhibitors of renin-angiotensin-aldosterone system, inflammatory cytokines, urinary loss of erythropoietin, and low response to erythropoietin (Tsai & Tarng, 2019).

In the present study, serum sodium level was decreased significantly, while potassium level was elevated significantly in diabetics with the ERD group compared to the control group and the group with other stages of DKD. This result is supported by the results found in a previous study of **Rao and Kuldeep (2022)**. In addition, **Loutradis et al. (2015)** reported hyperkalemia in late stages of DKD patients. The plausible explanation could be that abnormal glucose metabolism and high glucose levels, in consort with Renin-Angiotensin mechanism

alteration in DKD, resulting in an increase in osmotic force that transports water from the intracellular space to the extracellular space. Consequently, this leads to lowering plasma sodium levels by diluting extracellular sodium and producing hyperkalemia by refluxing potassium into the extracellular space (Rao & Kuldeep, 2022).

Serum ionized calcium levels were significantly lower in diabetics with ERD group in comparison to the control group. These findings were in agreement with the results of (Kavuparambil et al., 2021). Hypocalcemia may be linked to advanced chronic renal insufficiency because of concomitant low vitamin D levels and hyperphosphatemia (Liamis et al., 2014).

Conclusions

The present study indicated higher serum urea and creatinine levels and accordingly lowered eGFR in DKD without ESRD and DKD with ESRD than in the control group. Electrolyte levels, mainly sodium, potassium, and ionized calcium, were significantly deranged in DKD patients with or without ESRD. So, this study revealed the significance of monitoring serum electrolyte levels and kidney function tests in type 2 diabetic patients.

Competing interests

The authors declare no competing interests.

Funding:

This work is a part of a project funded by the National Research Centre (NRC), Egypt (project number: 13060121).

Acknowledgements:

We appreciate the National Research Centre for technical and financial support of the current research.

Ethics approval:

This study was approved by the Medical Research Ethics Committee, National Research Centre, Egypt, through a grant project (approval number: 13060121-2).

Author contribution

Weaam Gouda and Mohamed D. E. Abdelmaksoud developed the design methodology, contributed to data collection, and analysis of the study. Amira Elsawy contributed to data collection, interpretation of the results, and writing up of this manuscript. Naglaa S El-Deen and Samir Azazy assisted in data collection and reviewing the manuscript.

Reference

- Alicic, R. Z., Rooney, M. T., & Tuttle, K. R. (2017). Diabetic Kidney Disease: Challenges, Progress, and Possibilities. *Clinical journal of the American Society of Nephrology* 12(12): 2032-2045. https://doi.org/10.2215/cjn.11491116
- Coca, S. G., Nadkarni, G. N., Huang, Y., Moledina, D. G., Rao, V., Zhang, J., Ferket, B., Crowley, S. T., Fried, L. F., & Parikh, C. R. (2017). Plasma Biomarkers and Kidney Function Decline in Early and Established Diabetic Kidney Disease. *Journal of the American Society of Nephrology* 28(9): 2786-2793. https://doi.org/10.1681/asn.2016101101
- Ebert, N., Bevc, S., Bökenkamp, A., Gaillard, F., Hornum, M., Jager, K. J., Mariat, C., Eriksen, B. O., Palsson, R., Rule, A. D., et al. (2021). Assessment of kidney function: clinical indications for measured GFR. *Clinical kidney journal* 14(8): 1861-1870. https://doi.org/10.1093/ckj/sfab042
- Fawcett, J. K., & Scott, J. E. (1960). A rapid and precise method for the determination of urea. *Journal of clinical pathology* 13(2): 156-159. https://doi.org/10.1136/jcp.13.2.156
- Fonseca, F., Belardo, T., Salatini, R., Amaral, J. A., Pereira, E., & Raimundo, R. (2016). A comparison between two indirect potentiometric procedure for determination of sodium and potasium concentrations in serum-FLEXOR EL 200 ELITech vs Rapidlab 348-Bayer. *Revista Romana de Medicina de Laborator* 24(4): 444-446. https://doi.org/10.1515/rrlm-2016-0040
- Hoogeveen, E. K. (2022). The Epidemiology of Diabetic Kidney Disease. *Kidney and Dialysis* 2(3): 433-442. https://doi.org/10.3390/kidneydial2030038
- Inker, L. A., Eneanya, N. D., Coresh, J., Tighiouart, H., Wang, D., Sang, Y., Crews, D. C., Doria, A., Estrella, M. M., Froissart, M., et al. (2021). New Creatinine- and Cystatin C-Based Equations to Estimate GFR without Race. *The New England journal of medicine* 385(19): 1737-1749. https://doi.org/10.1056/NEJMoa2102953
- Jaffé, M. (1886). Ueber den Niederschlag, welchen Pikrinsäure in normalem Harn erzeugt und über eine neue Reaction des Kreatinins. *Biological Chemistry* 10(5): 391-400. https://doi.org/10.1515/bchm1.1886.10.5.391
- Jeppsson, J. O., Kobold, U., Barr, J., Finke, A., Hoelzel, W., Hoshino, T., Miedema, K., Mosca, A., Mauri, P., Paroni, R., et al. (2002). Approved IFCC reference method for the

- measurement of HbA1c in human blood. *Clin Chem Lab Med* 40(1): 78-89. https://doi.org/10.1515/cclm.2002.016
- Jung, C. Y., & Yoo, T. H. (2022). Pathophysiologic Mechanisms and Potential Biomarkers in Diabetic Kidney Disease. *Diabetes & metabolism journal* 46(2): 181-197. https://doi.org/10.4093/dmj.2021.0329
- Kavuparambil, L., P, A. K., K., J. T., & Kollathodi, S. (2021). Serum calcium and phosphorous balance in diabetic nephropathy and its correlation with glycated hemoglobin. *International Journal of Advances in Medicine* 8(11): 1664-1668. https://doi.org/10.18203/2349-3933.ijam20214070
- Lalla, P., Pathan, S., & Jawade, P. (2020). Correlation of Serum Urea and Serum Creatinine in Diabetics patients and normal individuals. *International Journal of Clinical Biochemistry and Research* 7(1): 45-48. https://doi.org/10.18231/j.ijcbr.2020.009
- Levey, A. S., Eckardt, K. U., Tsukamoto, Y., Levin, A., Coresh, J., Rossert, J., De Zeeuw, D., Hostetter, T. H., Lameire, N., & Eknoyan, G. (2005). Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). *Kidney international* 67(6): 2089-2100. https://doi.org/10.1111/j.1523-1755.2005.00365.x
- Liamis, G., Liberopoulos, E., Barkas, F., & Elisaf, M. (2014). Diabetes mellitus and electrolyte disorders. *World Journal of Clinical Cases* 2(10): 488-496. https://doi.org/10.12998/wjcc.v2.i10.488
- Lin, Y. C., Chang, Y. H., Yang, S. Y., Wu, K. D., & Chu, T. S. (2018). Update of pathophysiology and management of diabetic kidney disease. *Journal of the formosan Medical Association* 117(8): 662-675. https://doi.org/10.1016/j.jfma.2018.02.007
- Lopez-Giacoman, S., & Madero, M. (2015). Biomarkers in chronic kidney disease, from kidney function to kidney damage. *World journal of nephrology* 4(1): 57-73. https://doi.org/10.5527/wjn.v4.i1.57
- Loutradis, C., Tolika, P., Skodra, A., Avdelidou, A., & Sarafidis, P. A. (2015). Prevalence of Hyperkalemia in Diabetic and Non-Diabetic Patients with Chronic Kidney Disease: A Nested Case-Control Study. *American Journal of Nephrology* 42(5): 351-360. https://doi.org/10.1159/000442393
- Mohanram, A., Zhang, Z., Shahinfar, S., Keane, W. F., Brenner, B. M., & Toto, R. D. (2004). Anemia and end-stage renal disease in patients with type 2 diabetes and nephropathy.

- *Kidney International* 66(3): 1131-1138. https://doi.org/10.1111/j.1523-1755.2004.00863.x
- Nascimento, L. R. D., & Domingueti, C. P. (2019). MicroRNAs: new biomarkers and promising therapeutic targets for diabetic kidney disease. *Brazilian Journal of Nephrology* 41(3): 412-422. https://doi.org/10.1590/2175-8239-JBN-2018-0165
- Provenzano, M., Hu, L., Abenavoli, C., Cianciolo, G., Coppolino, G., De Nicola, L., La Manna, G., Comai, G., & Baraldi, O. (2024). Estimated glomerular filtration rate in observational and interventional studies in chronic kidney disease. *Journal of Nephrology* 37(3): 573-586. https://doi.org/10.1007/s40620-024-01887-x
- Rao, S. N., & Kuldeep, G. B. (2022). Electrolyte Variations in Diabetic Nephropathy. *Journal of Diabetes Research Reviews* & *Reports* 4(2): 1-4. https://doi.org/10.47363/jdrr/2022(4)155
- Raval, N., Kumawat, A., Kalyane, D., Kalia, K., & Tekade, R. K. (2020). Understanding molecular upsets in diabetic nephropathy to identify novel targets and treatment opportunities. *Drug Discovery Today* 25(5): 862-878. https://doi.org/10.1016/j.drudis.2020.01.008
- Selby, N. M., & Taal, M. W. (2020). An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines. *Diabetes, Obesity and Metabolism* 22(S1): 3-15. https://doi.org/10.1111/dom.14007
- Trinder, P. (1969). Determination of Glucose in Blood Using Glucose Oxidase with an Alternative Oxygen Acceptor. *Annals of Clinical Biochemistry: International Journal of Laboratory Medicine*. 6(1): 24-27. https://doi.org/10.1177/000456326900600108
- Tsai, S. F., & Tarng, D. C. (2019). Anemia in patients of diabetic kidney disease. *Journal of the Chinese Medical Association* 82(10): 752–755. https://doi.org/10.1097/JCMA.0000000000000175
- Tuttle, M., & Levey, A. S. (2024). Relmapirazin, a new exogenous filtration marker, and more widespread use of measured GFR. *Kidney International* 106(4): 562-565. https://doi.org/10.1016/j.kint.2024.07.019