Journal of Plant Protection and Pathology

Journal homepage & Available online at: www.jppp.journals.ekb.eg

Effect Of Cellulolytic Fungi of Genus Aspergillus Isolated from Infected **Cotton Bolls on Deterioration on Cotton Fibers**

Marian M. Habeb^{1*}; A. E. M. Gadallah²; Amal A. Asran¹ and K. Abd-Elsalam¹

- ¹Plant Pathology Research Institute, Agricultural Research center, Giza. Egypt
- ²Cotton Research Institute, Agricultural Research center, Giza. Egypt

ABSTRACT

Article Information Received 15 / 10 / 2025 Accepted 5 / 11 / 2025

This study explores the impact of cellulose-degrading Aspergillus isolates on the fiber properties of four Egyptian cotton cultivars Giza 45, Giza 92 and Giza 96 (extra-long staple), and Giza 94 (long staple). Cotton fibers were inoculated under pure culture conditions using seven fungal isolates that were first isolated from diseased cotton bolls that were taken from several locations, including Sohag (Upper Egypt), Giza (North Egypt), and Daqahliya (Middle Delta). The following properties were tested: micronaire value, fiber maturity, fiber strength (g/tex), fiber elongation percentage (%), reflectance degree, yellowness degree, trash area, trash count, upper half mean (UHML), length uniformity index (%), and short fiber index (SFI). With the exception of micronaire value, analysis of variance (ANOVA) revealed that cultivars, isolates, and cultivars × isolates interaction were all extremely significant sources of variation in all evaluated parameters. A least significant difference (LSD) was employed to compare the impact of individual isolates within cultivars for each of the tested properties because of the importance of cultivars × isolates interactions. According to these comparisons, fungal infection tended to deteriorate the majority of the tested properties. This study clearly demonstrates that isolates of Aspergillus spp. had a greater influence on the deterioration of tested properties than cultivars. These results suggest that the harmful effects of cellulose-degrading fungi on fiber quality could be significantly minimized if the fungus isolates are effectively controlled.

Keywords: Egyptian cotton cultivars, Fiber properties, Aspergillus spp., Boll rot, Cellulolytic fungi

INTRODUCTION

Cotton is one of the most important natural fibers worldwide. Including in the United states, China, Austerlia, India, Egypt, and African tropics (Schuster et al, 2016). Egypt is one of the main suppliers of extra long stable cotton which is more suitable for the manufacturing of high quality textile. Cotton is a cellulose fibre that is made of almost pure cellulose. Cellulose is a macromolecule made up of a long chain of glucose molecule (Kavkler et al., 2015). Fungi are the major group of organisms responsible for cellulose degradation (Youssef et al., 2014). They are capable of producing cellulolytic enzymes in sufficient quantity to degrade cotton fibers (Omar et al., 2009). The cotton boll rot can be caused by Alternaria macrospora, Fusarium moniliforme, Colletetrichum gossypii, Aspergillus niger, Rhizopus stolonifera, Pencillium spp., Curvularia lunata and Dreschlera gossypii (Perane et al., 2015). The two primary categories of fungal microflora linked to cotton fiber degradation are field fungi and storage fungi. Before the bolls are harvested, field fungus typically target cotton fiber while the crop is still in the field. For these fungi to thrive, the environment must be warm and have a relative humidity of at least 90%. Storage fungus, however, thrive on lint that has been stored. The majority of them can thrive in unfavorable conditions with excessive humidity and insufficient ventilation without free water (Omer et al., 2009). According to Omer and Nour (2014), cotton and textiles that have been preserved show obvious symptoms of fungal deterioration, including changes in color and strength as well as in their physical, chemical, and biological characteristics. When fabrics are stored in soil

contact, their tensile strength decreases the most. The degree of deterioration is directly correlated with the cotton's moisture level, chemical composition, and storage conditions. A total of 209 samples were collected from different plant tissues from samples with typical fungal disease symptoms on roots, leaves and bolls, by carrying out pathogenicity test. Karadasli and Kavak (2024) found that all samples were pathogenic except 20 samples and the most common species among the total saprophyte isolates was Aspergillus niger with a high similarity rate (Klich, 1986).

Aspergillus species are well-known for producing an enzyme system that breaks down plant cell walls. Worldwide, Aspergillus species have been used to produce the cellulase enzyme (Youssef et al., 2014). Cellulase, which catalyzes the hydrolysis of cellulose, is regarded as a member of the hydrolytic enzyme group (Abdella et al., 2024). Rich et al. (1960) discovered that at least some isolates in 11 out of 14 groups of the genus Aspergillus have the capacity to weaken cotton fiber. Taghivari et al. (2018) reported that Aspergillus niger significantly decreased the strength of cotton textile as well as weight mass. Omar et al. (2009) reported that cotton cultivars play a significantly greater role than fungal isolates in influencing the extent of deterioration in most of the evaluated properties. To study the effect of cellulolytic fungi, especially Aspergillus niger, on the decline of cotton fiber quality, and to assess the role of cotton cultivars in resisting fungal-induced degradation, to determine strategies to enhance cotton's opposition and maintain fiber strength and quality during growth and storage. Therefore, improving the resistance of cotton cultivars to cellulose-degrading fungi could significantly mitigate their effects on the fiber quality.

MATERIALS AND METHODS

Fungal isolates

Isolates of *Aspergillus* spp. used in this study were isolated from infected bolls samples collected from different governorate in Egypt, Sohag (Upper Egypt), Giza (North Egypt), and Daqahliya (Middle Delta) and from different boll parts, where isolation, purification and identification carried out at Cotton Pathology Lab., Plant Pathol. Res. Cent. Giza. In the present study, seven cellulose-degrading isolates of the Genus Aspergillus (Table 1) were used to inoculate fibers of four Egyptian commercial cotton cultivars.

Table 1. Boll parts and geographic origins of Aspergillus isolates used in inoculation of fibers of cotton cultivars; Giza 96, Giza 92, Giza 94, Giza 45.

	cultivars. Giza 70, Giza 72, Giza 74, Giza 43.										
isolates	cultivars	Geographic origin	Boll parts								
1	Giza 94	Daqahliya – miet ghamr	Bract								
2	Giza 94	Daqahliya - miet ghamr	Peduncle								
3	Giza 94	Daqahliya - miet ghamr	Seed								
4	unkown	Giza- Giza	Bract								
5	unkown	Giza- Giza	Carpellary wall (pericarb)								
6	Giza 90	Sohag – Gerga	Carpellary wall (pericarb)								
7	Giza 90	Sohag – Gerga	Bract								

Ten grams of cotton fibers and twenty milliliters of tap water were added to each 500 milliliter glass bottle, which served as the substrate for the growth of Aspergillus isolates. After 30 minutes of autoclaving, the fungal inocula harvested from one-week-old cultures cultivated on potato dextrose agar were aseptically added to the bottles and left to colonize the fibers for three weeks at 26±3 CŠ. One uninoculated control was autoclaved for 30 minutes, which was included in the experiment.

Physical properties tests on inoculated fibers:

The following parameters were measured using a High Volume Instrument (HVI): Upper Half Means (UHML), Length Uniformity Index (%), Short Fiber Index (SFI), Micronaire value, Fiber maturity, Fiber strength (g/tex), Fiber elongation percentage (%), reflectance degree, Fiber Yellowness degree (+b), Trash area, and Trash count (ASTM, D:4605-1986).

All tests were performed at the Cotton Technology Research Division of the Cotton Research Institute in Giza, Egypt, under constant conditions at relative humidity of 65% (± 2) and temperature of 21 $^{\circ}$ C (± 2) .

Statistical analysis of the data:

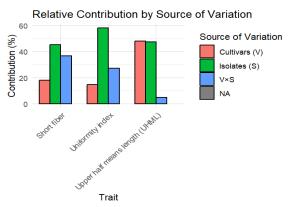
The current study used a randomized complete block experimental design with three replicates. The treatment means were compared using the least significant difference (LSD). Using the MSTAT-C statistical program, the data was subjected to analysis of variance (ANOVA).

RESULTS AND DISCUSSION

According to Youssef et al. (2014), Aspergillus species are well-known and effective producers of an enzyme system that breaks down plant cell walls. Because of their varying fiber quality, the cultivars used in this study were selected; Giza 45, Giza 92, and Giza 96 are classified as extra-long staples, whereas Giza 94 is classified as a long staple. Table (2)'s ANOVA revealed that the cultivars, isolates, and cultivars ×

isolates interaction had very significant effects on the following fiber length parameters: short fiber index (SFI), uniformity index (UI), and upper half means length (UHM) (mm).

Table 2. Analysis of variance of the effect of some cellulose-degrading isolates of *Aspergillus* spp. on fiber length parameters of three Egyptian cotton cultivars (Giza 45, Giza 92, Giza 96).


Parameters and source of variation	D.F	M.S	F. values	P>F
Upper half means length (UHML)			
Replications	2			
Cultivars (V)	2	29.785	1449.007	0.000
Isolates (S)	7	8.387	408.031	0.000
V×S	14	0.429	20.860	0.000
Error	48	0.021		
Uniformity index				
Replications	2			
Cultivars (V)	2	19.148	257.218	0.000
Isolates (S)	7	21.821	293.115	0.000
V×S	14	5.130	68.911	0.000
Error	48	0.074		
Short fiber				
Replications	2			
Cultivars (V)	2	22.241	664.448	0.000
Isolates (S)	7	15.809	472.315	0.000
V×S	14	6.400	191.215	0.000
Error	48	0.033		

Cultivars and isolates were almost equally important as sources of variation in upper half means length, and isolates were the most important source of variation in uniformity index and short fiber (Table 3, Fig. 1).

Table 3. Relative contribution of *Aspergillus* spp. isolates, cotton cultivars, and their interaction to variation in fiber length parameters.

	Relative contribution to variation in ^a									
Source of	Upper half means	Uniformity	Short							
variation	length (UHML)	index	fiber							
Cultivars (V)	47.93	14.57	18.17							
Isolates (S)	47.24	58.11	45.22							
V×S	4.83	27.32	36.61							

^acalculated as a percentage of the sum of squares of the explained (model) variation.

Regardless of the investigated property, cultivars reacted differently to the Aspergillus isolates, as shown by the extremely significant interaction of cultivars × isolates for all evaluated properties (Table 2). A least significant difference (LSD) was employed to compare the means of the individual isolates within cultivars for each tested property because of the importance of this interaction.

These comparisons showed that the upper half means length and uniformity index of the tested cultivars (Giza 45, Giza 92, Giza 96) significantly decreased as a result of fungal infection (Table 4), while short fiber of these cultivars

significantly increased by all *Aspergillus* isolates. These results are in harmony with those Omar and Nour (2014), Abdel-Rehim *et al.* (1993), Abdel-Rehim *et al.* (2002), Abdel-Rehim and Aly (1999).

Table 4. Effects of some cellulose-degrading fungi on fiber length parameters of Three Egyptian cotton cultivars

	Uppe	r half means	length	U	niformity ind	ex	Short fiber index (SFI)		
Isolates ^a	G45	G92	G96	G45	G92	G96	G45	G92	G96
1	33.70	31.73	33.70	83.46	85.20	82.60	10.63	5.5	6.13
2	33.46	31.46	32.53	82.86	81.90	80.83	8.8	8.7	10.0
3	33.26	31.83	34.30	83.36	84.60	82.73	10.36	7.46	5.93
4	34.10	31.70	34.66	83.66	82.53	84.23	8.0	9.23	6.13
5	33.60	32.03	33.40	85.73	82.46	79.96	10.26	8.2	10.6
6	34.83	32.86	34.46	85.26	84.73	81.63	7.53	5.83	8.2
7	34.80	33.13	35.26	85.20	83.80	83.46	9.13	6.03	6.03
Control	36.03	34.06	36.36	87.83	86.16	87.70	5.66	5.03	5.43
	LSD for cult	tivar (V)× isol	ate (S)= 0.23	LSD for cult	ivar (V)× isola	ate (S)= 0.44	LSD for cultivar (V)× isolate (S)= 0.29		

aidentification of isolates is shown in Table 1

Cultivars, isolates, and cultivars × isolates interaction were all very highly significant sources of variation in micronaire value, fiber maturity, fiber strength, and elongation (Table 5).

Table 5. Analysis of variance of the effect of some cellulose-degrading fungi on Fiber maturity, Fiber strength, Elongation, and Reflectance degree of three Egyptian cotton cultivars.

ucgree or t	mee Eg	ypuan cot	ton cultival	3.
Parameters and source of variation	D.F	M.S	F. values	P>F
Micronaire value				
Replications	2			
Cultivars (V)	2 2	4.880	7200.83	0.000
Isolates (S)	7	0.296	437.063	0.000
V×S	14	0.181	267.067	0.000
Error	48	0.001		
Fiber maturity				
Replications	2			
Cultivars (V)	2 2	0.005	124.379	0.000
Isolates (S)	7	0.004	109.320	0.000
V×S	14	0.001	10.527	0.000
Error	48	0.000		
Fiber strength				
Replications	2			
Cultivars (V)	2 2 7	175.228	14.048	0.000
Isolates (S)	7	192.057	15.398	0.000
V×S	14	23.738	1.903	0.000
Error	48	12.473		
Elongation				
Replications	2			
Cultivars (V)	2 2 7	7.894	660.884	0.000
Isolates (S)	7	0.315	26.332	0.000
V×S	14	0.075	6.239	0.000
Error	48	0.012		

Cultivars were the most important source of variation in micronaire value and elongation, isolates were the most important source of variation in maturity and fiber strength (Table 6, Fig. 2).

Micronaire value of cultivars (Giza 45, Giza 92, Giza 96) was significantly reduced by all isolates of *Aspergillus* spp. (Table 7), while maturity was not affected by any isolates of *Aspergillus* spp. Fiber strength (g/tex) of cultivars (Giza 45, Giza 92, Giza 96) was significantly reduced by all isolates of the fungus. Elongation of cultivars (Giza 45, Giza 92, Giza 96) was significantly reduced by all isolates of *Aspergillus* spp. except elongation of Giza 45 and Giza 96 was not affected by isolates 7 and 5 respectively.

Table 6. Relative contribution of *Aspergillus* spp. isolates, cotton cultivars, and their interaction to variation in short fiber index, fiber mechanical properties and reflectance degree.

Relative contribution to variation in ^a										
Source of variation	Micronaire value	Fiber maturity	Fiber strength	Elongation						
Cultivars (V)	67.94	19.23	17.29	82.91						
Isolates (S)	14.42	53.85	66.32	11.58						
V×S	17.64	26.92	16.40	5.51						

^acalculated as a percentage of the sum of squares of the explained (model) variation.

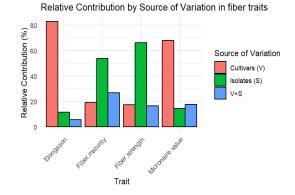


Table 7. Effect of some cellulose-degrading fungi on Micronaire value, Fiber maturity, Fiber strength (g/tex) and elongation percentage (%) of three Egyptian cotton cultivars.

	ciongation percentage (70) of three Egyptian cotton cultivars.											
	Micr	lue	Fib	er matur	ity	Fiber st	elongation percentage (%)					
Isolates ^a	G45	G92	G96	G45	G92	G96	G45	G92	G96	G45	G92	G96
1	2.81	3.55	3.76	0.84	0.84	0.83	34.36	38.26	33.36	5.33	5.06	6.03
2	2.88	3.54	3.82	0.85	0.83	0.82	36.76	33.23	31.33	5.06	5.23	6.16
3	2.83	3.55	3.80	0.83	0.84	0.80	33.60	39.50	34.13	5.03	5.03	6.06
4	2.70	3.63	3.78	0.83	0.85	0.80	34.43	38.13	34.43	510	5.10	6.10
5	2.69	3.61	2.96	0.82	0.85	0.80	33.36	37.46	26.33	5.33	5.16	6.53
6	2.87	3.61	2.88	0.84	0.85	0.83	35.23	38.10	31.26	5.03	5.33	6.13
7	2.94	3.69	3.90	0.83	0.83	0.79	35.46	40.50	34.33	5.6	5.03	6.13
Control	3.02	3.83	4.03	0.88	0.89	0.90	45.90	47.10	46.50	5.63	5.63	6.63
	LSD for cultivar (V)× isolate LSD for cultivar (V)×			LSD for cultiv	LSD for cultivar (V) × isolate (S) =			LSD for cultivar (V)× isolate				
	(S = 0.05		ical	ate $(S)=0$	Ô1		0.70	` ′	(S)=0.17'		

^aidentification of isolates is shown in Table 1

Marian M. Habeb et al.,

The detrimental impact of cellulolytic enzymes, which are produced by some fungal species, may be the main cause of the decrease in fiber strength. These enzymes target the cellulose's amorphous areas, which are situated in between its crystalline zones. As a result, the fiber structure has weak points. The fungus's degradation of fiber strength is consistent with earlier findings by Omer *et al.* (2009).

In terms of reflectance degree, yellowness, trash area, and trash count, cultivars, isolates, and cultivars \times isolates interaction were all very highly significant sources of variance (Table 8).

Table 8. Analysis of variance of the effect of some cellulose-degrading isolates of *Aspergillus* spp. on yellowness degree, trash count and trash area of three Egyptian cotton cultivars.

of three Egyptian cotton cultivars.										
Parameters and source of variation	D.F	M.S	F. values	P>F						
Reflectance degree										
Replications	2									
Cultivars (V)	2	189.340	1674.753	0.000						
Isolates (S)	7	116.396	1029.545	0.000						
V×S	14	7.746	68.518	0.000						
Error	48	0.113								
Yellowness degree										
Replications	2									
Cultivars (V)	2	16.051	577.835	0.000						
Isolates (S)	7	17.272	621.805	0.000						
V×S	14	1.851	66.629	0.000						
Error	48	0.028								
Trash area										
Replications	2									
Cultivars (V)	2	0.153	25.333	0.000						
Isolates (S)	7	0.324	53.583	0.000						
V×S	14	0.421	69.721	0.000						
Error	48	0.006								
Trash count										
Replications	2									
Cultivars (V)	2	40.597	58.460	0.000						
Isolates (S)	7	51.460	74.103	0.000						
V×S	14	48.312	69.569	0.000						
Error	48	0.694								

While cultivars × isolates interaction was the most significant source of variation in trash area and trash count, isolates were the most significant source of variation in reflectance degree and yellowness (Table 9, Fig 3).

Table 9. Relative contribution of *Aspergillus* spp. isolates, cotton cultivars, and their interaction to variation in yellowness degree, trash count, and trash area.

		Relative contribution to variation in								
Source of	Reflectance	Yellowness	Trash	Trash						
variation	degree	degree	area	count						
Cultivars (V)	29.09	17.94	3.61	7.26						
Isolates (S)	62.58	67.57	26.78	32.22						
$V \times S$	8.33	14.48	69.60	60.51						

^acalculated as a percentage of the sum of squares of the explained (model) variation.

Relative Contribution by Source of Variation

Source of Variation

Cultivars (V)
Isolates (S)

V×S

Trait

Reflectance degree of cultivars (Giza 45, Giza 92, Giza 96) was significantly reduced by all isolates of *Aspergillus* spp. (Table 10), on the other hand, all isolates significantly increased yellowness in these cultivars. The cotton fiber's color grade is determined by its reflectance (Rd) and yellowness (+b). While yellowness shows the level of pigmentation, reflectance indicates the fiber's brightness (Neupan *et al.*, 2023). Fungi's ability to produce pigments may be the cause of both the rise in yellowness and the loss in brightness (Omar *et al.*, 2009).

Table 10. Effect of some cellulose-degrading fungi on Reflectance degree, Yellowness degree, Trash area and Trash count of three Egyptian cotton cultivars.

	Refle	Reflectance degree			Yellowness degree			Trash area			Trash count		
Isolates ^a	G45	G92	G96	G45	G92	G96	G45	G92	G96	G45	G92	G96	
1	65.50	70.46	65.43	12.46	11.73	11.33	0.057	0.113	0.110	5	11	14	
2	63.20	64.40	62.50	11.26	10.53	11.53	0.140	0.037	0.463	11	4	14	
3	62.63	70.26	68.23	10.56	11.46	13.70	1.250	0.067	0.057	7	4	5	
4	65.10	70.33	66.20	11.86	12.33	13.70	0.140	0.040	0.593	13	5	11	
5	63.23	69.33	65.33	12.76	11.30	14.66	0.123	1.717	0.057	13	14	4	
6	66.20	74.16	68.26	12.56	12.13	13.56	0.057	0.073	0.117	4	4	13	
7	65.46	71.83	63.53	12.33	10.66	13.36	0.057	0.053	0.053	4	4	4	
Control	75.06	77.70	74.33	8.43	8.20	9.26	0.110	0.113	0.087	10	7	8	
	LSD for c	LSD for cultivar (V)× isolate		LSD for c	LSD for cultivar (V)× isolate			LSD for cultivar (V)× isolate			LSD for cultivar (V)×		
(S)=0.55		(S)=0.27		(S)=0.12			isolate (S)= 1.36						

^aidentification of isolates is shown in Table 1

Trash area of Giza 45 was significantly increased by isolate 3, while the remaining isolates did not affect it. Also, isolate 5 of Giza 92 significantly increased trash area, while the remaining isolates had no effect. In Giza 96, isolates 2 and 4 significantly increased trash area and the remaining isolates had no effect. Trash count of cultivars (Giza 45, Giza 92, Giza 96) showed variable responses to fungal infection.

In order to liberate glucose from cellulose, fungi are thought to break down cellulose using three enzymes that work in concert. Cellobiose is separated from the non-reducing end of crystalline cellulose molecules by the first enzyme, exoglucanase. Endoglucanase, the second, randomly cleaves cellulo-oligosaccharides from amorphous cellulose. In the third, cellobiose is hydrolyzed to glucose by β -D-glucosidase.

Cotton isolates are more important than cultivars in influencing the degree of fiber deterioration in the majority of the measured qualities, as this study unequivocally showed. Based on this research, it is possible to lessen the detrimental effects of cellulose-degrading fungi on fiber quality by successfully managing the fungal isolates.

ANOVA of Table (11) showed very highly significant effects of isolates on fiber properties, trash area and trash count of Giza 94 Egyptian cotton cultivar

The data presented in Table (12) demonstrate the impact of different cellulose-degrading *Aspergillus* spp. isolates on fiber properties, trash area and trash count of Giza

94 Egyptian cotton cultivar. As to the upper half mean length (UHML), all isolates had no effect. Uniformity index significantly decreased by all isolates. Short fiber index significantly increased by all isolates. Micronaire values (MIC), which indicate fiber fineness and maturity, where all the tested isolates significantly reduced the micronaire value, except isolate 1, which significantly increased it. Maturity and fiber strength were significantly reduced by all isolates. Elongation was significantly decreased by all isolates except isolate 6 which had no effect. Reflectance degree was significantly reduced by all isolates, while yellowness was significantly increased by all isolates

Table 11. Analysis of variance of the effect of some cellulose-degrading isolates of Aspergillus spp. on fiber properties,

trash area and trash count of Giza 94 Egyptian cotton cultivar.										
Parameters and source of variation	D.F	M.S	F. values	P>F						
Upper half means length (UHML)										
Replications	2									
Isolates (S)	7	2.606	56.338	0.000						
Error	16	0.46	20.230	0.000						
Uniformity index	10	0.10								
Replications	2									
Isolates (S)	7	25.159	597.849	0.000						
Error	16	0.042	397.0 4 9	0.000						
	10	0.042								
Short fiber	•									
Replications	2	2.002	101.565	0.000						
Isolates (S)	7	3.892	131.565	0.000						
Error	16	0.030								
Micronaire value										
Replications	2									
Isolates (S)	7	0.907	0.868	0.551						
Error	16	1.044								
Fiber maturity										
Replications	2									
Isolates (S)	7	0.004	11.411	0.000						
Error	16	0.001								
Fiber strength		0.001								
Replications	2									
Isolates (S)	2 7	82.076	2030.750	0.000						
Error	16	0.040	2030.730	0.000						
Elongation	10	0.040								
Replications	2									
	7	0.377	19.231	0.000						
Isolates (S)	16		19.231	0.000						
Error	10	0.020								
Reflectance degree	•									
Replications	2	02.525	660.002	0.000						
Isolates (S)	7	83.737	669.893	0.000						
Error	16	0.125								
Yellowness degree										
Replications	2									
Isolates (S)	7	2.796	181.375	0.000						
Error	16	0.015								
Trash area										
Replications	2									
Isolates (S)	7	0.014	120.635	0.000						
Error	16	0.001								
Trash count										
Replications	2									
Isolates (S)	7	9.851	23.643	0.000						
Error	16	0.417	25.015	0.000						
Liioi	10	0.117								

Table 12. Effect of some cellulose-degrading isolates of *Aspergillus* spp. on fiber properties, trash count and trash area of Giza 94 Egyptian cotton cultivar.

	of Gi	za 94 Egyp	tian cotto	n cultiv	ar.							
Tre	Chra.	UHML	UI	SFI	MIC	Mat.	Stre.	Elg.	RD%	b+	Trash Ar	Trash co.
1		33.33	85.46	6.23	5.50	0.83	33.50	6.23	70.40	11.13	0.083	8
2		32.30	81.53	6.40	3.91	0.83	29.53	6.23	73.16	11.70	0.046	4
3		31.63	78.06	8.96	3.95	0.81	23.53	6.03	61.36	9.83	0.243	7
4		32.46	84.46	6.36	3.86	0.82	30.63	6.46	72.40	11.13	0.066	6
5		33.13	84.16	6.43	3.91	0.83	31.56	6.66	75.76	11.36	0.040	3
6		33.70	84.43	6.03	3.96	0.83	32.46	6.93	73.10	10.53	0.056	5
7		34.03	84.43	5.60	4.04	0.83	33.36	6.36	71.20	11.13	0.043	3
Contr	rol	34.36	87.86	5.10	4.26	0.92	42.36	7.03	79.90	8.76	0.100	4
Mean	1	33.12	83.80	6.39	4.17	0.84	32.12	6.49	72.16	10.70	0.085	5
LSD		2.12	0.35	0.29	1.7	0.05	0.34	0.24	0.61	0.21	0.05	1.11

^aidentification of isolates is shown in Table 1

CONCLUSION

This research offers strong evidence that Aspergillus species, especially those isolated from infected cotton bolls in numerous regions of Egypt, are a major contributor to the decline in the quality of cotton fiber. While short fiber content, yellowness, and trash-related characteristics increased as a result of these fungi's cellulolytic activity, important fiber characteristics such as upper half mean length, uniformity index, fiber strength, elongation, reflectance, and micronaire value significantly decreased. While cultivar × isolate interactions were also extremely significant, statistical analysis demonstrated that the fungal isolates had a greater impact on fiber degradation than the cotton cultivars themselves. The results emphasize how crucial it is to control fungal contamination, especially that caused by Aspergillus species, to protect fiber integrity before and after harvest. Along with efficient fungal management techniques, the development and promotion of cotton cultivars with improved resistance to cellulolytic fungi could significantly lower fiber quality losses and aid in the manufacturing of premium cotton textiles.

REFERENCES

- Abdella, M. A., Ahmed, N. E., & Hasanin, M. S. (2024). Green ecofriendly enhancement of cellulase productivity using agricultural wastes by Aspergillus terreus MN901491: statistical designs and detergent ability on cotton fabrics. *Microbial Cell Factories*, 23(1), 109.
- Abdel-Rehim, S. A., & Ali, A. A. (1999). Deterioration in cotton fibers caused by isolates of the sooty mold fungus Cladosporium herbarum. *Mansoura University Journal of Agricultural Science* (Egypt), 24 (5): 2223-2238
- Abdel-Rehim, S. A., Abdel-Aziz, M. A., & Hussein, E. M. (2002). Effects of sooty mold disease caused by Cladosporium herbarum on quality of cotton fibers and seeds. *Journal of Agricultural Sciences, Mansoura Univ. (Egypt)*, 26(2): 805-817
- Abd-El-Rehim, S. A., Aly, A. A., Eisa, H. A., & Askalany, Z. M. (1993). Deterioration of cotton fibers caused by some cellulolytic fungi isolated from rotted cotton bolls. *Menofiya Journal of Agricultural Research (Egypt)*, 18: 2095-2110.

- Karadaşlı, A., & Kavak, H. (2024). Identification of cotton non-pathogenic fungal agent isolates based on morphological and MALDI-TOF mass spectrometry method. *Turkish Journal of Agricultural and Natural Sciences*, 11(4), 1161-1167.
- Kavkler, K., Cimerman, N. G., Zalar, P., & Demšar, A. (2015). Deterioration of contemporary and artificially aged cotton by selected fungal species. *Polymer Degradation and Stability*, 113, 1-9.
- Klich, M. A. (1986). Presence of Aspergillus flavus in developing cotton bolls and its relation to contamination of mature seeds. *Applied and environmental microbiology*, 52(4), 963-965.
- Neupane, J., Maja, J. M., Miller, G., Marshall, M., Cutulle, M., & Luo, J. (2023). Effect of Controlled Defoliant Application on Cotton Fiber Quality. *Applied Sciences*, 13(9), 5694.
- Omar, M. R. and Nour, O. D. M. (2014). Effect OF Cladosporium herbarum isolates on cotton fiber deterioration. *Journal of Agricultural Sciences, Mansoura Univ. (Egypt)*, 29 (10): 241-254
- Omar, M. R., Arafa, A. S., El-Rehim, A., & Salwa, A. (2009). Deterioration in cotton fibers caused by some cellulose-degrading fungi. *Journal of Plant Production*, 34(10), 10135-10148.
- Perane, R. R., Gaikawad, S. B., & Pawar, N. B. (2015). Fungi associated with boll rot of cotton and their management.
- Rich, S., Simpson, M. E., & Marsh, P. B. (1960). The Decomposition of the Cellulose of Cotton Fibers by Fungi of the Genus Aspergillus. In *Developments in Industrial Microbiology: Volume 1 Proceedings of the Sixteenth General Meeting of the Society for Industrial*
- Schuster, G., Medrano, E. G., & Field-Huey, K. (2016). Cotton (Gossypium hirsutum L.) boll rot and associated microorganisms in South Texas fields. *Agricultural Sciences*, 7(10), 732.
- Taghiyari, H. R., Majidinajafabadi, R., & Vahidzadeh, R. (2018). Wollastonite to hinder growth of Aspergillus niger fungus on cotton textile. Anais da Academia Brasileira de Ciencias, 90, 2797-2804.
- Youssef, A. S., Hassan, M. A., El-Sayed, S. M., Elsayed, G. E. M., & El-Aassr, S. A. (2014). Cellulases Production by Free and Immobilized Aspergillus flavus. *Egyptian Journal of Botany*, *54*(1), 29-47.

تأثير الفطريات المحللة للسليلوز لجنس اسبراجلس المعزول من لوز القطن المصاب على تدهور الياف القطن ماريان منير حبيب ، ابو بكر جاد الله ، امل عبد المنجى عسران وكامل احمد عبد السلام ،

ا معهد بحوث أمراض النباتات – مركز البحوث الزراعية – الجيزة – مصر ا معهد بحوث القطن– مركز البحوث الزراعية – الجيزة – مصر

الملخص

تبحث هذه الدراسة في تأثير عز لات فطر الاسبرجلس المحللة للسليلوز على خصائص ألياف أربعة أصناف من القطن المصري جيزة ٥٥، جيزة ٥٩ ، جيزة ٦٥ ، جيزة ٦٥ ، جيزة ٦٥ ، جيزة ٦٥ ، جيزة ٥٩ ، حيث فصر)، الجيزة (شمل مصر)، والدقيلية (وسط الدلتا)، لتلقيح ألياف القطن في ظل ظروف التعقيم. كانت الصفات المختبرة هي متوسط النصف العلوي (للهالل ومؤشر تجلس الطول (%)، ومؤشر الألياف القطن في معلمة السيكرونير، ونضبة الألياف (جم / تكس)، ونسبة الاستطلة الألياف (%)، ودرجة الانعكاس، ودرجة الاصفات المختبرة بالشوائب، وعد الشوائب، أظهر تحليل التبلين في جميع الصفات المختبرة باستثناء قيمة الميكرونير. ونظرًا المعنوية تفاعل الأصناف × العز لات كانت جميعها مصدرًا مهما الغاية التبلين في جميع الصفات المختبرة باستثناء قيمة الميكرونير. ونظرًا المعنوية تفاعل الأحداث ومعنوي (LSD) لمقارنة تأثيرات العز لات الفردية داخل الأصناف لكل صفة مختبرة. أشارت هذه المقارنات إلى أن معظم الصفات المختبرة أطهرت ميكّل التدهور بسبب العدوى الفطرية. تُظهر هذه الدراسة بوضوح أن عز لات فطر الاسبرجلس كان لها تأثير كبير على تدهور الخصائص المختبرة مقارنة بالأصناف الأخرى. وتشير هذه الفتريت الموجودة على الألياف بفعالية.