

Journal of Fractional Calculus and Applications

Vol. 16(2) July 2025, No.19.

ISSN: 2090-5858. ISSN 2090-584X (print) http://jfca.journals.ekb.eg//

SUBORDINATING RESULTS OF CLASSES OF MULTIVALENT MEROMORPHIC FUNCTIONS

M. A. MOWAFY, A. O. MOSTAFA, S. M. MADIAN AND A. I. ELMAHDY

ABSTRACT. In this paper, we defined a class of meromorphic functions which are analytic and multivalent in punctured unit disk. After that by using the operator which are defined by (see Mostafa [8]) we defined a new operator using meromorphic functions which are analytic and p-valent in punctured unit disk. Also in the present paper we defined a new class of meromorphic functions by using this new operator. Furthermer we use the concepts of differential subordination and Hadamard product or (convolution) in our proving theorems. Plus more we use the definition of hypergeometric function in our proof. After that we derive several inclusion relationships for this class. In order to prove our main results we need the following Lemmas which presented in our paper. Also we investigate some properties of certain classes of multivalent meromorphic functions by making use of the method of differential subordination, which are defined by means of a certain operator.

1. Introduction

For any integer $\epsilon > -\varsigma$, let $\sum_{\varsigma,\epsilon}$ be the class of meromorphic functions:

$$F(\varkappa) = \varkappa^{-\varsigma} + \sum_{k=-\epsilon}^{\infty} a_k \varkappa^k, \ \varsigma, \epsilon \in \mathbb{N} = \{1, 2, \dots\},$$
(1.1)

which are analytic and ς -valent in $\mathbb{U}^* = \{\varkappa : \varkappa \in \mathbb{C}, 0 < |\varkappa| < 1\} = \mathbb{U} \setminus \{0\}$. For $\alpha \geq 0$ and $\beta > -1$, Mostafa [8] defined the operator

$$\Omega_{\varsigma,\beta,\mu}^{\alpha}\digamma\left(\varkappa\right)=\frac{1}{\varkappa^{\varsigma}}+\frac{\Gamma\left(\beta\right)}{\Gamma\left(\alpha+\beta\right)}\sum_{k=1-\varsigma}^{\infty}\frac{\Gamma\left(k+\varsigma+\alpha+\beta\right)\left(\mu\right)_{k+\varsigma}}{\Gamma\left(k+\varsigma+\beta\right)\left(k+\varsigma\right)!}a_{k}\varkappa^{k},$$

²⁰²⁰ Mathematics Subject Classification. 30C45, 30C50, 30C55.

Key words and phrases. Analytic functions; convolution; linear operator; differential subordination; dominant and best dominant.

Submitted Aug. 7, 2025. Revised (R1) Aug. 28, 2025. Revised (R2) Sep. 6, 2025. Accepted Nov. 3, 2025.

where

$$(d)_s = \frac{\Gamma\left(d+s\right)}{\Gamma\left(d\right)} = \left\{ \begin{array}{l} 1 & \left(s=0; d \in \mathbb{C}^* = \mathbb{C}/\left\{0\right\}\right) \\ d\left(d+1\right) \dots \left(d+s-1\right) & \left(s \in \mathbb{N}_0; d \in \mathbb{C}\right) \end{array} \right..$$

For F as (1.1), $n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$ and $\mu > 0$, using $\Omega^{\alpha}_{\varsigma,\beta,\mu}F$ and $\lambda \geq 0$ we define the operator $\Upsilon^{\alpha,n}_{\beta,\lambda,\mu}: \sum_{\varsigma,\epsilon} \to \sum_{\varsigma,\epsilon}$ as

$$\Upsilon_{\beta,\lambda,1}^{0,0}F(\varkappa) = F(\varkappa),
\Upsilon_{\beta,\lambda,\mu}^{\alpha,1}F(\varkappa) = (1+\lambda)\Omega_{\varsigma,\beta,\mu}^{\alpha}F(\varkappa) + \frac{\lambda}{\varsigma}\varkappa\left(\Omega_{\varsigma,\beta,\mu}^{\alpha}F(\varkappa)\right)',
\Upsilon_{\beta,\lambda,\mu}^{\alpha,2}F(\varkappa) = (1+\lambda)\Upsilon_{\beta,\lambda,\mu}^{\alpha,1}F(\varkappa) + \frac{\lambda}{\varsigma}\varkappa\left(\Upsilon_{\beta,\lambda,\mu}^{\alpha,1}F(\varkappa)\right)',
\Upsilon_{\beta,\lambda,\mu}^{\alpha,n}F(\varkappa) = (1+\lambda)\Upsilon_{\beta,\lambda,\mu}^{\alpha,n-1}F(\varkappa) + \frac{\lambda}{\varsigma}\varkappa\left(\Upsilon_{\beta,\lambda,\mu}^{\alpha,n-1}F(\varkappa)\right)',
= \frac{1}{\varkappa^{\varsigma}} + \sum_{k=\varsigma}^{\infty} \Lambda_{k}(\alpha,\beta,\lambda,\mu,\varsigma) a_{k}\varkappa^{k},$$
(1.2)

where

$$\Lambda_{k}\left(\alpha,\beta,\lambda,\mu,\varsigma\right) = \frac{\Gamma\left(\beta\right)\left[1+\lambda\left(1+\frac{k}{\varsigma}\right)\right]^{n}\Gamma\left(k+\varsigma+\alpha+\beta\right)\left(\mu\right)_{k+\varsigma}}{\Gamma\left(\alpha+\beta\right)\Gamma\left(k+\varsigma+\beta\right)\left(k+\varsigma\right)!},\tag{1.3}$$

which satisfies

$$\varkappa \left(\Upsilon_{\beta,\lambda,\mu}^{\alpha,n} \digamma(\varkappa)\right)' = \mu \Upsilon_{\beta,\lambda,\mu+1}^{\alpha,n} \digamma(\varkappa) - (\mu + \varsigma) \Upsilon_{\beta,\lambda,\mu}^{\alpha,n} \digamma(\varkappa), \qquad (1.4)$$

$$\varkappa \left(\Upsilon^{\alpha,n}_{\beta,\lambda,\mu} F\left(\varkappa\right)\right)' = \left(\alpha + \beta\right) \Upsilon^{\alpha+1,n}_{\beta,\lambda,\mu} F\left(\varkappa\right) - \left(\alpha + \beta + \varsigma\right) \Upsilon^{\alpha,n}_{\beta,\lambda,\mu} F\left(\varkappa\right), \tag{1.5}$$

and

$$\varkappa \left(\Upsilon^{\alpha,n}_{\beta,\lambda,\mu} F\left(\varkappa\right) \right)' = \frac{\varsigma}{\lambda} \Upsilon^{\alpha,n+1}_{\beta,\lambda,\mu} F\left(\varkappa\right) - \frac{\varsigma\left(\lambda+1\right)}{\lambda} \Upsilon^{\alpha,n}_{\beta,\lambda,\mu} F\left(\varkappa\right). \tag{1.6}$$

Definition 1.1. [1], [6] and [7] If F, g are analytic in \mathbb{U} , then F is subordinate to g, written $F \prec g$ if there exists a Schwarz function $w(\varkappa)$ analytic in \mathbb{U} with w(0) = 0 and $|w(\varkappa)| < 1$ for all $\varkappa \in \mathbb{U}$, such that

$$F(\varkappa) = g(w(\varkappa)).$$

Definition 1.2. For $F \in \sum_{\varsigma,\epsilon}$, $(-1 \le B < A \le 1)$ and $F \in \sum_{\beta,\lambda}^{\alpha,n} (\mu; A, B)$ if it satisfies:

$$-\frac{\varkappa^{\varsigma+1} \left(\Upsilon^{\alpha,n}_{\beta,\lambda,\mu} F(\varkappa)\right)'}{\varsigma} \prec \frac{1+A\varkappa}{1+B\varkappa}.$$
 (1.7)

Let $\sum_{\beta,\lambda}^{\alpha,n} (\mu; 1 - \frac{2\eta}{\varsigma}, -1) = \sum_{\beta,\lambda}^{\alpha,n} (\mu,\eta), 0 \le \eta < \varsigma$, where $\sum_{\beta,\lambda}^{\alpha,n} (\mu,\eta)$ denotes the class of functions in $\sum_{\varsigma,\epsilon}$ satisfying

$$Re\left\{-\varkappa^{\varsigma+1}\left(\Upsilon^{\alpha,n}_{\beta,\lambda,\mu}F\left(\varkappa\right)\right)'\right\} > \eta. \tag{1.8}$$

Many authors obtained subordination results for classes of meromorphic functions ex: [2], [3] and [3].

In the present paper, we derive several inclusion relationships for the function class $F \in \sum_{\beta,\lambda}^{\alpha,n} (\mu; A, B)$. To prove our main results we need the following Lemmas.

Lemma 1.1. [4] Let \hbar be a convex (univalent) function with $\hbar(0) = 1$. Also let

$$\phi(\varkappa) = 1 + c_{\varsigma + \epsilon} \varkappa^{\varsigma + \epsilon} + c_{\varsigma + \epsilon + 1} \varkappa^{\varsigma + \epsilon + 1} \dots, \tag{1.9}$$

 $\gamma \in \mathbb{C}/\left\{0\right\}$ be analytic in \mathbb{U} . If

$$\phi(\varkappa) + \frac{\varkappa \phi'(\varkappa)}{\gamma} \prec \hbar(\varkappa) \quad (Re(\gamma) \ge 0, \varkappa \in \mathbb{U}),$$
 (1.10)

then

$$\phi(\varkappa) \prec \psi(\varkappa) = \frac{\gamma \varkappa^{-\frac{\gamma}{\varsigma + \epsilon}}}{\varsigma + \epsilon} \int_{0}^{\varkappa} t^{\frac{\gamma}{\varsigma + \epsilon} - 1} \hbar(t) dt \tag{1.11}$$

and ψ is the best dominant. We denote by $P(\gamma)$ the class of functions φ , given by

$$\varphi(\varkappa) = 1 + c_1 \varkappa + c_2 \varkappa^2 + \dots, \ Re\left\{\varphi(\varkappa)\right\} > \gamma, \ 0 \le \gamma < 1.$$
 (1.12)

Lemma 1.2. [10] Let φ as (1.12) be in the class $P(\gamma)$. Then

$$Re\left\{\varphi\left(\varkappa\right)\right\} \geq 2\gamma - 1 + \frac{2\left(1 - \gamma\right)}{1 + |\varkappa|} \left(0 \leq \gamma < 1\right).$$

Lemma 1.3. [15] Let Let μ be a positive measure on [0,1]. Let $g(\varkappa,t)$ be a complex valued function defined on $\mathbb{U} \times [0,1]$ such that g(.,t) is analytic in \mathbb{U} for each $t \in [0,1]$, and $g(\varkappa,.)$ is μ - integrable on [0,1], for all $\varkappa \in \mathbb{U}$. In addition suppose that $Re\{g(\varkappa,t)\} > 0$, g(-r,t) is real and

$$Re\left\{\frac{1}{g(\varkappa,t)}\right\} \ge \frac{1}{g(-r,t)} \ \left(|\varkappa| \le r < 1; \ t \in [0,1]\right).$$

If

$$g(\varkappa) = \int_{0}^{1} g(\varkappa, t) d\mu(t),$$

then

$$Re\left\{\frac{1}{g(\varkappa)}\right\} \ge \frac{1}{g(-r)} \ (|\varkappa| \le r < 1).$$

Each of the identities (asserted by Lemma 1.4) is fairly well known (cf., e.g., [14], Ch.14)

Lemma 1.4. [14] For real or complex numbers a,b and c $(c \neq 0,-1,-2,...)$,

$$\int_{0}^{1} t^{b-1} (1-t)^{c-b-1} (1-t\varkappa)^{-a} dt = \frac{\Gamma(b) \Gamma(c-b)}{\Gamma(c)} {}_{2}F_{1}(a,b;c;\varkappa) \operatorname{Re}(c) > \operatorname{Re}(b) > 0,$$
 (1.13)

where

$$_{2}F_{1}(a,b;c;\varkappa) = (1-\varkappa)_{2}^{-a}F_{1}\left(a,c-b;c;\frac{\varkappa}{\varkappa-1}\right)$$
 (1.14)

and

$$_{2}F_{1}(a,b;c;\varkappa) = _{2}F_{1}(b,a;c;\varkappa).$$
 (1.15)

Lemma 1.5. [13] Let \varnothing be analytic in \mathbb{U} with

$$\varnothing\left(0\right)=1 \ and \ Re\left\{\varnothing\left(\varkappa\right)\right\}>\frac{1}{2}.$$

Then, for any F analytic in \mathbb{U} , $(\varnothing *F)(\mathbb{U})$ is contained in the convex hull of $F(\mathbb{U})$ where * denotes convolution.

2. Main results

The best dominant of the differential subordination solution will be found in the following theorems. Also for the function class $F \in \sum_{\beta,\lambda}^{\alpha,n}(\mu;A,B)$, we obtain a variety of inclusion relationships.

Theorem 2.1. For \digamma as (1.1) satisfies:

$$-\frac{\left(1-\delta\right)\varkappa^{\varsigma+1}\left(\Upsilon_{\beta,\lambda,\mu}^{\alpha,n}F\left(\varkappa\right)\right)'+\delta^{\varsigma+1}\left(\Upsilon_{\beta,\lambda,\mu+1}^{\alpha,n}F\left(\varkappa\right)\right)'}{\varsigma} \prec \frac{1+A\varkappa}{1+B\varkappa},\tag{2.1}$$

then

$$-\frac{\varkappa^{\varsigma+1} \left(\Upsilon^{\alpha,n}_{\beta,\lambda,\mu} F\left(\varkappa\right)\right)'}{\varsigma} \prec Q^{*}\left(\varkappa\right) \prec \frac{1+A\varkappa}{1+B\varkappa},\tag{2.2}$$

where

$$Q^{*}\left(\varkappa\right) = \begin{cases} \frac{A}{B} + \left(1 - \frac{A}{B}\right)\left(1 + B\varkappa\right)^{-1} {}_{2}F_{1}\left(1, 1; \frac{\mu}{\delta\left(\varsigma + \epsilon\right)} + 1; \frac{B\varkappa}{1 + B\varkappa}\right) & B \neq 0 \\ 1 + \frac{\mu}{\delta\left(\varsigma + \epsilon\right) + \mu}A\varkappa & B = 0 \end{cases},$$

is the best dominant of (2.2). Furthermore

$$Re\left\{-\frac{\varkappa^{\varsigma+1}\left(\Upsilon^{\alpha,n}_{\beta,\lambda,\mu}F\left(\varkappa\right)\right)'}{\varsigma}\right\} > \rho \ \left(0 \le \rho < 1\right),\tag{2.3}$$

where

$$\rho = \begin{cases} \frac{A}{B} + \left(1 - \frac{A}{B}\right) (1 - B)^{-1} {}_{2}F_{1}\left(1, 1; \frac{\mu}{\delta(\varsigma + \epsilon)} + 1; \frac{B}{B - 1}\right) & B \neq 0 \\ 1 - \frac{\mu}{\delta(\varsigma + \epsilon) + \mu}A & B = 0 \end{cases}$$
(2.4)

The result is the best possible.

Proof. Let

$$\phi(\varkappa) = -\frac{\varkappa^{\varsigma+1} \left(\Upsilon^{\alpha,n}_{\beta,\lambda,\mu} F(\varkappa) \right)'}{\varsigma}. \tag{2.5}$$

Then ϕ as (1.9). Applying (1.4) in (2.5) and differentiating, we get

$$-\frac{\left(1-\delta\right)\varkappa^{\varsigma+1}\left(\Upsilon_{\beta,\lambda,\mu}^{\alpha,n}\digamma\left(\varkappa\right)\right)'+\delta\varkappa^{\varsigma+1}\left(\Upsilon_{\beta,\lambda,\mu+1}^{\alpha,n}\digamma\left(\varkappa\right)\right)'}{\varsigma}=\phi\left(\varkappa\right)+\frac{\delta\varkappa\phi'\left(\varkappa\right)}{\mu}\prec\frac{1+A\varkappa^{\varsigma+1}}{1+B\varkappa^{\varsigma+1}}$$

Using Lemma 1.1, for $\gamma = \frac{\mu}{\delta}$, we have

$$\begin{split} -\frac{\varkappa^{\varsigma+1}\left(\Upsilon^{\alpha,n}_{\beta,\lambda,\mu}\digamma\left(\varkappa\right)\right)'}{\varsigma} &\;\; \prec \;\;\; Q^*\left(\varkappa\right) = \frac{\mu\varkappa^{-\frac{\mu}{\delta(\varsigma+\epsilon)}}}{\delta\left(\varsigma+\epsilon\right)} \int_0^\varkappa t^{\frac{\mu}{\delta(\varsigma+\epsilon)}-1} \left(\frac{1+At}{1+Bt}\right) dt \\ &=\;\; \left\{ \begin{array}{l} \frac{A}{B} + \left(1-\frac{A}{B}\right)\left(1+B\varkappa\right)^{-1} \;\;_{2}\digamma_{1}\left(1,1;\frac{\mu}{\delta\left(\varsigma+\epsilon\right)}+1;\frac{B\varkappa}{1+B\varkappa}\right) & B\neq 0 \\ 1+\frac{\mu}{\delta\left(\varsigma+\epsilon\right)+\mu} A\varkappa & B=0 \end{array} \right. \end{split}$$

This proves (2.2). Next we shall show that

$$\inf_{|\varkappa| < 1} \left\{ Re\left(Q^*\left(\varkappa \right) \right) \right\} = Q^*\left(-1 \right). \tag{2.6}$$

For $|\varkappa| \le r < 1$, we have

$$Re\left(\frac{1+A\varkappa}{1+B\varkappa}\right) \ge \frac{1-Ar}{1-Br}$$

Setting

$$g\left(\varkappa,s\right)=\frac{1+A\varkappa s}{1+B\varkappa s}\text{ and }d\mu\left(s\right)=\frac{\mu s^{\frac{\mu}{\delta\left(\varsigma+\epsilon\right)}-1}}{\delta\left(\varsigma+\epsilon\right)}ds\ \left(0\leq s\leq1\right),$$

which is a positive measure on [0, 1], we get

$$Re\left[Q^{*}(\varkappa)\right] \geq \int_{0}^{1} \frac{1 - Asr}{1 - Bsr} d\mu\left(s\right) = Q^{*}\left(-1\right) \ \left(|\varkappa| \leq r < 1\right).$$

Letting $r \to 1^-$, we obtain (2.3).

Finally, the estimate (2.3) is the best possible as $Q^*(\varkappa)$ is the best dominant of (2.2).

Putting $\delta = 1$, $A = 1 - \frac{2\eta}{\varsigma}$ and B = -1 in Theorem 2.1, we have the following inclusion property

Corollary 2.1.

$$\sum_{\beta,\lambda}^{\alpha,n}\left(\mu+1,\eta\right)\subset\sum_{\beta,\lambda}^{\alpha,n}\left(\mu,\omega\left(\varsigma,\epsilon,\mu,\eta\right)\right)\subset\sum_{\beta,\lambda}^{\alpha,n}\left(\mu,\eta\right),$$

where

$$\omega\left(\varsigma,\epsilon,\mu,\eta\right)=\eta+\left(\varsigma-\eta\right)\left[{}_{2}\digamma_{1}\left(1,1;\frac{\mu}{\left(\varsigma+\epsilon\right)}+1;\frac{1}{2}\right)-1\right].$$

The result is the best possible.

Taking $\delta = 1$ and $\epsilon = 1 - \varsigma$ in Theorem 2.1, we obtain the following inclusion property

Corollary 2.2.

$$\sum_{\beta,\lambda}^{\alpha,n} \left(\mu+1,A,B\right) \subset \sum_{\beta,\lambda}^{\alpha,n} \left(\mu,1-\frac{2\eta}{\varsigma},-1\right) \subset \sum_{\beta,\lambda}^{\alpha,n} \left(\mu,A,B\right),$$

where

$$\eta = \begin{cases} \frac{A}{B} + \left(1 - \frac{A}{B}\right) (1 + B\varkappa)^{-1} {}_{2}F_{1}\left(1, 1; \mu + 1; \frac{B}{B - 1}\right) & B \neq 0 \\ 1 - \frac{\mu A}{1 + \mu} & B = 0 \end{cases}.$$

The result is the best possible.

Theorem 2.2. Let $F \in \sum_{\beta,\lambda}^{\alpha,n} (\mu, \gamma)$, then

$$Re\left[-\left(1-\delta\right)\varkappa^{\varsigma+1}\left(\Upsilon_{\beta,\lambda,\mu}^{\alpha,n}\digamma\left(\varkappa\right)\right)'-\delta\varkappa^{\varsigma+1}\left(\Upsilon_{\beta,\lambda,\mu+1}^{\alpha,n}\digamma\left(\varkappa\right)\right)'\right]>\gamma\ \left(\left|\varkappa\right|< R\right),$$
(2.7)

where

$$R = \left\{ \frac{\sqrt{\delta^2 (\varsigma + \epsilon)^2 + \mu^2} - \delta (\varsigma + \epsilon)}{\mu} \right\}^{\frac{1}{(\varsigma + \epsilon)}}.$$
 (2.8)

The result is the best possible.

Proof. Since $F \in \sum_{\beta,\lambda}^{\alpha,n} (\mu, \gamma)$, we write

$$-\varkappa^{\varsigma+1} \left(\Upsilon^{\alpha,n}_{\beta,\lambda,\mu} \digamma \left(\varkappa \right) \right)' = \gamma + \left(\varsigma - \gamma \right) u \left(\varkappa \right), \tag{2.9}$$

where u as (1.9) and $Re[u(\varkappa)] > 0$. Using of (1.4) in (2.9) and differentiating the resulting equation, we have

$$-\frac{\varkappa^{\varsigma+1}\left[\left(1-\delta\right)\left(\Upsilon^{\alpha,n}_{\beta,\lambda,\mu}F\left(\varkappa\right)\right)'+\delta\left(\Upsilon^{\alpha,n}_{\beta,\lambda,\mu+1}F\left(\varkappa\right)\right)'\right]+\gamma}{\varsigma-\gamma}=u\left(\varkappa\right)+\frac{\delta\varkappa u'\left(\varkappa\right)}{\mu}.$$
(2.10)

Applying the following estimate [5]:

$$\frac{\left|\varkappa u'\left(\varkappa\right)\right|}{Re\left[u\left(\varkappa\right)\right]}\leq\frac{2\left(\varsigma+\epsilon\right)r^{\varsigma+\epsilon}}{1-r^{2\left(\varsigma+\epsilon\right)}}\ \left(\left|\varkappa\right|\leq r<1\right),$$

in (2.10), we get

$$Re\left\{-\frac{\varkappa^{\varsigma+1}\left[\left(1-\delta\right)\left(\Upsilon^{\alpha,n}_{\beta,\lambda,\mu}F\left(\varkappa\right)\right)'+\delta\left(\Upsilon^{\alpha,n}_{\beta,\lambda,\mu+1}F\left(\varkappa\right)\right)'\right]+\gamma}{\varsigma-\gamma}\right\}$$

$$\geq Re\left[u\left(\varkappa\right)\right]\left[1-\frac{2\delta\left(\varsigma+\epsilon\right)r^{\varsigma+\epsilon}}{\mu\left[1-r^{2\left(\varsigma+\epsilon\right)}\right]}\right]>0,$$
(2.11)

if r < R, R as (2.8). In order to show that the bound R is the best possible, we consider $F \in \sum_{\varsigma,\epsilon}$ defined by

$$-\varkappa^{\varsigma+1} \left(\Upsilon^{\alpha,n}_{\beta,\lambda,\mu} \digamma(\varkappa)\right)' = \gamma + \left(\varsigma - \gamma\right) \frac{1 + \varkappa^{\varsigma+\epsilon}}{1 - \varkappa^{\varsigma+\epsilon}} \ \left(0 \leq \gamma < \varsigma\right).$$

Noting that

$$\begin{split} & -\frac{\varkappa^{\varsigma+1}\left[\left(1-\delta\right)\left(\Upsilon^{\alpha,n}_{\beta,\lambda,\mu}F\left(\varkappa\right)\right)'+\delta\left(\Upsilon^{\alpha,n}_{\beta,\lambda,\mu+1}F\left(\varkappa\right)\right)'\right]+\gamma}{\varsigma-\gamma}\\ & = & \frac{\mu\left[1-\varkappa^{2(\varsigma+\epsilon)}\right]+2\delta\left(\varsigma+\epsilon\right)\varkappa^{\varsigma+\epsilon}}{\mu\left(1-\varkappa^{\varsigma+\epsilon}\right)^{2}}=0, \end{split}$$

for $\varkappa = R \exp\left(\frac{i\pi}{\varsigma + \epsilon}\right)$. This completes the proof.

Putting $\delta = 1$ in Theorem 2.2, we have

Corollary 2.3. If $F \in \sum_{\beta,\lambda}^{\alpha,n} (\mu,\gamma)$, then $F \in \sum_{\beta,\lambda}^{\alpha,n} (\mu+1,\gamma)$ for $|\varkappa| < R^*$, where

$$R^* = \left\{ \frac{\sqrt{(\varsigma + \epsilon)^2 + \mu^2 - (\varsigma + \epsilon)}}{\mu} \right\}^{\frac{1}{(\varsigma + \epsilon)}}.$$

The result is the best possible.

Theorem 2.3. If $\digamma \in \sum_{\varsigma,\epsilon}$ satisfies:

$$\varkappa^{\varsigma} \left[(1 - \delta) \left(\Upsilon_{\beta, \lambda, \mu}^{\alpha, n} F(\varkappa) \right)' + \delta \left(\Upsilon_{\beta, \lambda, \mu + 1}^{\alpha, n} F(\varkappa) \right)' \right] \prec \frac{1 + A \varkappa}{1 + B \varkappa},$$

then

$$\varkappa^{\varsigma} \Upsilon^{\alpha,n}_{\beta,\lambda,\mu} F(\varkappa) \prec Q^*(\varkappa) \prec \frac{1 + A\varkappa}{1 + B\varkappa}$$

and

$$Re\left[\varkappa^{\varsigma}\Upsilon_{\beta,\lambda,\mu}^{\alpha,n}F\left(\varkappa\right)\right]>\rho,$$

where $Q^*(\varkappa)$ and ρ as in Theorem 2.1. The result is the best possible.

Proof. Using the same lines as in the proof of Theorem 2.1, by taking $\phi(\varkappa) = \varkappa^{\varsigma} \Upsilon^{\alpha,n}_{\beta,\lambda,\mu} F(\varkappa)$ in (2.5). For $F \in \sum_{\varsigma,\epsilon}$ and $F_{c,\varsigma} : \sum_{\varsigma,\epsilon} \to \sum_{\varsigma,\epsilon}$, such that

$$F_{c,\varsigma}F(\varkappa) = \frac{c}{\varkappa^{c+\varsigma}} \int_{0}^{\varkappa} t^{c+\varsigma-1}F(t)dt$$
$$= \varkappa^{-\varsigma} + \sum_{k=\epsilon}^{\infty} \frac{c}{c+\varsigma+k} a_k \varkappa^k \quad (c>0)$$
(2.12)

and satisfies

$$\varkappa \left(\Upsilon^{\alpha,n}_{\beta,\lambda,\mu} F_{c,\varsigma} F(\varkappa)\right)' = c \Upsilon^{\alpha,n}_{\beta,\lambda,\mu} F(\varkappa) - (c+\varsigma) \Upsilon^{\alpha,n}_{\beta,\lambda,\mu} F_{c,\varsigma} F(\varkappa). \tag{2.13}$$

Theorem 2.4. Let $F \in \sum_{\beta,\lambda}^{\alpha,n} (\mu; A, B)$ and $F_{c,\varsigma}F(\varkappa)$ as (2.12) then

$$-\frac{\varkappa^{\varsigma+1} \left(\Upsilon^{\alpha,n}_{\beta,\lambda,\mu} F_{c,\varsigma} F(\varkappa)\right)'}{\varsigma} \prec \Theta(\varkappa) \prec \frac{1+A\varkappa}{1+B\varkappa},\tag{2.14}$$

where

$$\Theta(\varkappa) = \left\{ \begin{array}{l} \frac{A}{B} + \left(1 - \frac{A}{B}\right) (1 + B\varkappa)_2^{-1} F_1\left(1, 1; \frac{c}{(\varsigma + \epsilon)} + 1; \frac{B\varkappa}{1 + B\varkappa}\right) & B \neq 0 \\ 1 + \frac{c}{(\varsigma + \epsilon) + c} A\varkappa & B = 0 \end{array} \right.,$$

is the best dominant of (2.14). Furthermore

$$Re\left\{-\frac{\varkappa^{\varsigma+1}\left(\Upsilon^{\alpha,n}_{\beta,\lambda,\mu}F_{c,\varsigma}F(\varkappa)\right)'}{\varsigma}\right\} > \upsilon, \tag{2.15}$$

where

$$v = \begin{cases} \frac{A}{B} + \left(1 - \frac{A}{B}\right) (1 - B)^{-1} {}_{2}F_{1}\left(1, 1; \frac{c}{(\varsigma + \epsilon)} + 1; \frac{B}{B - 1}\right) & B \neq 0 \\ 1 - \frac{c}{(\varsigma + \epsilon) + c}A & B = 0 \end{cases}.$$

The result is the best possible.

Proof. Let

$$\phi\left(\varkappa\right) = -\frac{\varkappa^{\varsigma+1}\left(\Upsilon_{\beta,\lambda,\mu}^{\alpha,n}F_{c,\varsigma}\digamma\left(\varkappa\right)\right)'}{\varsigma},$$

then ϕ as (1.9). Using (2.13) in (2.14) and differentiating, we have

$$-\frac{\varkappa^{\varsigma+1}\left(\Upsilon^{\alpha,n}_{\beta,\lambda,\mu}F(\varkappa)\right)'}{\varsigma} = \phi\left(\varkappa\right) + \frac{\varkappa\phi'\left(\varkappa\right)}{c} \prec \frac{1+A\varkappa}{1+B\varkappa}.$$

Now the remaining part of Theorem 2.4 follows by employing the technique used in proving Theorem 2.1. \Box

Theorem 2.5. For $F_{c,\varsigma}F(\varkappa)$ as (2.12), satisfy

$$\varkappa^{\varsigma} \left[(1 - \delta) \left(\Upsilon_{\beta, \lambda, \mu}^{\alpha, n} F_{c, \varsigma} F(\varkappa) \right) + \delta \left(\Upsilon_{\beta, \lambda, \mu}^{\alpha, n} F(\varkappa) \right) \right] \prec \frac{1 + A \varkappa}{1 + B \varkappa}, \tag{2.16}$$

then

$$Re\left[\varkappa^{\varsigma}\Upsilon_{\beta,\lambda,\mu}^{\alpha,n}F_{c,\varsigma}F\left(\varkappa\right)\right] > \tau,$$
 (2.17)

where

$$\tau = \begin{cases} \frac{A}{B} + \left(1 - \frac{A}{B}\right) (1 - B)^{-1} {}_{2}F_{1}\left(1, 1; \frac{c}{\delta(\varsigma + \epsilon)} + 1; \frac{B}{B - 1}\right) & B \neq 0\\ 1 - \frac{c}{\delta(\varsigma + \epsilon) + c}A & B = 0 \end{cases}$$

$$(2.18)$$

Proof. Let

$$\phi\left(\varkappa\right) = \varkappa^{\varsigma} \Upsilon^{\alpha,n}_{\beta,\lambda,\mu} F_{c,\varsigma} F\left(\varkappa\right), \tag{2.19}$$

then ϕ as (1.9). Differentiating (2.19) and using (2.13) and (2.16), we have

$$\phi(\varkappa) + \frac{\varkappa\phi'(\varkappa)}{c} \prec \frac{1 + A\varkappa}{1 + B\varkappa}$$

Now the remaining part of Theorem 2.5, follows by employing the technique used in proving Theorem 2.1. \Box

Putting $n=0,\ \alpha=0,\ \mu=1,\ B=-1,\ A=1-2\eta\ (0\leq\eta<1)$ and $\delta=1$ in Theorem 2.5, we obtain

Corollary 2.4. For $F \in \sum_{\varsigma,\epsilon} satisfies$:

$$Re\left[\varkappa^{\varsigma}\digamma\left(\varkappa\right)\right] > \eta,$$

then

$$Re\left[\frac{c}{\varkappa^{c}}\int\limits_{0}^{\varkappa}t^{c+\varsigma-1}\digamma(t)dt\right]>\eta+(1-\eta)\left[{}_{2}\digamma_{1}\left(1,1;\frac{c}{(\varsigma+\epsilon)}+1;\frac{1}{2}\right)-1\right].$$

The result is the best possible.

Theorem 2.6. Let $F \in \sum_{s,\epsilon}$ satisfying

$$-\frac{\varkappa^{\varsigma+1}\left[\left(1-\delta\right)\left(\Upsilon^{\alpha,n}_{\beta,\lambda,\mu}F_{c,\varsigma}F(\varkappa)\right)'+\delta\left(\Upsilon^{\alpha,n}_{\beta,\lambda,\mu}F\left(\varkappa\right)\right)'\right]}{\varsigma}\prec\frac{1+A\varkappa}{1+B\varkappa},$$

then

$$Re\left[-\frac{\varkappa^{\varsigma+1}\left(\Upsilon^{\alpha,n}_{\beta,\lambda,\mu}F_{c,\varsigma}F\left(\varkappa\right)\right)'}{\varsigma}\right] > \tau,$$

where $F_{c,\varsigma}F(\varkappa)$ as (2.12) and τ as (2.18). The result is the best possible.

Proof. The proof follows by taking the same lines as in Theorem 2.5.

Considering the fact that:

$$\varkappa^{\varsigma+1} \left(\Upsilon^{\alpha,n}_{\beta,\lambda,\mu} F_{c,\varsigma} F\left(\varkappa\right) \right)' = \frac{c}{\varkappa^{c}} \int_{0}^{\varkappa} t^{c+\varsigma} \left[\Upsilon^{\alpha,n}_{\beta,\lambda,\mu} F\left(t\right) \right]' dt,$$

then taking $n=0,\ \alpha=0,\ \mu=1,\ B=-1,\ A=1-\frac{2\eta}{\varsigma}\ (0\leq\eta<\varsigma)$ and $\delta=1$ in Theorem 2.6, we have

Corollary 2.5. For $F \in \sum_{\varsigma, \epsilon} satisfies$:

$$Re\left[-\varkappa^{\varsigma+1}F'(\varkappa)\right] > \eta,$$

then

$$Re\left[-\frac{c}{\varkappa^{c}}\int_{0}^{\varkappa}t^{c+\varsigma}F'(t)dt\right] > \eta + (\varsigma - \eta)\left[{}_{2}F_{1}\left(1,1;\frac{c}{(\varsigma + \epsilon)} + 1;\frac{1}{2}\right) - 1\right].$$

The result is the best possible.

Theorem 2.7. Let $F \in \sum_{\varsigma,\epsilon}$ and $g \in \sum_{\varsigma,\epsilon}$, such that

$$Re\left[\varkappa^{\varsigma}\left(\Upsilon_{\beta,\lambda,\mu}^{\alpha,n}g\left(\varkappa\right)\right)\right]>0.$$

If

$$\left|\frac{\Upsilon_{\beta,\lambda,\mu}^{\alpha,n}F\left(\varkappa\right)}{\Upsilon_{\beta,\lambda,\mu}^{\alpha,n}g\left(\varkappa\right)}-1\right|<1,$$

then

$$Re\left[-\frac{\varkappa\left(\Upsilon_{\beta,\lambda,\mu}^{\alpha,n}F\left(\varkappa\right)\right)'}{\Upsilon_{\beta,\lambda,\mu}^{\alpha,n}F\left(\varkappa\right)}\right]>0,$$

where

$$R_{0} = \frac{\sqrt{9(\varsigma + \epsilon)^{2} + 4\varsigma(2\varsigma + \epsilon)} - 3(\varsigma + \epsilon)}{2(2\varsigma + \epsilon)}.$$
 (2.20)

Proof. Let

$$\varphi\left(\varkappa\right) = \frac{\Upsilon_{\beta,\lambda,\mu}^{\alpha,n} F\left(\varkappa\right)}{\Upsilon_{\beta,\lambda,\mu}^{\alpha,n} g\left(\varkappa\right)} - 1 = e_{\varsigma+\epsilon} \varkappa^{\varsigma+\epsilon} + e_{\varsigma+\epsilon+1} \varkappa^{\varsigma+\epsilon+1} ..., \tag{2.21}$$

we note that $\varphi(0) = 0$ and $|\varphi(\varkappa)| \leq |\varkappa|^{\varsigma+\epsilon}$. Then by applying the familiar Schwarz Lemma [9], we have $\varphi(\varkappa) = \varkappa^{\varsigma+\epsilon}\Psi(\varkappa)$, where Ψ is analytic in $\mathbb U$ and $|\Psi(\varkappa)| \leq 1$. Therefore (2.21), leads to

$$\Upsilon^{\alpha,n}_{\beta,\lambda,\mu}F\left(\varkappa\right)=\Upsilon^{\alpha,n}_{\beta,\lambda,\mu}g\left(\varkappa\right)\left[1+\varkappa^{\varsigma+\epsilon}\Psi\left(\varkappa\right)\right].\tag{2.22}$$

Differentiating (2.22) logarithmically, we obtain

$$\frac{\varkappa \left[\Upsilon_{\beta,\lambda,\mu}^{\alpha,n}F\left(\varkappa\right)\right]'}{\Upsilon_{\beta,\lambda,\mu}^{\alpha,n}F\left(\varkappa\right)} = \frac{\varkappa \left[\Upsilon_{\beta,\lambda,\mu}^{\alpha,n}g\left(\varkappa\right)\right]'}{\Upsilon_{\beta,\lambda,\mu}^{\alpha,n}g\left(\varkappa\right)} + \frac{\varkappa^{\varsigma+\epsilon}\left[\left(\varsigma+\epsilon\right)\Psi\left(\varkappa\right)+\varkappa\Psi'\left(\varkappa\right)\right]}{1+\varkappa^{\varsigma+\epsilon}\Psi\left(\varkappa\right)}.$$
(2.23)

Letting $\chi\left(\varkappa\right)=\varkappa^{\varsigma}\Upsilon_{\beta,\lambda,\mu}^{\alpha,n}g\left(\varkappa\right)$, we see that χ as (1.9) is analytic in \mathbb{U} , $Re\left[\chi\left(\varkappa\right)\right]>0$ and

$$\frac{\varkappa\left[\Upsilon_{\beta,\lambda,\mu}^{\alpha,n}g\left(\varkappa\right)\right]'}{\Upsilon_{\beta,\lambda,\mu}^{\alpha,n}g\left(\varkappa\right)} = \frac{\varkappa\chi'\left(\varkappa\right)}{\chi\left(\varkappa\right)} - \varsigma,$$

using (2.23) we have

$$Re\left\{\frac{\varkappa\left[\Upsilon_{\beta,\lambda,\mu}^{\alpha,n}F\left(\varkappa\right)\right]'}{\Upsilon_{\beta,\lambda,\mu}^{\alpha,n}F\left(\varkappa\right)}\right\} \geq \varsigma - \left|\frac{\varkappa\chi'\left(\varkappa\right)}{\chi\left(\varkappa\right)}\right| - \left|\frac{\varkappa^{\varsigma+\epsilon}\left[\left(\varsigma+\epsilon\right)\Psi\left(\varkappa\right)+\varkappa\Psi'\left(\varkappa\right)\right]}{1+\varkappa^{\varsigma+\epsilon}\Psi\left(\varkappa\right)}\right|. (2.24)$$

Using the following known estimates [11], (see also [5])

$$\left|\frac{\varkappa\chi'\left(\varkappa\right)}{\chi\left(\varkappa\right)}\right| \leq \frac{2\left(\varsigma+\epsilon\right)r^{\varsigma+\epsilon-1}}{1-r^{2\left(\varsigma+\epsilon\right)}} \text{ and } \left|\frac{\varkappa^{\varsigma+\epsilon}\left[\left(\varsigma+\epsilon\right)\Psi\left(\varkappa\right)+\varkappa\Psi'\left(\varkappa\right)\right]}{1+\varkappa^{\varsigma+\epsilon}\Psi\left(\varkappa\right)}\right| \leq \frac{\varsigma+\epsilon}{1-r^{\left(\varsigma+\epsilon\right)}} \ \left(\left|\varkappa\right|< r<1\right),$$

in (2.24), we have

$$Re\left\{\frac{\varkappa\left[\Upsilon_{\beta,\lambda,\mu}^{\alpha,n}F\left(\varkappa\right)\right]'}{\Upsilon_{\beta,\lambda,\mu}^{\alpha,n}F\left(\varkappa\right)}\right\} \geq \frac{\varsigma - 3\left(\varsigma + \epsilon\right)r^{\left(\varsigma + \epsilon\right)} - \left(2\varsigma + \epsilon\right)r^{2\left(\varsigma + \epsilon\right)}}{1 - r^{2\left(\varsigma + \epsilon\right)}} = 0,$$

provided that $r < R_0$, R_0 as (2.20).

Theorem 2.8. For $\digamma \in \sum_{\varsigma,\epsilon}$ and satisfies:

$$(1-\delta)\,\varkappa^{\varsigma}\left(\Upsilon^{\alpha,n}_{\beta,\lambda,\mu}F(\varkappa)\right)+\delta\varkappa^{\varsigma}\left(\Upsilon^{\alpha,n}_{\beta,\lambda,\mu+1}F\left(\varkappa\right)\right)\prec\frac{1+A\varkappa}{1+B\varkappa},$$

then

$$Re\left\{\left[\varkappa^{\varsigma}\Upsilon_{\beta,\lambda,\mu}^{\alpha,n}\digamma\left(\varkappa\right)\right]^{\frac{1}{q}}\right\}>\xi^{\frac{1}{q}}\ \left(q\in\mathbb{N}\right),$$

where ξ as (2.4). The result is best possible.

Proof. Let

$$\phi\left(\varkappa\right) = \varkappa^{\varsigma} \Upsilon^{\alpha, n}_{\beta, \lambda, \mu} F\left(\varkappa\right), \tag{2.25}$$

then ϕ as (1.9). Using (1.4) and differentiating the resulting, we have

$$(1 - \delta) \varkappa^{\varsigma} \left(\Upsilon_{\beta, \lambda, \mu}^{\alpha, n} F(\varkappa) \right) + \delta \varkappa^{\varsigma} \left(\Upsilon_{\beta, \lambda, \mu + 1}^{\alpha, n} F(\varkappa) \right) = \phi(\varkappa) + \frac{\delta \varkappa \phi'(\varkappa)}{\mu} \prec \frac{1 + A \varkappa}{1 + B \varkappa}.$$

$$(2.26)$$

Following the lines of the proof of Theorem 2.1, mutatis mutandis and using:

$$Re\left(w^{\frac{1}{q}}\right) > \left[Re\left(w\right)\right]^{\frac{1}{q}} \left(Re\left(w\right) > 0\right),$$

we have the result asserted by Theorem 2.8.

Theorem 2.9. For $F \in \sum_{\beta,\lambda}^{\alpha,n} (\mu; A, B)$ and $g \in \sum_{\varsigma,\epsilon}$ satisfy:

$$Re\left[\varkappa^{\varsigma}g\left(\varkappa\right)\right] > \frac{1}{2},$$

then

$$(F * g)(\varkappa) \in \sum_{\beta,\lambda}^{\alpha,n} (\mu; A, B).$$

Proof. We have

$$-\frac{\varkappa^{\varsigma+1}\left[\Upsilon_{\beta,\lambda,\mu}^{\alpha,n}\left(\digamma\ast g\right)\left(\varkappa\right)\right]'}{\varsigma}=-\frac{\varkappa^{\varsigma+1}\left[\Upsilon_{\beta,\lambda,\mu}^{\alpha,n}\digamma\left(\varkappa\right)\right]'}{\varsigma}\ast\varkappa^{\varsigma}g\left(\varkappa\right).$$

Since

$$Re\left[\varkappa^{\varsigma}g\left(\varkappa\right)\right] > \frac{1}{2},$$

and $\frac{1+A\varkappa}{1+B\varkappa}$ is convex (univalent) in \mathbb{U} , it follows from (1.7) and Lemma 1.5, that $(F*g)(\varkappa)\in\sum_{\beta,\lambda}^{\alpha,n}(\mu;A,B)$.

3. ACKNOWLEDGEMENT

We are grateful to the referees for their very helpful comments and suggestions.

References

- [1] T. Bulboacă, Differential subordinations and superordinations, House of Scientific Book Publ. Cluj-Napoca, New Results 2005.
- [2] L. I. Cotîrlă, E. A. Totoi, On classes of meromorphic functions defined by subordination and convolution, Symmetry, 15(2023), no. 9, 1-12.
- [3] S. El-Deeb, N. Khan, M. Arif and A. Alburaikan, Fuzzy differential subordination for meromorphic function, Axioms, 11(2022), no. 10, 1-12.
- [4] D. Hallenbeck and S. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc., 52 (1975), 191–195.
- [5] T. H. MacGregor, Radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 14 (1963) 514-520.
- [6] S. S. Miller and P. T. Mocanu, Differential subordination theory and applications, Series on Monographs and Textbooks in Pure and Appl. Math. vol. 225. Marcel Dekker, New York, Basel 2000.
- [7] P. T. Mocanu, T. Bulboacă, and G. S. Sălăgean, The geometric theory of univalent functions, Cluj-Napoca: Casa Cărții de Știință, 1999.
- [8] A. O. Mostafa, Inclusion results for certain subclasses of p-valent meromorphic functions associated with new operator, J. Ineq. Appl., 169 (2012), 1–14.
- [9] Z. Nehari, Conformal mapping, McGraw-Hill, New York, 1952.
- [10] D. Ž. Pashkouleva, The starlikeness and spiral-convexity of certain subclasses of analytic functions, in: H. M. Srivastava and S. Owa (Eds.), Current topicsin analytic function theory, World Scientific Publishing Company, Singapore, New Jersey, London, and Hong Kong, 1992, 266–273.
- [11] J. Patel, Radii of γ -spirallikeness of certain analytic functions, J. Math. Phys. Sci., 27 (1993), 321–334.
- [12] T. M. Seoudy and A. E. Shammaky, Some properties of certain classes of meromorphic multivalent functions defined by subordination, Symmetry, 15(2023), no. 2, 1-13.
- [13] R. Singh and S. Singh, Convolution properties of a class of starlike functions, Proc. Amer. Math. Soc., 106 (1989), 145–152.
- [14] E. T. Whittaker and G. N. Watson, A course of modern analysis: An introduction to the general theory of infinite processes and of analytic functions; With an account of the principal transcendental functions, gourth ed., Cambridge University Press, Cambridge, 1927.
- [15] D. R. Wilken and J. Feng, A remark on convex and starlike functions, J. Lond. Math. Soc., 21 (1980), no. 2, 287–290.

M. A. Mowafy

MATHEMATICS DEPARTMENT, FACULTY OF SCIENCE, MANSOURA UNIVERSITY, MANSOURA EGYPT. Email address: mohamed1976224@gmail.com

A. O. Mostafa

MATHEMATICS DEPARTMENT, FACULTY OF SCIENCE, MANSOURA UNIVERSITY, MANSOURA EGYPT. Email address: adelaeg254@yahoo.com

S. M. Madian

Basic Science Dept., Higher Institute for, Engineering and Technology, New Damietta, Egypt.

 $Email\ address:$ samar_math@yahoo.com

A. I. Elmahdy

MATHEMATICS DEPARTMENT, FACULTY OF SCIENCE, MANSOURA UNIVERSITY, MANSOURA EGYPT. Email address: atefmahdy05@mans.edu.eg