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SUBORDINATING RESULTS OF CLASSES OF MULTIVALENT
MEROMORPHIC FUNCTIONS

M. A. MOWAFY, A. O. MOSTAFA, S. M. MADIAN AND A. I. ELMAHDY

ABSTRACT. In this paper, we defined a class of meromorphic functions which
are analytic and multivalent in punctured unit disk. After that by using the
operator which are defined by ( see Mostafa [8] ) we defined a new operator
using meromorphic functions which are analytic and p-valent in punctured
unit disk. Also in the present paper we defined a new class of meromorphic
functions by using this new operator. Furthermer we use the concepts of dif-
ferential subordination and Hadamard product or (convolution) in our proving
theorems. Plus more we use the definition of hypergeometric function in our
proof. After that we derive several inclusion relationships for this class. In or-
der to prove our main results we need the following Lemmas which presented
in our paper. Also we investigate some properties of certain classes of mul-
tivalent meromorphic functions by making use of the method of differential
subordination, which are defined by means of a certain operator.

1. INTRODUCTION

For any integer € > —¢, let > .. be the class of meromorphic functions:

F) =2+ apst, cee N={1,2,..}, (1.1)
k=e
which are analytic and ¢-valent in U* = {5c: 3x € C,0 < || < 1} = U\{0}.
For @ > 0 and 8 > —1, Mostafa [8] defined the operator

1 I (B) if(l{+§+a+5)(u)k+g i
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where
() _Td+s) (1 (s=0;d e C*=C/{0})
T dd+1)..... (d+s—1) (seNydeC)
For f as (1.1), n € No = NU {0} and p > 0, using Q5  F and A > 0 we define
the operator T3’y >  — > as

B

YGo00F () = F(»),
o a )\ o /
Tiauk (9 = (L0 QF () + 2 (Wb (%))
«@ « A o, '
TE3uF G = (WENTERLE G+ Zoe (Y550 ()
Ta,n _ 1 A T(x,n—l A Ta,n—l '
b () = (A+N)Tey, F(”)‘*‘Z% s F9))

1 o0

- ;JFZA;C(Q,B,)\,u,g)ak%k, (1.2)
k=e
where

T L+AA+5)]"T(k+s+a+B) (1)

A A = 1.
which satisfies
s (TRLF (0) = HTFR aF () = (TR (), (1.4)
s (TERLF () = @+ B)TEELF () = (a4 B+ TERLF (), (1)
and
a,n ' S Ara,n S A+1 an
(Y530 () = SYERLF () = %Tﬁ;A’MF(K). (1.6)

Definition 1.1. [1], [6] and [7] If F, g are analytic in U, then F is subordinate
to g, written | < g if there exists a Schwarz function w(x) analytic in U with
w(0) =0 and |w(s)| < 1 for all 5 € U, such that

F(50) = g(w()).
Definition 1.2. For f € 3., (-1<B<A<1) and | € 33\ (A, B) if it

satisfies:

S €7

!
S5t (T%?HF(%)) 1+ Az
S 1+ B

Let 3753 (31— 2—51, -1) = o5 (m), 0 < <, where 3737\ (1,m) denotes the
class of functions in Zg . satisfying

Re {wl (s (%))'} > . (1.8)

(1.7)
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Many authors obtained subordination results for classes of meromorphic func-
tions ex: [2], [3] and [3].

In the present paper, we derive several inclusion relationships for the function
class F € Zg; (13 A, B) . To prove our main results we need the following Lemmas.

Lemma 1.1. [4] Let i be a convex (univalent) function with h(0) = 1. Also let

¢ (%) =1 + C<+E%§+E + C§+E+1%g+6+1..., (19)

~v € C/{0} be analytic in U. If

/
069+ 2 <) (Re()z0x€ D), (1.10)
then 3
Y [T 4y

< - 1 (t) dt 1.11
609 <0 =2 | 0 (1.11)
and ¢ is the best dominant. We denote by P(7) the class of functions ¢, given by
0()=1+ciset+ce® +..., Re{p(5)} >v, 0<y<1. (1.12)

Lemma 1.2. [10] Let ¢ as (1.12) be in the class P(vy). Then

2(1-9)

>y -1
Re{p(#)} =2y M

(0<y<1).

Lemma 1.3. [15] Let Let p be a positive measure on [0,1]. Let g(s¢,t) be a
complex valued function defined on U x[0,1] such that g(.,t) is analytic in U for
each t € [0,1], and g(c,.) is p— integrable on [0,1], for all 5 € U. In addition
suppose that Re{g(s,t)} > 0, g(—r,t) is real and

1 1
%{me}zg<nﬂ“MST<LtEWA»

If
wm=£amwmm

then
1

Re{m}Zﬁ (|| <7 <1).

Each of the identities (asserted by Lemma 1.4) is fairly well known (cf., e.g., [14],
Ch.14)

Lemma 1.4. [14] For real or complex numbers a,b and ¢ (¢ #0,—1,-2,...),

1
/tb’l (1= (1 —tse) %dt =
0

') (c—
W oF 1 (a,b;¢;5¢) Re(e) > Re(b) >0, (1.13)
where
of 1 (a,byc;5¢) = (1 — )5 " F1 <a,cb;c; %1> (1.14)
e —
and

oF 1(a,b;c;¢) =3 F1(b,a;¢; ). (1.15)
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Lemma 1.5. [13] Let @ be analytic in U with

@ (0) =1 and Re{@ (5)} > %

Then, for any F analytic in U, (& * [ ) (U) is contained in the convexr hull of F (U)
where * denotes convolution.

2. MAIN RESULTS

The best dominant of the differential subordination solution will be found in the
following theorems. Also for the function class f € ng (13 A, B) ,we obtain a
variety of inclusion relationships.

Theorem 2.1. For F as (1.1) satisfies:

/ li
(1= 8) 5% (Y33, (9) + 0 (T30 ,F (9) 14 s

2.1
S <1+B%7 (2.1)
then
o (135, )
% B 14+ Asx
— * 2.2
<Q () < (22)
where
A A 1 1 B%)
Zi(1-2)a+B Fi(1,1; 41 B#0
Q" ()= B < B>( %) 21( 5(c+te 1+ Bx 7
1+—F A B=0

d(s+e)+u
is the best dominant of (2.2). Furthermore

!/
B (rg . ()

Re . >p (0<p<), (2.3)
where
A A 1 1% B
— 1-=|(1-B 1,1; 1; B#0
. B+< B)( ) 2F1<’75(§+6)+’B—1> 7& -
R B=0
d(s+e)+p
(2.4)
The result is the best possible.
Proof. Let
+1 (Ta ( )),
P NF (¢
By,
6 () = — X . (2.5)

Then ¢ as (1.9). Applying (1.4) in (2.5) and differentiating, we get

)

/ !/
7(1 — (5) %§+1 (Tﬂ:)\,uF (%)) + (5%§+1 (Tﬁ’)\,u-l-lF (%)) +(5%¢, (%) < 1+ Az

= ()

S I 1+ B’
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Using Lemma 1.1, for v = %, we have

/
%<+1 (Tu,n (s ) _ :L . 2
_ ﬁ,)\“u, ( ) < Q* (%) _ /,L% 5(<+ tﬁgu??_l (1 +At> d
S d0(s+e€) Jo 1+ Bt

A A -1 . 12 . B
B §+(1—§)(1+B%) 2F1<1,1,6(<+€)+171+B%> B#O.
1

o
— A B=0
d(c+e)+p g
This proves (2.2). Next we shall show that
inf {Re (@ ()} = Q" (1), (2.6)

For |»| <r < 1, we have

Re<1+A%> S 1— Ar

1+Bx) ~ 1-Br’
Setting
14 Ases psTeFo
_ dd = 0<s<1
0 (00.5) = g and dia () = T ds (0 <5 <1).

which is a positive measure on [0, 1], we get

1
1— Asr
* > —d =Q" (-1 < 1).
RelQ" () > [ T=5mdn(s) = Q' (1) (<7 <)
Letting » — 17, we obtain (2.3).
Finally, the estimate (2.3) is the best possible as Q* () is the best dominant of
(2.2). O

Putting § =1, A=1-— 2?’7 and B = —1 in Theorem 2.1, we have the following
inclusion property

Corollary 2.1.

a,m o,n o,n
D u+1m) D (wlsemn) S (mn),
B,A BA B.A

where

w (s, & p,m) =1+ (c—n) [zﬂ (LL#H;%) —1].

The result is the best possible.
Taking 6 = 1 and € = 1 — ¢ in Theorem 2.1, we obtain the following inclusion

property
Corollary 2.2.

a,n a,n 277 a,n
+1,A,B) C 11— —,-1) C A, B),
Srrancd (wi-2 1) > (wan)

BA BiA B,A
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where
A A 1 B
— 1-—|)(1+B 1,1; 1, —— B
n= 1A .
1— 2= B=0
1+pu

The result is the best possible.

Theorem 2.2. Let [ € 3"\ (11,7), then

/ /
Re [— (1= )5 (Y50 uF () = 5t (T30, F () } >7 (s« < R),

(2.7)
where
1
(Gl
2(c+e)+u2—d(c+e)
"
The result is the best possible.
Proof.  Since F € 335\ (1,7) , we write
li
— T (TERLE () =7+ (= ul), (2.9)

where u as (1.9) and Re [u (5)] > 0. Using of (1.4) in (2.9) and differentiating the
resulting equation, we have

S+l {(1 —9) (T;:;MF (%)), +4 (Tg:;#ﬁ-lF (%))’} Fy

S

Applying the following estimate [5]:

b (9] _ 2(s+ 075t

Relu ()] = 1—r2sto (| <r <1),

in (2.10), we get

|- 0) (132, 60) +6 (132 ear () ]+

S

Re< —

26 (¢ +€)rete

if r < R, R as (2.8). In order to show that the bound R is the best possible, we
consider £ € > __ defined by

1+ s5te

/
et (Tgﬁ,f (%)) =7+ (—7)



JFCA-2025/16(2) SUBORDINATING RESULTS OF CLASSES 7

Noting that

s {(1 = o) (Tg (%))/ +6 (T53 i (%))/} +y

S—=7
ou [1 _ %2(<+e)] + 24 (( + 6) 2Ste o
N p(1— seste)? o
for =R exp(ZTﬂ) . This completes the proof. O
S+e€

Putting 6 = 1 in Theorem 2.2, we have
Corollary 2.3. If [ € 35\ (11,7), then F € X_5°\ (4 1,7) for || < R*, where

. VE+o +u2—(s+e)

I

The result is the best possible.
Theorem 2.3. If F € 3___ satisfies:

, ' 14+ Ax
o[-0 (235, 00) 0 (15507 00) | <
then 1+ A
a,n * + A
2l () < Q70 <
and

Re [=T55 5 ()] > o,
where Q*(5) and p as in Theorem 2.1. The result is the best possible.

Proof. Using the same lines as in the proof of Theorem 2.1, by taking ¢ (») =
%ng:f\L)MF (5) in (2.5).
For F e} . and Feo:)> o  — >, such that

Feob (») = %cc+q /tc+§7lF(t)dt
0
= c
= x4y ——apx (c>0 2.12
Y e >0 212)
and satisfies
% (Tg;;uFmr(%)) = XGN () — (e + Q) Y5 Fok (52). (2.13)
U
Theorem 2.4. Let | € 335\ (15 A, B) and F ¢ F () as (2.12) then
+1 (T ( ))/
e s lest (5 1+ A
- G 2 O(x) < A% (2.14)

S 1+ B
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where
A A 1 c B
— 1-—|(1+B 1,1; 1; B#0
o _ B+< B>( + B)s F1<”(§+e)+ ’1+B%> 7
(5) ¢ ;
14+ ———Asx B=0
(c+¢€)+c

is the best dominant of (2.14). Furthermore

2 t1 (Tg:;uFagF(%)) /

Re{ — . > 0, (2.15)
where
A A —1 C B
= 1-=)(1-B 1,1; 1; B
e B*( B>( ) 2“(”<<+e>+’3—1) 70
1-— % 4 B=0
(c+e)+c

The result is the best possible.
Proof. Let

/
(10T Bl F(52)
BiA,u™ GS

S
then ¢ as (1.9). Using (2.13) in (2.14) and differentiating, we have

/
Lt (rg;;{f(%)) B b () 14 As
B S =009+ c = 1+ B
Now the remaining part of Theorem 2.4 follows by employing the technique used
in proving Theorem 2.1. (I

Theorem 2.5. For F,  F (x) as (2.12), satisfy
1+ Asx

S _ a,n a,n
2 |(1=0) (Y53, Fech () +6 (T35,0 (9)] < e (216)
then
Re [%ng:f\L#Fc,gF (%)] > (2.17)
where
A A —1 Cc B
—= 1-=)1(1-B 1,1; 1; B
. B+< B>( ) 2F1(”6<§+6)+’B—1) 7&0
1-— % 4 B=0
d(c+e)+c
(2.18)
Proof. Let
¢ (3) = %ng:quC,gF (50, (2.19)
then ¢ as (1.9). Differentiating (2.19) and using (2.13) and (2.16), we have
wd' () 14 Asx
¢ () + c 1 + B’

Now the remaining part of Theorem 2.5, follows by employing the technique used
in proving Theorem 2.1. O
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Puttingn =0, a=0,p=1,B=-1,A=1-2n(0<n<1l)and § =1 in
Theorem 2.5, we obtain
Corollary 2.4. For | € ZQE satisfies:
Re [»°F (»)] > n,
then

bl

c c 1
Re | — [ t“T71rt)dt| > 1-— [ <1,1;— 1;—>—1}
€ %c/ F(t) n+ (1 —=mn)|2F1 (g+e)+ 5
0

The result is the best possible.
Theorem 2.6. Let F € 3 __ satisfying

)

# [(1 —9) (Tg::,ch7§F(%)), +o <T27§7MF (%)),} L+ A

< )
S 14+ Bx
then
A
Lot (Tg:;chygr (%))

Re | — > T,
<

where F, o F () as (2.12) and 7 as ( 2.18) . The result is the best possible.

Proof. The proof follows by taking the same lines as in Theorem 2.5. (]

Considering the fact that:

s

a,mn ! c c a,n !
L5t (T5:A7l4F67CF (%)> =— /t +s {T57A7ﬂr(t)} dt,
0

then takingn =0, a=0,u=1,B=-1,A=1-21(0<p<c)and§=1in
Theorem 2.6, we have

Corollary 2.5. For F € }___ satisfies:
Re [—T ! (3)] >,
then

bl

c c 1
Re |—— [ ttr/(t)dt| > — 1,1 ——+1;= ) —1].
e %C/ F'(t) n+ (s n)[zF1( (§+€)+ 2) ]
0

The result is the best possible.
Theorem 2.7. Let F € Eg,e and g € Zgﬁe, such that

Re [%g (Tg:;yﬂg (%))} > 0.

If

Tg:;MF(%) .

o,n < 17
sl ()
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then
i
> (Ta’; r (%))
Re | — fn i > 0,
Toxub ()
where
9(c+e) +4s (26 +€) —3(s+e)
Ry = \/ . (2.20)
2(2¢ +e€)
Proof. Let
Ty F (3)
() = ot — 1= ey gyt (2.21)
T/3,,\#57 (%)

we note that ¢ (0) = 0 and |¢ (3)| < |5)°"°. Then by applying the familiar
Schwarz Lemma [9], we have ¢ (3) = 1€ (), where ¥ is analytic in U and
| ¥ (5)| < 1. Therefore (2.21) , leads to

Lol () = 153, () [L 27T ()] (2.22)
Differentiating (2.22) logarithmically , we obtain

#0550 ] #[T55,000] stk 0w 60 1w ()

T G) X GgG) RS
Letting x () = 5 T3’} ,g (3¢) , we see that x as (1.9) is analytic in U, Re [x (5)] >
0 and
/
7|59 (%)} sex! ()
TineG) a7

#1530 Go] . ‘%x’ <z>Hx<+f [(< + ) T (52) + 3V’ ()]

Re i . (2.24)
TN F (») X () 14 35T (5) ‘
Using the following known estimates [11], (see also [5])

X ()| _ 2(s+gretet (S 4 €) U (50) + 2V ()] Ste

’ X(%) ‘ < 1= 2659 and 1+%§+5\Il(%) =1 G+ (|%| <7“<1)a
in (2.24) , we have

o, !
” [Tﬁ:/\:HF (%)} s —3(c+e)rttd — (24 ¢) r2ta)
Re R > 2o to) =0,
Tﬁ,A,pF (5) 1—r

provided that r < Ry, Ry as (2.20). O

Theorem 2.8. For [ € »___ and satisfies:

1+ Asx
1+ B

)

(1= 8) 56 (Y5 uF () + 056 (Y5 (39) <
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then
1
q

Re { {%grg;;’,f (z)} } > &1 (qeN),

where £ as (2.4) . The result is best possible.

Proof. Let

¢ () = %CTZ:ZHF (50), (2.25)

then ¢ as (1.9). Using (1.4) and differentiating the resulting, we have
8y () < 14+ Asx
i 1+ B’

(2.26)
O

(1= 0) 52 (153, 69) + 052 (Y53 i F () = 6 (0) +

Following the lines of the proof of Theorem 2.1, mutatis mutandis and using:
Re (w%) > [Re (w)]7 (Re (w) > 0),
we have the result asserted by Theorem 2.8.

Theorem 2.9. For [ € 325"\ (13 A, B) and g € Y- _ satisfy:

then

Proof. We have

1 [XGR, (F ) ()]

_ =— ’ x 22°g (5).
. . g ()
Since
1
Relg ()] > 3
1+ A
and 1 1 B% is convex (univalent) in U, it follows from (1.7) and Lemma 1.5,
»x
that (F * g) () € 225\ (3 A, B) . O
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