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ABSTRACT

Neurometabolic diseases associated with neurological manifestations are a group of
heterogeneous genetic disorders that share the alteration in specific aspects of cellular
metabolism, ultimately leading to the disease. Often first described by pediatricians, the
more recently reported adult-onset forms have phenotypes considerably different,
sometimes, from the pediatric ones and might mimic other more common adults
neurological disorders. Adult-onset neurometabolic diseases are individually rare,
heterogeneous and frequently show complex clinical presentations. These reasons, in
addition to the myriad of specialized biochemical diagnostic tools available, account for
a significant diagnostic delay and under-diagnosis. However, unlike many other
neurogenetic diseases, a substantial part of neurometabolic diseases can be successfully
treated, with both conservative and more recently approved innovative therapeutics.
Early recognition and diagnosis of a treatable neurometabolic disease should have
major impacts, supports the stabilization of the disease or even the regression of some
signs and symptoms, halting unnecessary diagnostic investigations, and allowing for
family screening and treatment of pre-symptomatic carriers. An overview of adult-onset
neurometabolic diseases will be outlined, starting from important general considerations
to phenotypical descriptions focusing on treatable diseases. A diagnostic approach for
the adult neurologist will be developed to help decision making when suspecting a
neurometabolic disease. Neurometabolic Syndromes (NMS) are rare, heterogeneous
genetic disorders that primarily affect the central nervous system (CNS) due to defects in
specific metabolic pathways. Accurate, early diagnosis is critically important for
initiating disease-modifying therapies, such as enzyme replacement or gene therapy,
before irreversible neurological damage occurs.

INTRODUCTION

Inborn errors of metabolism (IEMs) are also referred
to as congenital metabolic diseases (CMDs) or inherited
metabolic disorders (IMDs). They are a group of
metabolic disorders caused by a genetic mutation that
leads to deficiency of an enzyme required for the
formation of a protein or for the catalysis of a
biochemical reaction in the body. The problem arises
usually from accumulation of substrate (toxic) or
absence of an important product of the reaction. IEM
can appear at birth or later in life such as
phenylketonuria,  albinism,  lactose intolerance,
Mucopolysaccharidosis (MPS), Gaucher disease, fabry
disease ....etc *.

Genetic mutations that affect the activity of the acid
hydrolases causes what are known as lysosomal storage
diseases (LSD). These mutations block the normal
metabolism causing macromolecules accumulation
inside the lysosomes that eventually lead to severe
physiological damage. Lysosomal storage diseases have
a rare incidence of 1 in 7000 live birth 2.
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LSDs symptoms differ according to the affected
enzyme, the type of accumulated substance and the type
of cells that substance accumulates in. Also clinical
picture can vary markedly within the same disorder **,

Lysosomal storage disorders (LSDs) constitute a
group of >50 inherited disorders characterized by the
accumulation of specific undegraded metabolites in the
lysosomes. This over storage is commonly caused by a
deficient or absent activity of one of the many
lysosomal hydrolases or, in a few cases, by the
deficiency of other non-enzymatic lysosomal proteins.
Although singularly considered rare, the combined birth
prevalence of LSD is estimated from 7.5 to 23.5 per
100,000 live births. Clinical signs and symptoms may
occur from the prenatal period to adulthood, and may
develop at different progression rate, according to the
pathology, leading to a wide spectrum of disease forms,
from mild to extremely severe, that in most cases affect
the neurologic compartment, hence the neurometabolic
disorders *°.

Generally, the diagnostic approach includes an
accurate clinical evaluation that leads to the formulation
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of a suspicion for one or more of the neurometabolic
disorders. This is followed by biochemical tests, aimed
to detect the storage products in the body fluids, the
biochemical results might be oriented by enzymatic
analyses’ aspects. Finally, if an enzyme deficiency is
detected, genetic analysis is performed for the suspected
gene °. However, this diagnostic route presents several
limitations.

Neurometabolic disorders are largely overlapping in
their  phenotypic  manifestations, hence their
identification requires deep clinical phenotyping.
Moreover, the biochemical methods are laborious, and
they are often subject to high variability, taking into
consideration that multiple enzymatic assays should be
expensive. Also, not all of these disorders present with

elevated levels of storage products. This may delay the
diagnosis that could be even difficult to reach .

The diagnosis of neurometabolic disorders is a
demanding task for clinicians due to the phenotype and
penetrance variability, the shared signs and symptoms,
and the uncertainties related to biochemical enzymatic
assay results °.

Advanced gene sequencing and analysis techniques
constitute the most reliable current approach for
diagnosing, preventing, and treating this complex group
of disorders. High-Throughput Technologies, such as
Next-generation sequencing (NGS)® °; including whole-
exome sequencing (WES) and targeted gene panels
have revolutionized this field.

Table 1: Examples of Genes that will be Included in the Panel and Their Associated Neurometabolic disorders’

Gene Syndrome Enzyme/substrate
SGSH MPS I11A, Sanfilippo N-Sulfoglucosamine
syndrome A Sulfohydrolase (Heparan sulfate)
NAGLU MPS 111B, Sanfilippo e N-Acetyl-a-glucosaminidase (Heparan sulfate)
syndrome B
HGSNAT MPS 111C, Sanfilippo Heparan-a-glucosaminideN-acetyltransferase (Heparan
syndrome C sulfate)
GNS MPS 111D, Sanfilippo N-acetylglucosamine-6-
syndrome D Sulfatase (Heparan sulfate)
GLA Fabry disease a-Galactosidase A (Globotriaosylceramide)
GLB1 GM1 gangliosidosis: B-Galactosidase
type I, 11, 111 (GM1 ganglioside, keratan sulfate & oligosaccharides)
HEXA GM2 gangliosidosis, B-Hexosaminidase
Tay—Sachs disease (GM2 ganglioside, Glycosphingolipids& oligosaccharides)
HEXB GM2 gangliosidosis, B-Hexosaminidase
Sandhoff disease (GM2 ganglioside, GA2 glycolipid & oligosaccharides)
GALC Krabbe disease (KD) galactocerebrosidase

Neurometabolic disordersis a clinically
heterogeneous group in which the neurological
manifestations are prominent clinical findings.

Lysosome facilitates the degradation of various products
of the cellular turn-over that are mainly derived from
lysosomes through endocytosis. Alternative pathways
for substrate entry into lysosomes are phagocytosis.
Mucopolysaccharidoses comes from abnormalities in
the turnover of keratin sulfate, heparin, and dermatan
sulfate and Fabry disease results from alpha-galactosyl
sphingolipids oligosaccharides. GM1 gangliosidosis is
the results of a beta-galactosidase deficiency and the
accumulation of ceramides caused by an acid
ceramidase deficiency that causes Farber disease. GM2
gangliosidosis as Tay-Sachs disease (an alpha subunit of
beta hexosaminidase deficiency); Sandhoff disease (a
beta subunit of beta-hexosaminidase deficiency); and
the GM2 AB variant are other types of lysosomal
storage diseases. The complex lipid of gangliosides is

found predominantly in gray matter in the brain. Classic
forms of gangliosidoses present in early and late infancy
and are usually fatal during these periods. In the early
infantile form of GMJ1, gangliosidoses dysmorphic
features may present at birth and often
hepatosplenomegaly is noted ' .

Fabry disease is transmitted as X-linked traits
however most neurometabolic disorders are transmitted
in autosomal recessive inheritance. Fortunately, enzyme
replacement therapy (ERT) for Fabry disease is
available. The early timing of therapeutic interventions
is of utmost importance because of the limited
regenerative capacity of the brain *.

Targeted sequencing is an appealing approach to
implement in routine diagnostic strategy, given its low
sequencing costs and short sequencing time %27,
However, a good coverage must be ensured and, when
this is not reached, validation by Direct sequencing
needs to be performed on the proband and on the
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parents as final step *> Moreover, the possibility to fill
the gaps in the panel design must be guaranteed,
especially in case of strong suspicion for a specific
disease '°. Sanger sequencing still remains a reliable
sequencing technique, and it should be considered an
important support to NGS approaches, especially for
confirmation of variants with a coverage below the good
coverage threshold™. Therefore, each laboratory should
have a diagnostic flow chart, providing appropriate
molecular genetic tools to address the clinical suspicion
7 We believe that the application of the panel or, in a
near future, of a WES or WGS analysis will be the first
or one of the first steps in diagnostic route, supported by
a thorough phenotyping of the patients *°. A tight
collaboration between clinics and laboratory could
increase the vyield of the diagnostic process of
neurometabolic disorders.

Genomics takes a comprehensive view that
implicates all the genes within an organism, including
protein-coding genes, RNA genes, cis- and trans-
elements, etc. It is a data-driven science involving the
high-throughput technological development of next-
generation sequencing (NGS) that generates the entire
DNA data of an organism. These techniques include
whole genome sequencing (WGS), whole exome
sequencing (WES), and transcriptomic and proteomic
profiling **%. With the recent rapid accumulation of
these omics data, increased attention has been paid to
bioinformatics and machine learning (ML) tools with
established superior performance in several genomics
implementations .

1. The Power of High-Throughput Omics

High-throughput technologies, collectively known as
‘omics’, allow for the simultaneous measurement of
thousands of molecules in a single biological sample
(blood, urine, CSF, or tissue). This shifts diagnosis from
searching for a single missing enzyme to identifying an
entire molecular signature of the disease.

1.1 Genomics and Transcriptomics

Whole Exome Sequencing (WES) & Whole Genome
Sequencing (WGS) rapidly identify mutations in all
known disease-causing genes and can uncover novel
genetic variants. WES/WGS drastically reduces the
diagnostic odyssey for NMS patients, whose clinical
symptoms often overlap with common
neurodevelopmental disorders.

Transcriptomics (RNA-Seq) meeasures the expression
levels of all RNA molecules. This helps in
understanding the functional consequence of a
mutation—for example, if a variant causes abnormal
splicing or reduced expression of a critical enzyme.

1.2 Metabolomics and Proteomics

Metabolomics technique % measures small
molecule metabolites (e.g., amino acids, organic acids,
lipids, GAGSs). This is arguably the most critical high-
throughput technology for NMS, as the accumulation of
specific, undegraded metabolites (like heparan sulfate in

Sanfilippo syndrome) is the direct cause of the
pathology. High-resolution mass spectrometry (HRMS)
enables the simultaneous detection and quantification of
hundreds of these molecules.

Proteomics approach % measures the quantity and
modification of all proteins. For NMS, this can reveal
downstream effects, such as elevated inflammatory
proteins (cytokines) or changes in lysosomal proteins
due to storage stress.

2. ML/ALI in the Diagnostic Pipeline

The immense volume and complexity of high-
throughput data generated by ‘omics (terabytes of
genomic data, hundreds of metabolites per sample)
require sophisticated computational tools. Al and ML
algorithms are essential for extracting meaningful,
actionable insights from this noise %,

2.1 Pattern Recognition and Classification

ML models, such as Support Vector Machines
(SVM) and Random Forests, excel at binary
classification (Disease vs. Healthy) or multi-class
classification (Subtype A vs. Subtype B). Al
automatically identifies the most important ‘features'
(e.q., a specific ratio of three metabolites plus two gene
expression values) that distinguish a disease state,
effectively simplifying complex biological reality into a
diagnostic signature .

ML models can be trained on improving newborn
screening data (dried blood spots) to differentiate
between true positive cases and common false positives,
thus reducing unnecessary follow-up tests and anxiety
for families.

2.2 Biomarker Discovery and Validation

Many NMS lack effective, non-invasive biomarkers,
especially those reflecting CNS involvement. ML is
transforming this search, multi-Omics integration by
using the Al models use techniques like Factor
Analysis or Deep Neural Networks to integrate
different ‘omics layers (e.g., genomic variants, plasma
metabolites, and clinical symptoms) to discover novel
panels of biomarkers that are more sensitive and
specific than single-molecule markers. For example;
identifying a panel of neuro-inflammatory cytokines
(from proteomics) combined with a specific urine GAG
profile (from metabolomics) that together indicate
advanced stages of neurodegeneration in MPS 111 %,

ML analyzes sensor data (wearable devices, sleep
monitors) to quantify clinical features like gait,
hyperactivity, or sleep disruption, generating digital
biomarkers that correlate with disease progression and
therapeutic response.

Analysis of  Neurometabolic
Interactions Using GeneMANIA

The GeneMANIA database * was utilized as a key
bioinformatic tool to systematically explore and
visualize the functional associations and interaction
networks among the genes and proteins implicated in

Disorder Gene
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the ten Neurometabolic Disorders (NMDs) detailed in

Table 1.

This approach provides a contextual framework for

understanding the molecular complexity underlying
heterogeneous  syndromes. The  resulting

these

comprehensive network, presented in Figure 1,
illustrates various modes of interaction, including;
physical interactions, co-expression, co-localization,
genetic interactions, and pathway membership.
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Fig. 1: GeneMANIA analysis showing the functional associations among the genes and proteins related to the
ten Neurometabolic disorders (NMDs) in Table 1. Represent integrated network evidence derived from physical
interactions, co-expression, co-localization, genetic interactions, and pathway membership.
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The construction of this network serves to identify
key hub genes that share interaction partners across
multiple NMDs. This insight is crucial for revealing
shared molecular mechanisms and identifying potential
convergence points in the disease pathology, which may
suggest common diagnostic markers or therapeutic
targets across seemingly distinct disorders.

The data derived from the GeneMANIA analysis,
visually represented in Figure 1, provides a powerful,
evidence-based foundation for interpreting the
functional relationships of the proteins associated with
the NMDs listed in Table 1, thereby enriching our
understanding of their underlying etiology.

Egyptian Experiences

Our team's research has centered on leveraging
advanced computational and molecular methodologies
to enhance the diagnosis and therapeutic understanding
of rare genetic disorders, with a specific focus on
lysosomal storage diseases. Our core contribution to
Sanfilippo syndrome research 3% lies in the
development and validation of a novel gene-specific
Bayesian Gaussian mixture achine learning (ML) model
to predict the missense variant pathogenicity of
Sanfilippo syndrome *. This hybrid computational tool
is specifically designed to accurately predict the
pathogenicity of novel missense variants across all
known subtypes of the syndrome. This predictive
capability is critical for accelerating molecular diagnosis
and clarifying the clinical significance of variants of
uncertain significance (VUSs) identified during high-
throughput genetic screening.

We have conducted comprehensive studies
providing genetic insights into Fabry disease *°.
Furthermore, our team has successfully secured
approval and executed therapeutic experiments aimed at
evaluating and validating potential treatment strategies
for this X-linked lysosomal storage disorder.

Our work extends beyond these specific disorders,
encompassing several other genetic conditions ¥ =% A
primary strategic focus moving forward is the expanded
application of Artificial Intelligence (Al) and Machine
Learning (ML) techniques. This integration will be
instrumental in Improving Diagnostic Accuracy by
utilizing AI/ML for the analysis of complex genetic and
clinical data to significantly increase the precision and
speed of molecular diagnosis across a broader spectrum
of rare diseases.

CONCLUSION

The convergence of high-throughput ‘omics and
AIl/ML is transforming the diagnosis of neurometabolic
syndromes. By moving beyond single-gene or single-
enzyme defects to interpret holistic, multi-layered
molecular signatures, these technologies are paving the
way for faster, more accurate diagnoses, better patient
stratification, and the discovery of novel therapeutic
targets. This ensures that life-saving interventions can
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be delivered at the earliest possible stage, significantly
improving outcomes for children affected by these rare
disorders.

Applying computational models to screen, prioritize,
and predict the efficacy of novel compounds, thereby
streamlining the development and personalization of
future therapeutic interventions. This ongoing research
portfolio demonstrates our commitment to transforming
the field of rare disease diagnostics and treatment
through the strategic convergence of genomics,
bioinformatics, and artificial intelligence.
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