Egyptian Journal of Aquatic Biology & Fisheries Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt. ISSN 1110 – 6131

Vol. 29(6): 773 – 787 (2025) www.ejabf.journals.ekb.eg

Adsorption of Some Heavy Metals and Dyes in Aquatic Environment by Using Sludge Biochars Obtained at Different Pyrolysis Temperatures

Mohammed Kadhem Abid^{1, 2*}, Ghassan Hadi Kttafah³, Kareem Talib Alhusainy⁴

¹Environmental Research Group, Scientific Research Center, Al-Ayen Iraqi University, Thi-Qar,Iraq ²Department of Pathological Analysis, College of Applied Medical Sciences, Shatrah University, Iraq ³Biology Department, Mohsen Al-Hakim School, Directorate of Education, Thi-Qar, Ministry of Education, Iraq

⁴Biology Department, Al-Mutafawiqeen Secondary School in Shatra, Directorate of Education, Thi- Qar, Ministry of Education, Iraq

* Corresponding author: Mohammedk.A.K@alayen.edu.iq

ARTICLE INFO

Article History:

Received: Aug. 25, 2025 Accepted: Nov. 1st, 2025 Online: Nov. 17, 2025

Keywords:

Adsorption, Sludge biochars, Heavy metals, Dyes

ABSTRACT

The complex mixture of organic matter, metals, and potentially harmful substances found in sewage sludge, a wastewater treatment byproduct, presents risks to human health and can foster antibiotic resistance. Numerous studies have investigated the influence of pyrolysis temperature on biochar characteristics and performance. Investigating the effects of pyrolysis temperature on sludge-derived biochar's properties and the fate of heavy metals and azodyes throughout the process is the specific aim of this study. This reduction primarily stems from the volatilization of carbon, the major constituent, at temperatures around 600°C. In experiments evaluating contaminant removal, biochar produced at 500°C (Biochar 500) was used at a concentration of 5g/L, with a contact time of 30 minutes, an average solution temperature of 23.4°C, and an average pH of 7.94. Under these conditions, the average removal percentage of trace metals ranged from 80.0% for selenium (Se) and arsenic (As) to 99.79% for cobalt (Co). The removal efficiency for methylene blue (MB) ranged from 99.69 to 99.96%. Optimal removal of the harmful substances was achieved with a specific adsorbent dosage (5mg/L), a controlled solution pH, and a 30-minute contact time. The study demonstrates that even small amounts of the adsorbent are highly effective in removing MB from water. The Langmuir adsorption model predicted a maximum MB adsorption capacity of 965mg/g, which aligns with experimental results obtained from using MB to treat wastewater contaminated with methylene blue.

INTRODUCTION

Wastewater treatment generates significant volumes of sewage sludge, a complex mixture of organic matter, nutrients, heavy metals, pathogens, and antibiotics. This composition results in considerable environmental and health challenges. The ongoing trends of urbanization and population growth are intensifying the risks associated with this

waste stream, necessitating effective management. A critical issue is the potential for antibiotic-resistant microorganisms in the sludge to spread disease and worsen the global antibiotic resistance crisis, especially when the sludge is incorporated into agricultural soils. Furthermore, the presence of heavy metals and other toxins poses a risk of contaminating soil and water, impeding safe disposal and beneficial reuse (**Akdag**, *et al.*, **2018**; **Ateshan**, *et al.*, **2019**). Pyrolysis offers a promising solution by converting sewage sludge into biochar, a stable carbon form that can store carbon in soil, promoting carbon sequestration and reducing greenhouse gas emissions. Higher pyrolysis temperatures intensify dehydration, decarboxylation, and decarbonylation reactions, lowering the hydrogen-to-carbon (H/C) and oxygen-to-carbon (O/C) ratios in the resulting biochar, which are critical indicators of its chemical composition and reactivity (**Ateshan**, *et al.*, **2020**; **Akpasi**, *et al.*, **2023**).

Biochar with lower hydrogen-to-carbon (H/C) and oxygen-to-carbon (O/C) ratios exhibits greater charring and stability, which in turn makes it more beneficial for soil improvement and carbon sequestration. By controlling pyrolysis conditions and selecting specific feedstocks, these H/C and O/C ratios can be manipulated to tailor biochar properties for diverse applications, including soil amendment, water treatment, and carbon sequestration. Notably, studies suggest that biochar with an H/C ratio under 0.3 is effective in reducing N₂O emissions (**Dinc** *et al.*, **2020**; **Ateshan & Misnan**, **2025a**), and biochar with a high proportion of aromatic carbon and low O/C and H/C ratios proves most effective for sequestering carbon in soil (**Goktepeli** *et al.*, **2023**).

The pyrolysis temperature exerts a substantial influence on the physical, chemical, and functional attributes of biochar, thereby enabling its customization for specific intended uses. As an illustration, an escalation in pyrolysis temperature results in an expansion of biochar's specific surface area and micropore volume. For instance, biosolids-derived biochar exhibited a progression in specific surface area from 48.25 m²•g⁻¹ to 65.74 m²•g⁻¹ and in micropore volume from 0.0313 cm³•g⁻¹ to 0.0369 cm³•g⁻¹ upon increasing the temperature from 700 to 900 °C (**He** *et al.*, **2018**; **Goktepeli**, **2023**).

As pyrolysis temperatures increase from 400 to 800°C, biochar derived from waste biomass experiences an increase in both BET surface area and zeta potential. This enhancement in surface properties and thermal stability is a direct consequence of higher temperatures. The chemical characteristics of biochar are also temperature-dependent. Higher pyrolysis temperatures tend to lower yields and decrease nitrogen content, while simultaneously increasing carbon concentration and aromaticity. This shift occurs because nitrogen compounds volatilize, and the intensified charring process promotes carbon retention and reduces water-soluble carbon. Temperature also impacts biochar's acid-base properties; higher temperatures reduce acidic functional groups and increase basic functional groups, thereby influencing its adsorption capacity. The optimal pyrolysis

temperature is not universal but depends on the biochar's intended use. For instance, biochar produced at lower temperatures (around 400°C) is more suitable as a microbial carrier, beneficial for agricultural applications like plant growth and nitrogen fixation. Pyrolysis above 400°C effectively inactivates pathogens and antibiotic-resistant bacteria, making the biochar safer. A key challenge is therefore to match the pyrolysis temperature to the specific biochar application, which often requires monitoring biochar properties to achieve the desired characteristics (**Kane** *et al.*, 2022; **Ateshan & Misnan**, 2025b).

Pyrolysis offers a promising and viable method for sludge recycling. This process effectively reduces sludge volume, eliminates pathogens, and converts organic components into valuable bio-oil, pyrolysis gas, and biochar. Sludge-derived biochar, a nutrient-rich, porous material containing nitrogen, phosphorus, and potassium, shows potential as a soil amendment. When applied, it can enhance soil properties by lowering bulk density, increasing porosity and water retention, improving nutrient retention, and adsorbing pollutants, all of which contribute to better plant growth. The effectiveness of sludge-derived biochar in revitalizing degraded soils is significantly impacted by its elemental makeup, physicochemical properties, and pore structure, necessitating further detailed investigation into these aspects. Moreover, the presence of heavy metals in sludge-derived biochar requires research to understand and mitigate environmental release risks (Ateshan, 2025). Ultimately, the pyrolysis temperature employed is a key factor in shaping the final characteristics of the biochar produced (Li et al., 2022).

Methylene blue (MB), a widely used textile dye, also serves medical purposes as a stain, antiseptic, and diagnostic agent. However, its extensive discharge into water bodies, estimated at 85,000 tons annually along with other dyes and pigments, poses a significant environmental challenge and a threat to human and animal health, causing symptoms like irritation and gastrointestinal distress. This necessitates its removal from wastewater, making it a critical area for environmental and public health efforts. MB is often used in research to evaluate adsorption and photocatalysis processes. A key challenge in these studies is the aggregation of MB molecules in solution, a process influenced by concentration and temperature. This aggregation can affect process efficiency, as adsorbents optimized for MB monomers may prove ineffective against larger aggregates due to pore size limitations (Al-Wabel et al., 2023). Spectroscopic methods for determining methylene blue (MB) concentration are significantly hindered by its aggregation, as various MB species display differing optical spectra. The self-aggregation of MB in water, leading to dimer formation, has been thoroughly investigated. These studies typically aim to establish the visible light absorption spectra of monomers and dimers, as well as the thermodynamic parameters governing their equilibrium (predominantly the equilibrium constant at room temperature, and less often, enthalpy and

entropy). However, our prior findings indicate considerable uncertainty within the published molar attenuation coefficients and thermodynamic parameters. This uncertainty is attributed to the common but flawed assumption that the monomer's spectroscopic behavior is temperature-independent. This assumption is incompatible with the observed phenomenon where the monomer spectrum's maximum attenuation coefficient, obtained through extrapolation at extremely low MB concentrations $(6.3 \times 10^{-7} \text{ M})$, diminishes slightly with increasing temperature (**Amin** *et al.*, **2024**). This study investigates the influence of pyrolysis temperature on sludge-derived biochar characteristics (**Haider**, **2025**). It further analyzes how pyrolysis temperature affects the behavior and transformation of heavy metals and azodyes during the pyrolysis process."

MATERIALS AND METHODS

Sampling

From a wastewater treatment plant in west Baghdad, 2000g of fresh sewage sludge was collected. The samples were then dried at 85°C for 2 hours and cooled to room temperature.

• Pyrolysis trials

The sewage sludge samples were pyrolyzed at different temperatures. The first sample was pyrolyzed at 300° C; the second was conducted at 400° C, the third at 500° C, finally the fourth sample pyrolysis was conducted at 600° C. The pyrolysis time was 3.0° hours, and the heating rate was 25° C/ min; the pyrolysis process was conducted using electric furnace (JSMF-120HT, Korea) in nitrogen gas environment to inhibit the oxygen.

• Chemical characteristics of sludge and biochar (APHA, 2024)

- The Thermo Scientific FLASH 2000 CHNS/O Analyzers (USA) were employed to determine the elemental analysis (CHNS) of the sludge and biochar.
- pH values were determined for the prepared samples (sample/water, 1:20, w/v), and the analysis were conducted using pH meter (PHS-25 Bench Top PH Tester).
- The BET (Brunauer-Emmett-Teller) surface area, pore size of the samples was analyzed with Analyzer (AMI Micro-300, UK).
- Trace metals (Ni, Cr, Cd, Pb, Zn, Se, As, Fe, Mn, Co, Cu) were determined using ICP/MS (ICP-MS Agilent 7500ce Inductively Coupled Plasma Mass Spectrometer, USA); the analysis process was conducted according to **EPA** (2007).

• Water analysis (APHA, 2024)

- Trace metals (Ni, Cr, Cd, Pb, Zn, Se, As, Fe, Mn, Co, Cu) were determined using ICP/MS (ICP-MS Agilent 7500ce Inductively Coupled Plasma Mass Spectrometer, USA); the analysis process was conducted according to **EPA** (2007).
- Methylene blue dye (MB) was determined using $\lambda = 665$ nm a Jenway 6300 UV/VIS spectrophotometer (Jenway 6300, USA).

• Statistica analysis

SPSS 19.0 was used for data analysis in the present study.

RESULTS AND DISCUSSION

Suldge and biochar

The results obtained from the elemental analysis of sludge and biomass CHNS for sludge and biomass were monitored. The percentages of elements decreased with increasing pyrolysis temperature, as the percentages of carbon decreased from 27.0 to 18.4% in the case of sludge and biomass at 600°C, as is the case with the elements hydrogen, nitrogen and sulfur, as shown in Table (1) and Fig. (1).

While similar observations have been made in other studies, they often focused on shorter residence times. A wide array of factors, including pyrolysis temperature, gas residence time, feed rate, particle size, reaction atmosphere, sludge composition, and catalysts, all impact pyrolysis yield and product distribution. The inherent variability in sewage sludge composition contributes to differing pyrolysis yields and product characteristics. Activated sludge mainly consists of proteins, carbohydrates, and lipids, which decompose at temperatures of 200-635°C, 209-800°C, and 164-497°C, respectively, falling within the temperature range used in this study. The sludge also contains celluloses, hemicelluloses, and lignin, which decompose thermally between 450-600°C. Other studies have reported comparable gas yields, around 34 wt%, when subjected to high temperatures (850°C) and residence times ranging from 1 to 2 hours. The resulting syngas, primarily a mixture of CO₂, CO, H₂, and CH₄ (constituting up to 90 vol%), also contains hydrocarbons, nitrogen, and other minor constituents. Higher temperatures generally lead to a reduction in CO₂ content and an increase in the volumetric percentage of H₂, indicating that temperature significantly influences the syngas composition (Ali, et al., 2013; Al-Addous, et al., 2017).

Table 1. Characteristics of sludge and biochar

No	Parameter	Elemental analysis (%)				
	Sludge & Biochar	С	Н	N	S	
1	Sludge	27.2	3.66	4.8	0.28	
2	Biochar (300 °C)	23.8	2.14	3.9	0.19	
3	Biochar (400 °C)	21.6	1.89	3.3	0.16	
4	Biochar (500 °C)	19.6	1.64	2.8	0.12	
5	Biochar (600 °C)	18.4	1.1	2.24	0.09	

The results for the biocar samples show that the pH increases with increasing pyrolsis temperature from 300 to 600 degrees Celsius, where it increases from 7.46 to 8.6 and also the ash percentages increases in biochar samples with increasing pyrolysis temperature from 300 to 600 °C, as shown in Table (2) and Fig. (2).

Table 2. Characteristics of sludge and biochar

No	Parameter Sludge & Biochar	pH (-)	Ash (%)	H/C (-)
1	Sludge	7.05	47.2	0.13
2	Biochar (300 °C)	7.46	58.1	0.09
3	Biochar (400 °C)	7.9	68.2	0.09
4	Biochar (500 °C)	8.3	71.6	0.08
5	Biochar (600 °C)	8.6	76.3	0.06

The results for the biocar samples show that the surface area increases with increasing pyrolsis temperature from 300 to 600 degrees Celsius, where it increases from 7.31 to 11.23m²/g and also the pore size and pore width increase in biochar samples with increasing pyrolysis temperature from 300 to 600°C, as shown in Table (3) and Fig. (3).

Table 3. Characteristics of sludge and biochar

No	Parameter Sludge & Biochar	Surface area (m²/g)	Pore size (cm ³ /g)	Pore width (nm)
1	Sludge	4.12	0.011	58.4
2	Biochar (300 °C)	7.31	0.038	24.7
3	Biochar (400 °C)	8.86	0.047	21.2
4	Biochar (500 °C)	9.82	0.051	17.6
5	Biochar (600 °C)	11.23	0.069	14.1

Table (4) shows the levels of trace metals, including Ni, Cr, Cd, Pb, Zn, Se, As, Fe, Mn, Co, and Cu, in both sludge and biochar samples. The concentration of these metals decreased with increasing pyrolysis temperature. An increase in pyrolysis temperature led to a loss of organic mass, which in turn resulted in the enrichment of heavy metals in the biochar. The concentrations of various heavy metals in the biochar derived from sewage sludge (SSB) were higher than those found in the original sewage sludge.

Theoretically, metals such as Cu, Pb, Cr, Ni, and Zn are not expected to be released at temperatures up to 750°C, given the vapor pressures of their typical compounds (sulfides, carbonates, hydroxides, and organically bound forms). However, the high gas velocities produced during pyrolysis can entrain metal-containing particles, necessitating the use of effective particle collection systems. In contrast, cadmium (Cd) is known to volatilize at a pyrolysis temperature of 625°C. Studies have demonstrated that extending the residence time from 1 to 4 hours at this temperature reduced the Cd content in carbonized sludge from 52 to 18%. Furthermore, a temperature of 750°C with a 1-hour residence time led to 95% Cd evaporation. Other research has indicated that higher pyrolysis temperatures reduce the concentration of heavy metals in biochar while simultaneously increasing their concentration in the evolved gas (Alyun et al., 2018; Chen et al., 2021).

Table 4. Trace metals of sludge and biochar

No	Sludge & Biochar Parameter	Unit	Sludge	Biochar (300 °C)	Biochar (400 °C)	Biochar (500 °C)	Biochar (600 °C)
1	Ni	mg/kg	1.38	0.48	0.33	0.24	0.21
2	Cr	mg/kg	3.41	0.52	0.26	0.19	0.11
3	Cd	mg/kg	0.17	0.14	0.12	0.093	0.058
4	Pb	mg/kg	0.46	0.24	0.13	0.085	0.047
5	Zn	mg/kg	38.6	24.8	16.2	11.3	7.2
6	Se	mg/kg	0.06	0.02	0.01	0.01	0.01
7	As	mg/kg	0.074	0.03	0.01	0.01	0.01
8	Fe	mg/kg	112.2	71.4	33.1	24.3	19.6
9	Mn	mg/kg	14.2	6.6	3.4	2.1	1.3
10	Со	mg/kg	0.042	0.03	0.01	0.01	0.01
11	Cu	mg/kg	23.5	17.4	13.5	9.4	5.5

Industrial wastewater treatment

In the present study, the biochar samples were evaluated for using in trace metals removal from industrial textile wastewater. The biochar samples used in the experiments was the biochar 500°C (5 g/l dose), and the contact time was 30min and the solution temperature in average was 23.4°C, and the pH was 7.94 in average. The removal

percentage of trace metals in average ranged from 80.0% in case of Se, As to 99.79% in case of Co, as shown in Table (5) and Fig. (4).

Table 5. Average values of trace metals of industrial wastewater & treated wastewater that treated by biochar (500°C)

	wastewater that treated by biochai (500 C)						
No	Samples	Unit	Raw industrial wastewater	Treated	Removal (%)		
	Parameter	Omt	(textile industries)	wastewater	1101110 (111 (70)		
1	Ni	mg/l	0.031	0.003	90.32		
2	Cr	mg/l	0.075	0.013	82.67		
3	Cd	mg/l	0.006	0.001	83.33		
4	Pb	mg/l	0.15	0.006	96.00		
5	Zn	mg/l	0.23	0.03	86.96		
6	Se	mg/l	0.005	0.001	80.00		
7	As	mg/l	0.005	0.001	80.00		
8	Fe	mg/l	0.43	0.062	85.58		
9	Mn	mg/l	0.02	0.001	95.00		
10	Co	mg/l	1.89	0.004	99.79		
11	Cu	mg/l	0.096	0.003	96.88		

In the present study, the biochar samples were evaluated for using in methylene blue dye (MB) removal from industrial textile wastewater. The biochar samples used in the experiments was biochar 300°C (5g/1 dose), biochar 400°C (5g/1 dose), biochar 500°C (5g/1 dose), and biochar 600°C (5g/1 dose), and the contact time was 30min and the solution temperature in average was 23.4°C, and the pH was 7.94 in average. The removal percentage of MB in average ranged from 99.91 to 99.96%, as shown in Table (6) and Fig. (5).

Biochar has garnered significant interest as a methylene blue (MB) adsorbent due to its lower cost and abundant raw material sources compared to activated carbon. Studies have demonstrated the effectiveness of HNO3-modified biochar derived from reed biomass (ABC) for MB adsorption. The adsorption mechanisms of biochar derived from diverse feedstocks, including pine wood, pig manure, and cardboard, have been the subject of research. Additionally, the efficacy of hickory biochar, pyrolyzed at varying temperatures, in MB removal has been assessed. The adsorption mechanism of biochar originating from the co-pyrolysis of solid waste has also been investigated. While these investigations underscore the viability of biochar from solid waste biomass, a critical limitation often observed is extremely low maximum adsorption capacities, thereby posing a significant challenge in developing high-capacity biochar from novel raw materials (Rafiq et al., 2016; Tomczyk et al., 2020).

Table 6. Average values of MB of industrial wastewater & treated wastewater

	Samples	Unit	Raw industrial wastewater	Treated	Removal (%)
No	No Treated by:		(textile industries)	wastewater	Kemovai (70)
1	Biochar (300 °C)	mg/l		0.093	99.69
2	Biochar (400 °C)	mg/l	20.0	0.071	99.76
3	Biochar (500 °C)	mg/l	29.8	0.026	99.91
4	Biochar (600 °C)	mg/l		0.013	99.96

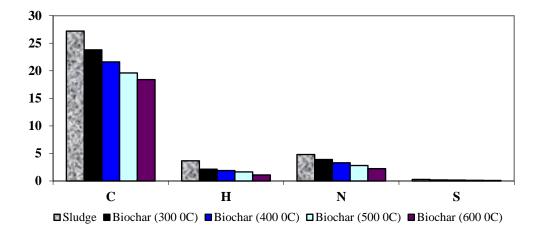


Fig. 1. Characteristics of sludge and biochar (C, H, N, S %)

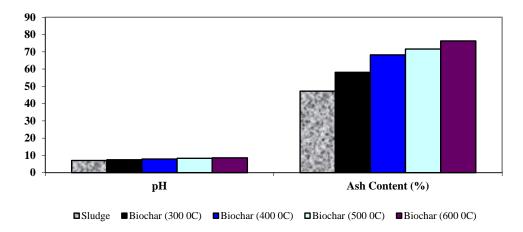
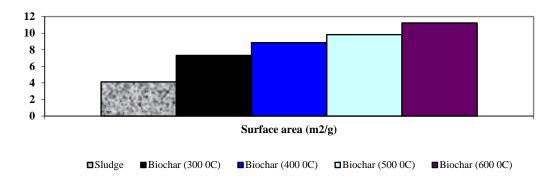
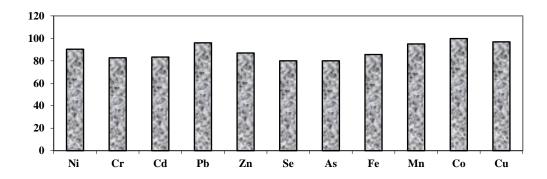
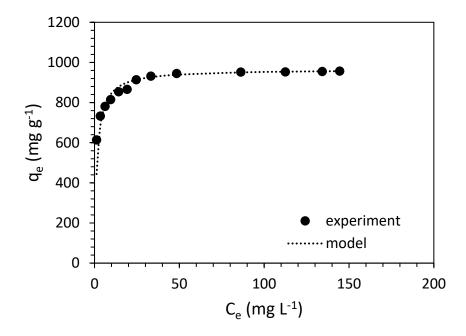
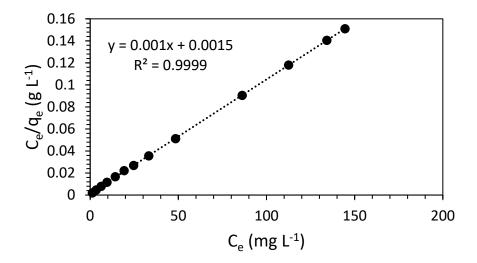




Fig. 2. Characteristics of sludge and biochar (pH, Ash Content %)

Fig. 3. Characteristics of sludge and biochar (Surface area m²/g)

Fig. 4. Average values of trace metals in mg/l of industrial wastewater & treated wastewater that treated by biochar (500°C)


Fig. 5. Average values of MB of industrial wastewater & treated wastewater


Linear regression of isotherm models

Linear regression, a widely used isotherm fitting method, employs the linear least-squares approach. This technique, leveraging the coefficient of determination, creates structurally adaptable isotherm equations, facilitating easy fitting to experimental data. Specifically, the Langmuir isotherm model can be linearized into six distinct forms of simple linear regression, each tailored to different parameters. A core theoretical assumption is that the independent variable, representing the experimental input, is free from error. However, in practice, rearranging the regression equation (numerator and denominator) can affect the correlation results. Consequently, variations in the fitted equation's parameters can be used to identify the most appropriate error distribution through comparative analysis (Al-Husseini & Al-Salman, 2020; Xia et al., 2020; Azemi et al., 2021; Zhao, et al., 2021).

MB Removal Efficiency:

Observed removal efficiencies of methylene blue (MB) ranged from 99.69% to 99.96%. The highest removal efficiency, 99.96%, was achieved under the optimized conditions of pH 7.94, a contact time of 30 minutes, an initial MB concentration of 5.8mg/L, and an adsorbent dosage of 5mg/L (**Abdullah** *et al.*, **2020**; **Al Sailawi** *et al.*, **2020**; **Abdullah** *et al.*, **2022**). The maximum adsorption capacity was 965mg/g, which indicates that a small amount of the adsorbent was sufficient to effectively remove MB from the aqueous solution, as illustrated in Fig. (6).

Fig. 6. Langmiur adsorption isotherm of MB from wastewater using biochar (Biochar 600^oC) (Linear model)

CONCLUSION

MB removal efficiency varied from 99.69% to 99.96%. The highest removal efficiency, 99.96%, was observed under optimal conditions: pH 7.94, a contact time of 30 minutes, an initial MB concentration of 5.8 mg/L, and an adsorbent dosage of 5 mg/L. Furthermore, the maximum adsorption capacity of 965mg/g demonstrates that even a small quantity of the adsorbent can effectively remove a substantial amount of MB from aqueous solutions. These findings highlight the efficacy of the biochar preparation method, the stability of the resulting particles, and their potential for industrial wastewater purification and environmental remediation. Analysis of sludge and biochar samples revealed that the concentrations of trace metals (Ni, Cr, Cd, Pb, Zn, Se, As, Fe, Mn, Co, Cu) generally decreased with increasing pyrolysis temperature. Biochar samples produced at higher pyrolysis temperatures exhibited a superior capacity for metal removal.

REFERENCES

Abd Askar, A.; Abdulhasan, M., & Kamal, F. (2025). Transforming Wastewater: The Power of Non-Living Fungal Biomass to Remove Heavy Metals. Bulletin of Pharmaceutical Sciences Assiut University, 48(1), 619-

628.

- **Abdullah, M. S. and Kttafah, G. H.** (2020). Identification of the Most Common Dust Fungi at Universiti Pendidikan Sultan Idris, Malaysia. Eurasian Journal of Chemistry, 14(3), 1-8.
- **Abdullah, M. S.; Kttafah, G. H. and Nasuruddin, M. H.** (2022). Allergenic Potential and Cross-Reactivity of Fungal Species Isolated from the Indoor Environment. Jurnal Teknologi (Sciences & Engineering), 84(3), 47-57.
- **Akdag, A.S.; Atak O, Atimtay A.; Sanin FD.** (2018) Co-combustion of sewage sludge from different treatment processes and a lignite coal in a laboratory scale combustor, Energy 158:417–426.
- **Akpasi S, Anekwe, M; Adadeji J.; Kiambi S.** (2023) Biochar development as a catalyst and its application. In: Biochar—productive technologies, properties and applications. https://doi.org/10.5772/intechopen.105439.
- Al Sailawi, H. A.; Misnan, R., Yadzir, Z. H. M.; Abdullah, N.; Bakhtiar, F.; Arip, M. and Ateshan, H. M. (2020). Effects of Different Salting and Drying Methods on Allergenicity of Purple Mud Crab (*Scylla tranquebarica*). Indian Journal of Ecology, 47(4), 1173-1179.
- **Al-Addous M.; Alnaief M, Class C, Nsair A.; Kuchta K.; Alkasrawi M.** (2017) Technical possibilities of biogas production from olive and date waste in Jordan. BioResources 12(4):9383–9395.
- **Al-Husseini, K.T and Al-Salman, I.M.A** (2020). Quarterly Variation and their Impact on Phytoplankton Dynamics in the Gharaf River Environment Southern Iraq. J. Plant Archives, vol.20 (supplement-1):1354-1360.
- **Ali, M.F.; Qureshi MS.** (2013) Transportation fuels from catalytic co-pyrolysis of plastic wastes with petroleum residues: evaluation of catalysts by thermogravimetric analysis. Pet Sci Technol. https://doi.org/10.1080/10916466.2010.551239.
- **Altun. N.E.** (2018) Yerli Enerji Kaynaklarımızdan Fosil Yakıt-Biyokütle Bazlı Hibrit Yakıt Biriketi Eldesi. Ankara.
- **Al-Wabel M.I.; Al-Omran A.; El-Naggar AH.; Nadeem M. and Usman ARA** (2013) Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour Technol. https://doi.org/10.1016/j.biortech.2012.12.165.
- American Public Health Association, American Water Works Association, Water Pollution Control Federation, & Water Environment Federation. (2024). Standard methods for the examination of water and wastewater (Vol. 24). American Public Health Association.
- Amin N.; Khan Z, Razzaq A.; Ghauri M.; Khurram S.; Inayat A.; Jaffery M.; Hameed Z. (2024) Municipal solid waste air gasification using waste

- marble powder as a catalyst for syngas production. J. Energy Inst., 113:101496.
- **Ateshan, H.** (2025). Study of the Water Pollution in the Euphrates River near the Wastewater Treatment Station in the City of Nasiriyah, Iraq. *Egyptian Journal of Aquatic Biology and Fisheries*, 29(5), 3437-3450. doi: 10.21608/ejabf.2025.387414.5905.
- **Ateshan, H. and Misnan, R.** (2025a). Estimating the Concentrations of Toxic Elements and Contaminated Bacteria of Groundwater in the City of Al-Muthanna/Iraq. Egyptian Journal of Aquatic Biology and Fisheries, 29(2), 1745-1757. doi: 10.21608/ejabf.2025.421095.
- **Ateshan, H. and Misnan, R.** (2025b). Estimation of Heavy Metal Concentrations in Euphrates River Water and Sediments in Thi Qar City. Egyptian Journal of Aquatic Biology and Fisheries, 29(2), 1759-1770. doi: 10.21608/ejabf.2025.421097.
- Ateshan, H. M.; Misnan, R., Sinang, S. C. and Alsailawi, H. A. (2019). Bioaccumulation of heavy metals in orange mud crab (*Scylla olivacea*) from Sungai Merbok, Kedah. International Journal of Research in Pharmaceutical Sciences, 10, 654-658.DOI: 10.26452/ijrps.v10i1.1897.
- **Ateshan, H. M.; Misnan, R.; Sinang, S. C. and Koki, I. B.** (2020). Evaluation of Water Pollution and Source Identification in Merbok River Kedah, Northwest Malaysia. Malaysian Journal of Fundamental and Applied Sciences, 16, 458-463. DOI: https://doi.org/10.11113/mjfas.v16n4.1735.
- Azemi, N. F. H.; Misnan, R.; Keong, B. P.; Mokhtar, M.; Kamaruddin, N.; Fah, W.C. and Ateshan, H.M. (2021). Molecular and Allergenic Characterization of Recombinant Tropomyosin from Mud Crab *Scylla olivacea*. Molecular biology reports, 48(10), 6709-6718.
- Chen, X.; Li, F.; Su, S.; Chen, H.; Zhang, J. and Cai, D. (2021) Efficient honeycomb-shaped biochar anodes for lithium-ion batteries from Eichhornia crassipes biomass. Environ Chem Lett. https://doi.org/10.1007/s10311-021-01221-y.
- **Dinc, G.; Yel, E.** (2020) Alternative approach for safe disposal of dry olive pomace: pyrolysis with/without physical preprocessing. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-019-02612-z.
- **Goktepeli, G.** (2023) Zeytin ve mermer isleme atiklari simbiyozu ile ileri dönüsüm yaklaşımları. PhD Thesis, Konya Technical University.
- **Goktepeli, G. and Yel, E.** (2023) Marble sludges as environmentally friendly catalyst in olive pomace pyrolysis: effect of sludge composition on pyrolysis product distribution and biochars. Environ Res Technol. https://doi.org/10.35208/ert.1209639.
- Haider, M.A. (2025) Bioaccumulation of some heavy metals in three fish species

- Adsorption of Some Heavy metals and Dyes in Aquatic Environment by Using Sludge Biochars
 Obtained at Different Pyrolysis Temperatures
 - in the Euphrates River waters in Nasiriyah, Iraq. South Asian J Agric Sci., 5(2):274-280. DOI: 10.22271/27889289.2025.v5.i2d.217.
- He R.; Peng Z.; Lyu H.; Huang H.; Nan Q.; Tang J. (2018) Synthesis and characterization of iron-impregnated biochar for aqueous arsenic removal. Sci Total Environ 612:1177–1186. https://doi.org/10.1016/j.scitotenv.2017.09.016.
- **Kane S.; Storer A.; Xu W.; Ryan C.; Stadie N.P.** (2022) Biochar as a renewable substitute for carbon black in lithium-ion battery electrodes. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.2c02974.
- Li P.; Wan K.; Chen H.; Zheng F.; Zhang Z.; Niu B.; Zhang Y.; Long D. (2022) Value-Added Products from Catalytic Pyrolysis of Lignocellulosic Biomass and Waste Plastics over Biochar-Based Catalyst: A State-of-the-Art Review. Catalysts 12(9):1067.
- Rafiq M.K.; Bachmann R.T.; Rafiq M.T.; Shang Z.; Joseph S.; Long R.L. (2016) Influence of pyrolysis temperature on physico-chemical properties of corn stover (Zea mays L.) biochar and feasibility for carbon capture and energy balance. PLoS ONE. https://doi.org/10.1371/journal.pone.0156894.
- **Tomczyk A.; Sokołowska Z.; Boguta P.** (2020) Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev Environ Sci Biotechnol. https://doi.org/10.1007/s11157-020-09523-3.
- **Xia P.; Chen F.; Lei W.; Pan Y.; Ma Z.** (2020) Long cycle performance folium cycas biochar/S composite material for lithium-sulfur batteries. Ionics (Kiel). https://doi.org/10.1007/s11581-019-03169-0.
- **Zhao W.; Yang H.; He S.; Zhao Q.; Wei L.** (2021) A review of biochar in anaerobic digestion to improve biogas production: performances, mechanisms and economic assessments. Bioresour Technol. https://doi.org/10.1016/j.biortech.2021.125797.