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Abstract: Rapid advancements in natural language processing (NLP) have made it possible for robots to comprehend and classify
text data more effectively. The efficiency of many machine and deep learning models in automatically categorizing texts into five
groups—business, politics, sports, technology, and entertainment—is examined in this study. We used preprocessing approaches
to adjust a publically available dataset and compared models such as Long Short-Term Memory (LSTM), Convolutional Neural
Networks (CNN), Multilayer Perceptrons (MLP), Support Vector Machines (SVM), Logistic Regression (LR), Multinomial Naive
Bayes (NB), Deep Neural Networks (DNN), K-Nearest Neighbors (KNN), Decision Trees (DT), Random Forests (RF), and
Gradient Boosting Classifier (GBC). Our findings demonstrate the powerful prediction power of ensemble methods, as SVM and
MLP both achieved high accuracy rates of 97%. Future research on automating text categorization, tackling issues like data noise
and complexity, and optimizing models for particular applications would benefit greatly from the findings. This study emphasizes
how crucial it is to choose and adjust models in order to improve performance in NLP applications.

Keywords: Text Document Classification, Convolutional Neural Networks, Deep Neural Networks, Machine Learning

Algorithms, NLP.

1. Introduction

NLP began in the 1950s with early work in linguistic theory
and Machine Translation, relying on rule-based and symbolic
methods focused on grammar and syntax [1]. In the 1980s and
1990s, statistical techniques using probabilistic models and
large text corpora marked a paradigm shift, significantly
improving language understanding. The rise of Machine
Learning in the early 2000s introduced models like BERT and
GPT-3, along with advanced Deep Learning architectures that
dominate today [2-6]. These advancements greatly enhanced
automatic text summarization, although challenges persist in
understanding complex contexts and addressing data biases [7-
11]. Current research in Text Mining focuses on extracting
insights from vast databases, including subfields like
Information Retrieval (IR), Recommendation Systems, and
NLP [12]. As online and social media content grows,
Document Classification has become a key research area.
Platforms like Facebook analyze messages and interactions to
infer user preferences, while Google refines its search
algorithms to align results with human intent. YouTube
similarly analyzes user comments to filter or recommend
videos.

Text Classification, a part of NLP, allows machines to
categorize text systematically. It combines elements from
Artificial  Intelligence, Machine Learning, Computer
Engineering, and Information Engineering to enhance language
understanding. Also known as Document Categorization, it
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organizes texts into predefined categories based on their
content, drawing from Computer Science, Information Science,
and Library Science. While Library Science deals with
intellectual classification, Computer Science and Engineering
focus on automated methods. Texts with multimedia
components, such as photos or stickers, require distinct
classification models [13].

Research on Real-Time Text Mining is exploring applications
like Relationship Extraction [14], Spam Detection [15, 16],
Document Retrieval, Ontology Mapping, Email Classification,
Directory Management, Routing, Filtering, and Sentiment
Analysis [17], among others [18-20]. These applications can
process vast amounts of text data, including the unstructured
information on the World Wide Web, such as conference
materials, publications, and news, which requires automatic
processing due to diverse formats. To improve WWW text
organization, advanced learning agents are needed to classify
relevant content. With the explosion of electronic documents in
the Digital Era, vast data is available but requires efficient
Document Organization, which Data Mining, an Al subfield,
can facilitate [21]. In large datasets, Association Rule Mining
[22] helps uncover valuable relationships for decision-making.
The Naive Bayes Classifier assumes conditional independence
of words given the class and uses Maximum A Posteriori
estimates but often needs large training datasets to perform
well [23, 24]. Alternatively, Genetic Algorithms generate rules
randomly and evaluate their fitness. Recurrent Neural
Networks (RNNs) and advanced variants like Long Short-
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Term Memory (LSTM) are effective for encoding or
generating short text sequences, usually limited to a few
sentences.

2. Related work

In automatic text classification, terms are considered the most
effective units for representing and categorizing text [25].
Since text documents lack the structured format of databases,
unstructured data, particularly large free-form text, must be
converted into a structured format. Several preprocessing
techniques have been proposed to aid in this conversion [26,
27]. After structuring the data, an efficient document
representation model is necessary for classification. The Bag of
Words (BoW) model, a common approach, represents
documents as vectors based on term frequency, but it doesn’t
preserve the relationships and context of terms, which is
crucial for understanding the document's content [28]. Jain and
Li [29] introduced a binary representation to address this, but it
still faces issues with sparse matrices and high dimensionality.
Hotho et al. [30] proposed an ontology-based representation to
retain semantic relationships, though constructing ontologies
automatically remains challenging. Cavanar (1994) [31]
suggested using N-Grams, but determining the optimal length
of N-Grams is difficult. Another method [32] uses multi-word
terms as vector components, but it requires advanced term
extraction algorithms. Lastly, Wei et al. (2008) proposed
Latent Semantic Indexing (LSI) as an alternative for improved
representation[33].

Document representation is essential for preserving key
characteristics. (LSI) focuses on maintaining important
features, unlike methods that prioritize discriminative features.
To address LSI's limitations, particularly its neglect of local
semantic structures, Locality Preserving Indexing  was
developed [34]. While LPI effectively captures these local
structures, it has time and memory efficiency issues [35].
Choudhary and Bhattacharyya (2002) improved document
representation by using the Universal Networking Language,
converting documents into graph structures with words as
nodes and relationships as edges [36]. However, this method is
labor-intensive, especially with large document collections, as
each document requires its own graph. Once a solid
representation is created, classifying documents into
predefined categories follows. Several models, including (NB)
model [37, 38], (KNN) [39, 40], Centroid Classifier [41], (DT)
[42, 43], Rocchio classifier [44], Neural Networks [45], and
(SVM) [46], have been developed for this purpose.

Deep learning models have become integral to NLP,
particularly in language modeling and text classification.
Systematic comparisons of models like Recurrent Neural
Networks (RNN), Deep Belief Networks (DBN), and (CNN)
have been conducted, such as Liu et al.'s study [47] on their
relation to relation classification. Techniques like Naive Bayes
(NB) and Support Vector Machines (SVM) use rule-based
features [48], and hybrid methods combine SVM, NB, and
Conditional Random Fields for dependency tree building [49].
CNNs are used to extract relevant n-grams and capture long-
term dependencies, aiding in tasks like time series forecasting
[50]. DBNs can extract patterns from high-dimensional feature
spaces [51], while RNNs are key in language modeling [52]
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and forecasting tasks [S53]. Chen et al. [54] showed DBNs
combined with SVMs improve Chinese text classification,
similar to CNNs' role in semantic labeling [55]. RNNs have
also proven effective in long-term sentence classification [56,
57]. The Network In Network (NIN) model [58] improves
CNNs by using global average-pooling layers and 1x1
convolutional filters. Combining CNNs with (LSTM) networks
enhances attention-based tasks, while comparisons of CNN,
word2vec [59], GRU, and LSTM for sentiment classification in
Russian tweets indicate that GRUs often outperform CNNs and
LSTMs [60]. Studies [61, 62] show no clear winner between
GRU and LSTM, with hyperparameter tuning being more
important than model architecture selection.

The DBWorld Email dataset was divided into "announces of
conferences" and "everything else" classes. The performance
of (DT), (SVM), (KNN), and (NB) was compared using five-
fold cross-validation. Results showed that SVM, with a
quadratic kernel, had the highest accuracy (93.8%), despite DT
having the longest training time. While SVM was the best
performer, other methods also showed promise, indicating
potential for convolutional neural networks in future text
classification [63]. The authors in [64] introduced W2vRule, a
text classification method combining machine learning with
the Word2Vec framework. Tested on the Reuters Newswire
dataset, W2vRule outperformed traditional methods like NB
and DT in terms of accuracy, precision, and recall, especially
when hyperparameter tuning was applied, proving it effective
for large-scale document classification. Amina Khatun et al.
(NB), (DT), (SVM), and (KNN) for classifying SMS messages
as "spam" or "ham." After text preprocessing and feature
extraction, NB and SVM achieved the highest accuracy rates,
98.66% and 98.02%, respectively[65].

Even though there have been many prior studies on text
categorization using machine learning and deep learning
models, the most of them have only used short datasets or a
small number of categories, demonstrating a great deal of
variation in model performance. Additionally, these research
have shown that the accuracy of findings is significantly
impacted by the choice of classification model and the fine-
tuning of its parameters, particularly when dealing with multi-
class texts and small semantic variations between words.
Therefore, it is crucial to perform a thorough assessment of a
wide range of deep and traditional models on a well-balanced
dataset that spans several categories in order to determine
which models are the most dependable and successful as well
as to comprehend the advantages and disadvantages of each in
the context of complex text classification. This method makes
it possible to focus research efforts on enhancing automated
categorization systems' functionality and using them more
precisely and successfully in real-world applications.

3. Proposed Methodology

This section describes the suggested approach, illustrating both
the proposed strategy and the progression of the machine
learning methodology. Three main categories are used to
summarize the suggested methodology:

3.1. Data Collection and Splitting:
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The proposed framework is trained and evaluated on a publicly
available dataset; the text document classification dataset
contains 2,225 text samples across five categories of
documents. These categories are politics, sports, technology,
entertainment, and business, as shown in Fig 1. This dataset
can be used for document classification and clustering. It
contains two features: text and label. The dataset has 2,225
rows and 2 columns. The text feature includes different
categories of text data, while the label feature contains labels
for the five categories: 0 (Politics), 1 (Sports), 2 (Technology),
3 (Entertainment), and 4 (Business). Using the 80-20 ratio, the
preprocessed data was split into 80% training data and 20%
test data. To learn classification rules, the training data is fed
into the classification model. Furthermore, using the test data,
the classification model is evaluated further [66].
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Figure 1: Show the distribution of five categories

3.2. Data Preprocessing

To achieve uniformity, the input text is first converted to
lowercase in the preprocessing function for text document
classification. This enables the model to treat words with
different cases (such as "Text" vs. "text") as equivalent. Then,
to get rid of unimportant material that doesn't add to the text's
main point, mentions—usually user handles preceded by the
"@" symbol—are eliminated. Subsequently eliminates URLs,
including complete web addresses that start with "http" and
those that start with "www," as they frequently don't have
semantic weight for classification. The text is then made
simpler for analysis by removing all non-alphanumeric
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characters, leaving a clean dataset made up solely of letters and
integers. This set of transformations helps to prepare the text
for effective classification by reducing noise and standardizing
the input. Finally, the function combines any multiple spaces
into a single space to ensure consistent spacing throughout the
text, avoiding issues that may arise from irregular spacing [67].

3.3. Machine and Deep Learning Approach

For each term in the training dataset, first determine its Term
Frequency-Inverse Document Frequency (TF-IDF) scores,
accounting for both the term's rarity throughout the total
document set and its frequency within individual documents.
Then, to enable quantitative comparisons across documents in
the training set, describe each document as a numerical vector,
with the components of the vector being the TF-IDF values
assigned to each word. After that, train every model using
these TF-IDF-weighted vectors. Lastly, apply the training
models to their respective TF-IDF-based representations to
produce predictions for the documents in the testing set. Then,
evaluate each model's accuracy based on these predictions.

Document indexing
Feature Extraction

Feature Selection

prediction model

Label identification

Figure 2: Workflow diagram depicting the essential stages in
the document classification process: Input Dataset,
Preprocessing, Document Indexing, Feature Extraction,
Prediction Model, and Label Identification.

4. Experimental results

An essential tool for classification problems, a word cloud is a
visual representation of text data in which the size of each
word indicates its frequency or importance within a particular
dataset. Each of the five categories—business, sports, politics,
technology, and entertainment—can be represented by a
different word cloud as shown in Figure 3, when it comes to
document classification. For instance, the sports word cloud
would emphasize phrases like "team," "game," and "score,"
while the business word cloud might prominently display

words like "finance," "investment," and "market." Likewise,
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the political cloud may display words like "election," "policy,"
and "government," while the technology cloud may display
words like '"software," "innovation," and 'artificial
intelligence." Lastly, terms like "movie," "celebrity," and
"music" can be the main focus of the entertainment word
cloud. By finding patterns and improving document
categorization accuracy, the analysis of these word clouds
helps train classification algorithms by revealing the most
common themes and keywords within each class. Developers
can produce more efficient models that differentiate between
the distinct textual details of each category by utilizing the
traits displayed in these visual representations.
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Figure 3: show the Word clouds for document classification
categories : The most common  terms  for
eachcategory,business, sports, politics, technology, and
entertainment—are represented by word clouds, which aid in
identifying important themes and enhancing the accuracy of
document classification. By emphasizing specific terms that
are pertinent to each category—for example, "team" in sports
or "finance" in business—these visuals help train computers.

The distribution of the data is shown graphically in the
accompanying figure 4, where the text length is represented by
the x-axis and the frequency or count of text lengths inside
each bin is represented by the y-axis. Data exploration,
visualization, and possible feature engineering chores are made
easier by this output, which has great value since it enables
data scientists or analysts to rapidly spot trends or skewness in
the data, such as whether the majority of text lengths are
uniformly distributed, long, or short.
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Figure 4: the distribution of text lengths in the dataset.
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The ten most common bigrams from the cleaned text of tweets
saved in a data frame are displayed visually in Fig. 4. It
successfully illustrates the linguistic patterns and themes
present in the tweet dataset by charting these bigrams against
their corresponding counts in a horizontal bar format. This
visualization is essential because it makes it possible to quickly
identify frequently used terms and offers insights into popular
subjects, public opinion, and important concerns that users are
discussing. Better analysis and comprehension of the textual
data at a glance are made possible by the use of a
predetermined figure size, which guarantees that the output is
readable and clear.

Figure 5: depicts the 10 most prevalent bigrams derived from
the sanitized tweet dataset. The horizontal bar chart illustrates
commonly utilized paired phrases, like "last year," "told BBC,"
"said Mr.," and "prime minister," offering insights into
dominant issues, public debate, and significant themes within
the dataset. The lucid and comprehensible format enables rapid
recognition of prevailing linguistic trends and domains of
public concern.

The 30 most common words in a set of text data are displayed
in a bar chart in Fig 6. With the words on the x-axis and their
frequency on the y-axis, the chart illustrates the frequency of
each word. The term with the highest frequency is on the far
left of the chart, while the word with the lowest frequency is on
the far right, since the chart is arranged in descending order of
frequency. Blue bars of various heights indicate the terms'
frequencies, which are listed vertically. Understanding the
topic, sentiment, or style of the text can be aided by the chart's
visual representation of the most frequently used terms in the
text data.

Figure 6 shows the 30 most frequent words in the text
collection in a bar chart, it arranged by decreasing frequency.
Each blue bar's height reflects the frequency of the term, giving
readers a visual summary of the most common words to help
them grasp the text's general theme, sentiment, or style.

Figure 7 analyzes the character length of various text
categories, including politics, sports, entertainment,
technology, and business. The research finds differences in text
length by counting the characters in text samples from each
category. This can show patterns in audience interest and
content engagement across various domains. Comprehending
these distinctions is essential since it allows marketers and
content producers to efficiently customize their messaging
tactics. While longer entries in the technology category would
signal a more engaged audience seeking in-depth knowledge, a
lesser character count in the sports area might suggest a
preference for quick updates. In the end, this type of study aids
in improving communication effectiveness within each
category and optimizing the delivery of material.

The top figure in Figure 8, shows the loss values in the y-axis,

while the x-axis shows the number of epochs in a graph
showing loss during text categorization in (CNN) model. The
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training data curve and the validation data curve are two
separate curves on the graph. These curves initially converge at
the same spot, showing a comparable loss trajectory as the
model gains knowledge from the training set. Both curves
decline as epochs go on, suggesting better performance;
nevertheless, there is a significant divergence when the
validation curve plateaus horizontally and the training curve
keeps declining dramatically. This shape's benefit is that it
shows learning: the first drop indicates successful learning. In
the bottom figure, shows the accuracy values in the y-axis, and
the x-axis shows the number of epochs in the graph showing
text classification accuracy. The training data curve and the
validation data curve are two separate curves on the graph.
Both curves initially begin at the same location, indicating a
comparable degree of precision. The validation accuracy curve,
on the other hand, trails behind the training accuracy curve,
which increases noticeably as training goes on. The model's
ability to efficiently learn patterns in the training dataset is
demonstrated by the steep climb of the training curve, which
gives it an advantage when it comes to obtaining high accuracy
on known data.

The y-axis shows the loss value, and the x-axis shows the
number of epochs in the graph that shows loss for text
classification in (DNN) model in Figure 9. At the beginning of
the training process, the training and validation loss curves
begin at the same place, suggesting that the loss scores of the
two datasets are comparable. Both curves have a lower trend as
the epochs go on, indicating gains in model performance. The
model appears to be successfully learning the training data,
though, as the training loss curve declines more abruptly than
the validation loss curve. Although the steep decline of the
training curve is advantageous because it shows that the model
can learn complex patterns, the validation curve's continued
height draws attention to the model's possible overfitting, in
which it performs well on training data but less well on unseen
data. The need for close observation during training to make
sure the model generalizes properly and does not become
unduly specialized to the training dataset is highlighted by this
divergence between the two curves. As a result, the validation
curve is an essential measure of the model's resilience and
generalization skills, whereas the training curve's drop
indicates successful learning. On the other side, the y-axis
shows the accuracy values, and the x-axis shows the number of
epochs in the graph showing text classification accuracy in
(DNN) model. The training and validation accuracy curves
initially begin at the same location, indicating an initial
performance level that is equal. The model is learning
effectively from the training data when the training accuracy
curve increases over the course of the epochs and surpasses the
validation accuracy curve. This situation has the benefit of
boosting training accuracy, which indicates that the model is
successfully identifying patterns in the training dataset.
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Figure 5: depicts the 10 most prevalent bigrams derived from the sanitized tweet dataset
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Figure 6: The 30 most frequent words in the text collection are shown in a bar chart in this figure
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Figure 7: show the audience engagement and content preferences, a comparative analysis of character length across various text
categorie
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Figure 8: The first graph on the left shows the loss values on
the y-axis against epochs on the x-axis.

Both curves initially converge, suggesting comparable learning
progress, but as training goes on, they diverge, with the
training loss dramatically declining and the validation loss
plateauing, suggesting possible overfitting. The accuracy
over epochs is shown in the other graph on the right, where the
validation accuracy trails behind, demonstrating the model's
poor generalization to unknown data, while the training
accuracy rises steadily, demonstrating the model's enhanced
performance on training data.
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Figure 9: Loss and accuracy for DNN

When classifying data into discrete classes, such sports,
technology, entertainment, business, and politics, a confusion
matrix is a useful tool in machine learning for assessing how
well classification models perform. In this case, the matrix
compares true labels with predicted labels to show how well
the model separates these five categories. For instance, false
positives and false negatives show misclassifications, such as
mislabeling a sports item as technology or vice versa, whereas
true positives show instances within each category that were
correctly classified. Additionally, the matrix offers insightful
information about particular aspects of model performance,
which aids analysts in optimizing algorithms and raising
accuracy across all categories. The confusion matrix makes it
easier to see a model's advantages and disadvantages when it
comes to handling the intricate world of content classification
by displaying the number of categories and the accompanying
predictions. In Figure 10. (LR) model's confusion matrix
summarizes the model's performance in classifying different
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types of data, showing the distribution of predictions across

Five different categories: business, entertainment, politics,
sports, and technology. The matrix shows that the model
correctly classified 148 instances in the business category,
indicating a relatively strong performance in this segment,
while it slightly underperformed in the entertainment category,
with 105 correct classifications; additionally, the politics
category had 109 correct predictions, indicating moderate
accuracy; the sports category had the highest number of correct
classifications, at 151, indicating robust prediction capabilities
in this area; while the technology category had the fewest
correct classifications (100), indicating the model's ability to
distinguish between categories. 146 data points were correctly
classified as Business, 107 as Entertainment, 114 as Politics,
151 as Sports, and 105 as Technology. The remaining data
points that were incorrectly classified are dispersed throughout
the second confusion matrix for SVM model, which looks to
be a table showing the model's classification accuracy across
five categories. The following is a breakdown of the numbers
in each cell: False Positives (FP) are data points that were
mistakenly predicted to belong to another category, True
Negatives (TN) are data points that were correctly predicted to
not belong to a specific category, FN (False Negatives) are
data points that were mistakenly predicted to belong to their
own category, and TP (True Positives) are the correct
classifications (146, 114, and 151). With counts of 128 for
business, 81 for entertainment, 90 for politics, 137 for sport,
and 79 for technology, (DT) model demonstrated its relative
superiority in classifying sports data, but its effectiveness in
entertainment was lower. With counts of 146, 104, 116, 151,
and 103, respectively, (NB) model showed a balanced
approach and efficacy in detecting all categories, with Sports
showing the best results. While (GBC) recorded 141, 100, 114,
149, and 100, indicating a similar pattern of strength in Sports
classification, the (KNN) model produced counts of 136, 99,
111, 147, and 98, demonstrating a strong performance,
particularly in Sports. However, with scores of 90, 96, 68, 73,
and 98, (LSTM) model performed comparatively worse across
the board, particularly in the Politics classification. With
counts of 147, 104, 113, 151, and 105, (MLP) model
demonstrated respectable performance in all categories,
especially in sports. (DNN) model, on the other hand, fared
noticeably worse across all categories, scoring only 22 for
Business, 43 for Entertainment, 26 for Politics, 27 for Sport,
and 36 for Technology. While (CNN) demonstrated a
noticeable weakness with only 24 for Business, 45 for
Entertainment, 30 for Politics, 33 for Sport, and 34 for
Technology, (RF) model provided a strong performance with
counts of 148, 104, 110, 149, and 100, demonstrating particular
strength once more in Sports. The models' overall efficacy
varied greatly; Multinomial NB and RF were among the best.
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Figure 10: Confusion Matrices for all categories
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The performance of various classification models across all
categories is depicted in this chart. The most accurate models
are RF and Multinomial NB, which perform very well in sports
classification. Strong and reliable results are also shown by
MLP and LR. On the other hand, CNN and DNN models
exhibit poor performance in every category, with a
significantly low percentage of accurate classifications. The
Confusion matrices show the advantages and disadvantages of
each model in terms of category differentiation.

Precision (prec), recall, and F1 scores (F1) for different models
in five categories—politics, sports, technology, entertainment,
and business—are displayed in Table 1. SVM consistently
outperforms the other models, obtaining high scores in every
category and primarily exhibiting prec, recall, and F1 values
between 0.96 and 1.00. Multinomial NB and MLP also
perform well and consistently, with scores that are not far
behind SVM's. However, with far poorer precision, recall, and
F1 scores—especially in the business category—the (DNN)
performs the worst across all categories. In comparison to
other models, CNN and (DT) also perform poorly, particularly
in domains like technology and business. Based on these
criteria, SVM is the most effective model overall for
classification, whereas DNN is the least successful.

In Table 2.The models that perform the best are (SVM),
(MLP), and (multinomial NB), each of which achieves an
accuracy of 97% and prec, recall, and F1 score of 0.97. With
overall scores of 0.96, (LR) comes in second, demonstrating a
great capacity for prediction. (GBC) performs marginally
worse, scoring 0.95 and having a 95% accuracy rate. (KNN),
on the other hand, exhibits more reasonable outcomes, with an
accuracy of 92%, prec of 0.92, recall of 0.92, and F1 score of
0.93. Similar to LR, (RF) classifier maintains a balanced 0.96
across all measures. (DNN) and (CNN) show a notable decline
in performance, with DNN attaining an accuracy of 72% (0.73
prec, 0.72 recall, and F1 score) and CNN obtaining an
accuracy of 78% (0.78 across all metrics), we note that the
accuracy of both DNN and CNN relatively few, and this is due
to the fact that the number of epochs used is only 50, and
perhaps if we increase it, we will get better results for both of
them.. With an accuracy of 81% (0.81 prec, recall, and F1
score), (DT) likewise performs poorly.

The models are ranked from best training time to shortest
training time as follows, based, that is provided: With training
times of 2.8371810913085938e-05s and
2.8848648071289062e-05s, respectively, MLP and LR trailed
closely behind LSTM, which completed in the quickest amount
of time at 2.7894973754882812¢-05s. CNN and RF, two more
highly competitive models, have training times of
2.86102294921875e-05s  and  2.8848648071289062¢-05s,
respectively. At the same time, Multinomial NB and DT
completed their training in 2.9325485229492188e-05s. With
training times ranging from 2.956390380859375e-05s to
4.076957702636719¢-05s, the remaining models-DNN, GBC,
SVM, and KNN—took longer to train and were ranked
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Lowest in terms of training efficiency.

Table 3 summarizes the mean scores and standard deviations
of the machine and deep learning models' performance
characteristics.  Despite having a relatively low average
performance, (SVM) shows significant variability in its
outputs, as evidenced by its 29.6 mean and extremely large
standard deviation of 302. With a comparable mean of 29.8
and a standard deviation of 285, (LR) indicates stability but
weak predictive power. (NB) displays similar performance
levels with a mean of 30.1 and a standard deviation of 206.
With a high mean of 92.3 and standard deviation of 988,
(KNN) stands out as a model that produces predictions that are
remarkably consistent. With a mean of 40.1 and a standard
deviation of 422, DT exhibits modest performance with
notable variability. With a mean of 74.2 and a large standard
deviation of 817, (RF) exhibits great average performance but
a wide range of output variance. With a mean of 59.6 and a
standard deviation of 128 (GBC) exhibits modest performance
and variability. (DNN) exhibits significant output variation
despite great average performance, as evidenced by its high
mean of 91.7 and incredibly enormous standard deviation of
743. With a mean of 95.8 and a standard deviation of 634,
(CNN) performs well but exhibits significant variability. The
MLP model has moderate to high performance with noticeable
output dispersion, as evidenced by its mean of 78.7 and
standard deviation of 611. Finally, (LSTM) model performs
poorly and is unpredictable, as evidenced by its lowest mean of
17.4 and highest standard deviation of 889. Overall, the data
shows a range of model performance levels, with some
exhibiting consistent outcomes and others exhibiting notable
fluctuation. Each model has unique prediction strengths and
limits.

The information presented in Table 4, shows the accuracy of
different deep learning and machine learning models as
documented in related works and contrasts them with the
accuracy attained by a suggested method in three different
investigations.  Notably, (SVM) performs admirably,
outperforming the highest comparable task accuracy of 93.8%
with an accuracy of 98.02% in the suggested method.
Similarly, with an astounding accuracy of 98.66%, the
(Multinomial NB) model fared noticeably better than the
earlier research. Although precise comparisons from other
research were not given, the suggested (LR) and (MLP) models
both demonstrate excellent performance, reaching 96%
accuracy. However, the effectiveness of (RF) and (DT) models
varies; in one related work, RF achieved 74.2%, whereas in the
proposed approach, it achieved 96%. Additionally, the
performance of DT increased significantly from 78.1% in
related works to 96% in the proposed approach. In the
suggested method, (KNN) model performs consistently with
92%, while in related studies; it performs with 85.9% and
91.9%. When compared to related research, the suggested
methods demonstrate a notable improvement across nearly all
models, suggesting that the new approach may include
improved tactics or methodologies that lead to higher accuracy
rates.
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Table 1: comparison of categorization models' performance in various categories. In the categories of Politics, Sports,
Technology, Entertainment, and Business, the table displays the (prec), Recall, and F1 for a variety of machine and deep learning
models. With excellent precision and recall levels, SVM and LSTM consistently outperform other models in the majority of
categories.

Model politics sport Technology Entertainment Business
Prec Recall F1 Prec Recall F1 | Prec Recall F1 | Prec Recall F1 | Prec Recall Fl1
SVM 0.97 | 0.96 | 0.96 | 0.99 | 1.00 | 1.00 | 0.96 | 0.97 | 0.97 | 0.99 | 0.98 | 0.99 | 0.96 | 0.96 | 0.96
MLP 0.96 | 0.95]0.95|0.99 | 1.00 | 1.00 | 0.95 | 0.97 | 0.96 | 0.98 | 0.95 | 0.97 | 0.96 | 0.97 | 0.96
GBC 0.93 1 0.96 | 0.94 | 0.97 | 0.99 | 0.98 | 0.97 | 0.93 | 0.95 | 0.99 | 0.92 | 0.95 | 0.89 | 0.93 | 0.91
LR 0.97 [ 0.920.94]0.97 | 1.00 | 0.99 | 0.97 | 0.93 | 0.95 | 0.98 | 0.96 | 0.97 | 0.91 | 0.97 | 0.94
KNN 0.85 | 0.93 | 0.89 | 0.98 | 0.97 | 0.98 | 0.94 | 0.91 | 0.92 | 0.93 | 0.91 | 0.92 | 0.92 | 0.89 | 0.91
multinomialNB | 994 | 0.97 | 0.96 | 0.97 | 1.00 | 0.99 | 0.98 | 0.95 | 0.97 | 0.99 | 0.95 | 0.97 | 0.97 | 0.96 | 0.96
RF 0.97 1 0.92]0.95]0.96 | 0.99 | 0.97 | 0.98 | 0.93 | 0.95 | 0.96 | 0.95 | 0.96 | 0.93 | 0.97 | 0.95
DNN 0.60 | 0.74 | 0.67 | 0.77 | 0.73 | 0.75 | 0.78 | 0.72 | 0.75 | 0.78 | 0.84 | 0.81 | 0.65 | 0.55 | 0.59
LSTM 0.99 | 0.88 | 0.93 | 0.99 | 0.96 | 0.97 | 0.94 | 0.96 | 0.95 | 0.99 | 0.98 | 0.98 | 0.89 | 0.98 | 0.93
CNN 0.81 | 0.86 | 0.83 | 0.77 | 0.89 | 0.82 | 0.74 | 0.68 | 0.71 | 0.83 | 0.88 | 0.86 | 0.73 | 0.60 | 0.66
DT 0.87 | 0.76 | 0.81 | 0.87 | 0.91 | 0.89 | 0.85 | 0.73 | 0.79 | 0.80 | 0.74 | 0.77 | 0.70 | 0.84 | 0.76

Table 2: Comparison of training time and model performance: prec, recall, accuracy, F1, and training time for a number of
classification models are shown in this table.
The models like CNN and DNN performed poorly, SVM, MLP, and Multinomial NB had the highest accuracy (97%). All models

have comparatively low training times, albeit each model's computational efficiencyvaries
Model Mean | Standard Deviation
Model Weighted avg accurac Training time SVM 29.6 302
Prec Recall F1 y DNN 91.7 743
SVM 0.97 | 097 | 0.97 97 3.337860107421875¢e-05s GBC 59.6 128
MLP 097 | 097 | 0.97 97 2.8371810913085938e-05s LR 29.8 285
GBC 0951095 | 0.95 95 2.9087066650390625¢e-05s KNN 92.3 988
LR 0.96 | 0.96 | 0.96 96 2.8848648071289062¢-05s Multinomial N | 30.1 206
KNN 092 092 | 0.93 92 4.076957702636719e-05s B
Multinomial | 0.97 | 0.97 | 0.97 97 2.9325485229492188e-05s RF 74.2 817
NB DT 40.1 422
RF 0.96 | 0.96 | 0.96 96 2.8848648071289062¢e-05s LST™M 17.4 889
DNN 0.73 1 0.72 | 0.72 72 2.956390380859375¢-05s CNN 95.8 634
LSTM 0.96 | 0.96 | 0.96 96 2.7894973754882812e-05s MLP 78.7 611
CNN 0.78 | 0.78 | 0.78 78 2.86102294921875e-05s
DT 0.81 | 0.81 | 0.81 81 2.9325485229492188e-05s

Table 4: Accuracy comparison of the suggested method and

Table 3: show the mean and standard deviation of performance various models in related work.

for each classification model.

The mean and standard deviation for each model's performance
are shown in the table. CNN has the highest average. KNN,
RF, and LSTM show higher standard deviations, indicating

The accuracy of several models from relevant publications
[63], [64], [65], and the suggested method is contrasted in the
table. The suggested method exhibits significant gains in

great.er V?.rlablllty, whereas models llkq SVM, LR, and accuracy for models like SVM, Multinomial NB, and MLP.
Multinomial NB demonstrate more consistent performance

with smaller standard deviations.
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Model Accuracy of Related Work | Accuracy of
the Proposed
approach
[ 63] [ 64] [ 65]

SVM 93.8% 98.02% 97%
LR 96%
,MLP 97%
RF | - 74.2% | -=------- 96%
MultinomiaINB | 82.8% | 74.6% | 98.66% 97%
KNN 85.9% 91.9% 92%
GBC 95%
DT 78.1% | -------- 96% 81%
LSTM 96%
CNN 78%
DNN 72%

5. Conclusion

This study shows the advantages and disadvantages of different
machine learning and deep learning models while highlighting
the changing field of text document classification within
(NLP). We have thoroughly examined models like (SVM),
(MLP), (CNN), (LSTM) and others by carefully examining a
dataset of 2,225 text documents in five categories: business,
politics, sports, technology, and entertainment. Our results
demonstrate the superior performance of ensemble approaches,
particularly the SVM and MLP, which consistently had
precision and recall metrics above 0.96 across a variety of
categories and attained accuracy rates of 97%. These findings
support the efficiency of optimized machine learning
algorithms in managing the intricacies of text classification,
clearly separating successful models from underperforming
ones, like (CNN) and (DNN), which had generalization issues.
The study opens the door for further research targeted at
improving automated text classification systems by
highlighting the significance of model selection adapted to
certain classification tasks. Additionally, it tackles common
problems in document categorization, like data noise and the
difficulties posed by different text formats. The findings also
point to the necessity of ongoing model adaptation and
optimization in order to better accommodate the complex
properties of the textual input being processed. Furthermore,
our experimental analyses, which include confusion matrix
Evaluations and performance metric assessments, support the
notion that traditional machine learning techniques may
provide more consistent generalization across a variety of
datasets, even though deep learning models like (LSTM) show
promise in sequential data handling. This study is an essential
resource for academics and professionals who want to use
these discoveries to further push the limits of text classification
Techniques as NLP technology develops.
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