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Abstract: Rapid advancements in natural language processing (NLP) have made it possible for robots to comprehend and classify 

text data more effectively.  The efficiency of many machine and deep learning models in automatically categorizing texts into five 

groups—business, politics, sports, technology, and entertainment—is examined in this study.  We used preprocessing approaches 

to adjust a publically available dataset and compared models such as Long Short-Term Memory (LSTM), Convolutional Neural 

Networks (CNN), Multilayer Perceptrons (MLP), Support Vector Machines (SVM), Logistic Regression (LR), Multinomial Naïve 

Bayes (NB), Deep Neural Networks (DNN), K-Nearest Neighbors (KNN), Decision Trees (DT), Random Forests (RF), and 

Gradient Boosting Classifier (GBC).  Our findings demonstrate the powerful prediction power of ensemble methods, as SVM and 

MLP both achieved high accuracy rates of 97%.  Future research on automating text categorization, tackling issues like data noise 

and complexity, and optimizing models for particular applications would benefit greatly from the findings. This study emphasizes 

how crucial it is to choose and adjust models in order to improve performance in NLP applications. 

Keywords: Text Document Classification, Convolutional Neural Networks, Deep Neural Networks, Machine Learning 

Algorithms, NLP. 

  

1. Introduction 

     NLP began in the 1950s with early work in linguistic theory 

and Machine Translation, relying on rule-based and symbolic 

methods focused on grammar and syntax [1]. In the 1980s and 

1990s, statistical techniques using probabilistic models and 

large text corpora marked a paradigm shift, significantly 

improving language understanding. The rise of Machine 

Learning in the early 2000s introduced models like BERT and 

GPT-3, along with advanced Deep Learning architectures that 

dominate today [2-6]. These advancements greatly enhanced 

automatic text summarization, although challenges persist in 

understanding complex contexts and addressing data biases [7-

11]. Current research in Text Mining focuses on extracting 

insights from vast databases, including subfields like 

Information Retrieval (IR), Recommendation Systems, and 

NLP [12]. As online and social media content grows, 

Document Classification has become a key research area. 

Platforms like Facebook analyze messages and interactions to 

infer user preferences, while Google refines its search 

algorithms to align results with human intent. YouTube 

similarly analyzes user comments to filter or recommend 

videos. 

Text Classification, a part of NLP, allows machines to 

categorize text systematically. It combines elements from 

Artificial Intelligence, Machine Learning, Computer 

Engineering, and Information Engineering to enhance language 

understanding. Also known as Document Categorization, it 

organizes texts into predefined categories based on their 

content, drawing from Computer Science, Information Science, 

and Library Science. While Library Science deals with 

intellectual classification, Computer Science and Engineering 

focus on automated methods. Texts with multimedia 

components, such as photos or stickers, require distinct 

classification models [13]. 

Research on Real-Time Text Mining is exploring applications 

like Relationship Extraction [14], Spam Detection [15, 16], 

Document Retrieval, Ontology Mapping, Email Classification, 

Directory Management, Routing, Filtering, and Sentiment 

Analysis [17], among others [18–20]. These applications can 

process vast amounts of text data, including the unstructured 

information on the World Wide Web, such as conference 

materials, publications, and news, which requires automatic 

processing due to diverse formats. To improve WWW text 

organization, advanced learning agents are needed to classify 

relevant content. With the explosion of electronic documents in 

the Digital Era, vast data is available but requires efficient 

Document Organization, which Data Mining, an AI subfield, 

can facilitate [21]. In large datasets, Association Rule Mining 

[22] helps uncover valuable relationships for decision-making. 

The Naïve Bayes Classifier assumes conditional independence 

of words given the class and uses Maximum A Posteriori 

estimates but often needs large training datasets to perform 

well [23, 24]. Alternatively, Genetic Algorithms generate rules 

randomly and evaluate their fitness. Recurrent Neural 

Networks (RNNs) and advanced variants like Long Short-
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Term Memory (LSTM) are effective for encoding or 

generating short text sequences, usually limited to a few 

sentences. 

2. Related work 

In automatic text classification, terms are considered the most 

effective units for representing and categorizing text [25]. 

Since text documents lack the structured format of databases, 

unstructured data, particularly large free-form text, must be 

converted into a structured format. Several preprocessing 

techniques have been proposed to aid in this conversion [26, 

27]. After structuring the data, an efficient document 

representation model is necessary for classification. The Bag of 

Words (BoW) model, a common approach, represents 

documents as vectors based on term frequency, but it doesn’t 

preserve the relationships and context of terms, which is 

crucial for understanding the document's content [28]. Jain and 

Li [29] introduced a binary representation to address this, but it 

still faces issues with sparse matrices and high dimensionality. 

Hotho et al. [30] proposed an ontology-based representation to 

retain semantic relationships, though constructing ontologies 

automatically remains challenging. Cavanar (1994) [31] 

suggested using N-Grams, but determining the optimal length 

of N-Grams is difficult. Another method [32] uses multi-word 

terms as vector components, but it requires advanced term 

extraction algorithms. Lastly, Wei et al. (2008) proposed 

Latent Semantic Indexing (LSI) as an alternative for improved 

representation[33]. 

Document representation is essential for preserving key 

characteristics. (LSI) focuses on maintaining important 

features, unlike methods that prioritize discriminative features. 

To address LSI's limitations, particularly its neglect of local 

semantic structures, Locality Preserving Indexing  was 

developed [34]. While LPI effectively captures these local 

structures, it has time and memory efficiency issues [35]. 

Choudhary and Bhattacharyya (2002) improved document 

representation by using the Universal Networking Language, 

converting documents into graph structures with words as 

nodes and relationships as edges [36]. However, this method is 

labor-intensive, especially with large document collections, as 

each document requires its own graph. Once a solid 

representation is created, classifying documents into 

predefined categories follows. Several models, including (NB) 

model [37, 38], (KNN) [39, 40], Centroid Classifier [41], (DT) 

[42, 43], Rocchio classifier [44], Neural Networks [45], and 

(SVM) [46], have been developed for this purpose. 

Deep learning models have become integral to NLP, 

particularly in language modeling and text classification. 

Systematic comparisons of models like Recurrent Neural 

Networks (RNN), Deep Belief Networks (DBN), and (CNN) 

have been conducted, such as Liu et al.'s study [47] on their 

relation to relation classification. Techniques like Naive Bayes 

(NB) and Support Vector Machines (SVM) use rule-based 

features [48], and hybrid methods combine SVM, NB, and 

Conditional Random Fields for dependency tree building [49]. 

CNNs are used to extract relevant n-grams and capture long-

term dependencies, aiding in tasks like time series forecasting 

[50]. DBNs can extract patterns from high-dimensional feature 

spaces [51], while RNNs are key in language modeling [52] 

and forecasting tasks [53]. Chen et al. [54] showed DBNs 

combined with SVMs improve Chinese text classification, 

similar to CNNs' role in semantic labeling [55]. RNNs have 

also proven effective in long-term sentence classification [56, 

57]. The Network In Network (NIN) model [58] improves 

CNNs by using global average-pooling layers and 1x1 

convolutional filters. Combining CNNs with (LSTM) networks 

enhances attention-based tasks, while comparisons of CNN, 

word2vec [59], GRU, and LSTM for sentiment classification in 

Russian tweets indicate that GRUs often outperform CNNs and 

LSTMs [60]. Studies [61, 62] show no clear winner between 

GRU and LSTM, with hyperparameter tuning being more 

important than model architecture selection. 

The DBWorld Email dataset was divided into "announces of 

conferences" and "everything else" classes. The performance 

of (DT), (SVM), (KNN), and (NB) was compared using five-

fold cross-validation. Results showed that SVM, with a 

quadratic kernel, had the highest accuracy (93.8%), despite DT 

having the longest training time. While SVM was the best 

performer, other methods also showed promise, indicating 

potential for convolutional neural networks in future text 

classification [63]. The authors in [64] introduced W2vRule, a 

text classification method combining machine learning with 

the Word2Vec framework. Tested on the Reuters Newswire 

dataset, W2vRule outperformed traditional methods like NB 

and DT in terms of accuracy, precision, and recall, especially 

when hyperparameter tuning was applied, proving it effective 

for large-scale document classification. Amina Khatun et al. 

(NB), (DT), (SVM), and (KNN) for classifying SMS messages 

as "spam" or "ham." After text preprocessing and feature 

extraction, NB and SVM achieved the highest accuracy rates, 

98.66% and 98.02%, respectively[65]. 

Even though there have been many prior studies on text 

categorization using machine learning and deep learning 

models, the most of them have only used short datasets or a 

small number of categories, demonstrating a great deal of 

variation in model performance. Additionally, these research 

have shown that the accuracy of findings is significantly 

impacted by the choice of classification model and the fine-

tuning of its parameters, particularly when dealing with multi-

class texts and small semantic variations between words. 

Therefore, it is crucial to perform a thorough assessment of a 

wide range of deep and traditional models on a well-balanced 

dataset that spans several categories in order to determine 

which models are the most dependable and successful as well 

as to comprehend the advantages and disadvantages of each in 

the context of complex text classification. This method makes 

it possible to focus research efforts on enhancing automated 

categorization systems' functionality and using them more 

precisely and successfully in real-world applications. 

3. Proposed Methodology 

This section describes the suggested approach, illustrating both 

the proposed strategy and the progression of the machine 

learning methodology. Three main categories are used to 

summarize the suggested methodology: 

3.1. Data Collection and Splitting: 
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The proposed framework is trained and evaluated on a publicly 

available dataset; the text document classification dataset 

contains 2,225 text samples across five categories of 

documents. These categories are politics, sports, technology, 

entertainment, and business, as shown in Fig 1. This dataset 

can be used for document classification and clustering. It 

contains two features: text and label. The dataset has 2,225 

rows and 2 columns. The text feature includes different 

categories of text data, while the label feature contains labels 

for the five categories: 0 (Politics), 1 (Sports), 2 (Technology), 

3 (Entertainment), and 4 (Business). Using the 80-20 ratio, the 

preprocessed data was split into 80% training data and 20% 

test data. To learn classification rules, the training data is fed 

into the classification model. Furthermore, using the test data, 

the classification model is evaluated further [66]. 

 

Figure 1: Show the distribution of five categories 

3.2.  Data Preprocessing 

To achieve uniformity, the input text is first converted to 

lowercase in the preprocessing function for text document 

classification. This enables the model to treat words with 

different cases (such as "Text" vs. "text") as equivalent. Then, 

to get rid of unimportant material that doesn't add to the text's 

main point, mentions—usually user handles preceded by the 

"@" symbol—are eliminated. Subsequently eliminates URLs, 

including complete web addresses that start with "http" and 

those that start with "www," as they frequently don't have 

semantic weight for classification. The text is then made 

simpler for analysis by removing all non-alphanumeric 

characters, leaving a clean dataset made up solely of letters and 

integers. This set of transformations helps to prepare the text 

for effective classification by reducing noise and standardizing 

the input. Finally, the function combines any multiple spaces 

into a single space to ensure consistent spacing throughout the 

text, avoiding issues that may arise from irregular spacing [67]. 

 

3.3. Machine and Deep Learning Approach 

For each term in the training dataset, first determine its Term 

Frequency-Inverse Document Frequency (TF-IDF) scores, 

accounting for both the term's rarity throughout the total 

document set and its frequency within individual documents. 

Then, to enable quantitative comparisons across documents in 

the training set, describe each document as a numerical vector, 

with the components of the vector being the TF-IDF values 

assigned to each word. After that, train every model using 

these TF-IDF-weighted vectors. Lastly, apply the training 

models to their respective TF-IDF-based representations to 

produce predictions for the documents in the testing set. Then, 

evaluate each model's accuracy based on these predictions. 

 

 
Figure 2: Workflow diagram depicting the essential stages in 

the document classification process: Input Dataset, 

Preprocessing, Document Indexing, Feature Extraction, 

Prediction Model, and Label Identification. 

 

4. Experimental results 
An essential tool for classification problems, a word cloud is a 

visual representation of text data in which the size of each 

word indicates its frequency or importance within a particular 

dataset. Each of the five categories—business, sports, politics, 

technology, and entertainment—can be represented by a 

different word cloud as shown in Figure  3, when it comes to 

document classification. For instance, the sports word cloud 

would emphasize phrases like "team," "game," and "score," 

while the business word cloud might prominently display 

words like "finance," "investment," and "market." Likewise, 
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the political cloud may display words like "election," "policy," 

and "government," while the technology cloud may display 

words like "software," "innovation," and "artificial 

intelligence." Lastly, terms like "movie," "celebrity," and 

"music" can be the main focus of the entertainment word 

cloud. By finding patterns and improving document 

categorization accuracy, the analysis of these word clouds 

helps train classification algorithms by revealing the most 

common themes and keywords within each class. Developers 

can produce more efficient models that differentiate between 

the distinct textual details of each category by utilizing the 

traits displayed in these visual representations. 

 

 

 

 

 

 
 

Figure 3: show the Word clouds for document classification 

categories : The most common terms for 

eachcategory,business, sports, politics, technology, and 

entertainment—are represented by word clouds, which aid in 

identifying important themes and enhancing the accuracy of 

document classification.  By emphasizing specific terms that 

are pertinent to each category—for example, "team" in sports 

or "finance" in business—these visuals help train computers. 

 
The distribution of the data is shown graphically in the 

accompanying figure 4, where the text length is represented by 

the x-axis and the frequency or count of text lengths inside 

each bin is represented by the y-axis. Data exploration, 

visualization, and possible feature engineering chores are made 

easier by this output, which has great value since it enables 

data scientists or analysts to rapidly spot trends or skewness in 

the data, such as whether the majority of text lengths are 

uniformly distributed, long, or short. 

 

Figure 4: the distribution of text lengths in the dataset. 
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The ten most common bigrams from the cleaned text of tweets 

saved in a data frame are displayed visually in Fig. 4. It 

successfully illustrates the linguistic patterns and themes 

present in the tweet dataset by charting these bigrams against 

their corresponding counts in a horizontal bar format. This 

visualization is essential because it makes it possible to quickly 

identify frequently used terms and offers insights into popular 

subjects, public opinion, and important concerns that users are 

discussing. Better analysis and comprehension of the textual 

data at a glance are made possible by the use of a 

predetermined figure size, which guarantees that the output is 

readable and clear. 

Figure 5: depicts the 10 most prevalent bigrams derived from 

the sanitized tweet dataset. The horizontal bar chart illustrates 

commonly utilized paired phrases, like "last year," "told BBC," 

"said Mr.," and "prime minister," offering insights into 

dominant issues, public debate, and significant themes within 

the dataset. The lucid and comprehensible format enables rapid 

recognition of prevailing linguistic trends and domains of 

public concern. 

The 30 most common words in a set of text data are displayed 

in a bar chart in Fig 6. With the words on the x-axis and their 

frequency on the y-axis, the chart illustrates the frequency of 

each word. The term with the highest frequency is on the far 

left of the chart, while the word with the lowest frequency is on 

the far right, since the chart is arranged in descending order of 

frequency. Blue bars of various heights indicate the terms' 

frequencies, which are listed vertically. Understanding the 

topic, sentiment, or style of the text can be aided by the chart's 

visual representation of the most frequently used terms in the 

text data. 

 

Figure 6 shows the 30 most frequent words in the text 

collection in a bar chart, it arranged by decreasing frequency.  

Each blue bar's height reflects the frequency of the term, giving 

readers a visual summary of the most common words to help 

them grasp the text's general theme, sentiment, or style. 

 

Figure 7 analyzes the character length of various text 

categories, including politics, sports, entertainment, 

technology, and business. The research finds differences in text 

length by counting the characters in text samples from each 

category. This can show patterns in audience interest and 

content engagement across various domains. Comprehending 

these distinctions is essential since it allows marketers and 

content producers to efficiently customize their messaging 

tactics. While longer entries in the technology category would 

signal a more engaged audience seeking in-depth knowledge, a 

lesser character count in the sports area might suggest a 

preference for quick updates. In the end, this type of study aids 

in improving communication effectiveness within each 

category and optimizing the delivery of material. 

 

The top figure in Figure 8, shows the loss values in the y-axis, 

while the x-axis shows the number of epochs in a graph 

showing loss during text categorization in (CNN) model. The 

training data curve and the validation data curve are two 

separate curves on the graph. These curves initially converge at 

the same spot, showing a comparable loss trajectory as the 

model gains knowledge from the training set. Both curves 

decline as epochs go on, suggesting better performance; 

nevertheless, there is a significant divergence when the 

validation curve plateaus horizontally and the training curve 

keeps declining dramatically.  This shape's benefit is that it 

shows learning: the first drop indicates successful learning. In 

the bottom figure, shows the accuracy values in the y-axis, and 

the x-axis shows the number of epochs in the graph showing 

text classification accuracy. The training data curve and the 

validation data curve are two separate curves on the graph. 

Both curves initially begin at the same location, indicating a 

comparable degree of precision. The validation accuracy curve, 

on the other hand, trails behind the training accuracy curve, 

which increases noticeably as training goes on. The model's 

ability to efficiently learn patterns in the training dataset is 

demonstrated by the steep climb of the training curve, which 

gives it an advantage when it comes to obtaining high accuracy 

on known data. 

 

The y-axis shows the loss value, and the x-axis shows the 

number of epochs in the graph that shows loss for text 

classification in (DNN) model in Figure 9. At the beginning of 

the training process, the training and validation loss curves 

begin at the same place, suggesting that the loss scores of the 

two datasets are comparable. Both curves have a lower trend as 

the epochs go on, indicating gains in model performance. The 

model appears to be successfully learning the training data, 

though, as the training loss curve declines more abruptly than 

the validation loss curve. Although the steep decline of the 

training curve is advantageous because it shows that the model 

can learn complex patterns, the validation curve's continued 

height draws attention to the model's possible overfitting, in 

which it performs well on training data but less well on unseen 

data. The need for close observation during training to make 

sure the model generalizes properly and does not become 

unduly specialized to the training dataset is highlighted by this 

divergence between the two curves. As a result, the validation 

curve is an essential measure of the model's resilience and 

generalization skills, whereas the training curve's drop 

indicates successful learning. On the other side, the y-axis 

shows the accuracy values, and the x-axis shows the number of 

epochs in the graph showing text classification accuracy in 

(DNN) model. The training and validation accuracy curves 

initially begin at the same location, indicating an initial 

performance level that is equal. The model is learning 

effectively from the training data when the training accuracy 

curve increases over the course of the epochs and surpasses the 

validation accuracy curve. This situation has the benefit of 

boosting training accuracy, which indicates that the model is 

successfully identifying patterns in the training dataset.  
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Figure 5: depicts the 10 most prevalent bigrams derived from the sanitized tweet dataset 

 

 

Figure 6: The 30 most frequent words in the text collection are shown in a bar chart in this figure 

  

 
 

Figure 7: show the audience engagement and content preferences, a comparative analysis of character length across various text 

categorie
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Figure 8: The first graph on the left shows the loss values on 

the y-axis against epochs on the x-axis.  

 

Both curves initially converge, suggesting comparable learning 

progress, but as training goes on, they diverge, with the 

training loss dramatically declining and the validation loss 

plateauing, suggesting possible overfitting. The      accuracy 

over epochs is shown in the other graph on the right, where the 

validation accuracy trails behind, demonstrating the model's 

poor generalization to unknown data, while the training 

accuracy rises steadily, demonstrating the model's enhanced 

performance on training data. 

 

 

 

 

Figure 9: Loss and accuracy for DNN 

 

When classifying data into discrete classes, such sports, 

technology, entertainment, business, and politics, a confusion 

matrix is a useful tool in machine learning for assessing how 

well classification models perform. In this case, the matrix 

compares true labels with predicted labels to show how well 

the model separates these five categories. For instance, false 

positives and false negatives show misclassifications, such as 

mislabeling a sports item as technology or vice versa, whereas 

true positives show instances within each category that were 

correctly classified. Additionally, the matrix offers insightful 

information about particular aspects of model performance, 

which aids analysts in optimizing algorithms and raising 

accuracy across all categories. The confusion matrix makes it 

easier to see a model's advantages and disadvantages when it 

comes to handling the intricate world of content classification 

by displaying the number of categories and the accompanying 

predictions. In Figure 10. (LR) model's confusion matrix 

summarizes the model's performance in classifying different 
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types of data, showing the distribution of predictions across  

 

Five different categories: business, entertainment, politics, 

sports, and technology. The matrix shows that the model 

correctly classified 148 instances in the business category, 

indicating a relatively strong performance in this segment, 

while it slightly underperformed in the entertainment category, 

with 105 correct classifications; additionally, the politics 

category had 109 correct predictions, indicating moderate 

accuracy; the sports category had the highest number of correct 

classifications, at 151, indicating robust prediction capabilities 

in this area; while the technology category had the fewest 

correct classifications (100), indicating the model's ability to 

distinguish between categories. 146 data points were correctly 

classified as Business, 107 as Entertainment, 114 as Politics, 

151 as Sports, and 105 as Technology. The remaining data 

points that were incorrectly classified are dispersed throughout 

the second confusion matrix for SVM model, which looks to 

be a table showing the model's classification accuracy across 

five categories. The following is a breakdown of the numbers 

in each cell: False Positives (FP) are data points that were 

mistakenly predicted to belong to another category, True 

Negatives (TN) are data points that were correctly predicted to 

not belong to a specific category, FN (False Negatives) are 

data points that were mistakenly predicted to belong to their 

own category, and TP (True Positives) are the correct 

classifications (146, 114, and 151). With counts of 128 for 

business, 81 for entertainment, 90 for politics, 137 for sport, 

and 79 for technology, (DT) model demonstrated its relative 

superiority in classifying sports data, but its effectiveness in 

entertainment was lower. With counts of 146, 104, 116, 151, 

and 103, respectively, (NB) model showed a balanced 

approach and efficacy in detecting all categories, with Sports 

showing the best results. While (GBC) recorded 141, 100, 114, 

149, and 100, indicating a similar pattern of strength in Sports 

classification, the (KNN) model produced counts of 136, 99, 

111, 147, and 98, demonstrating a strong performance, 

particularly in Sports. However, with scores of 90, 96, 68, 73, 

and 98, (LSTM) model performed comparatively worse across 

the board, particularly in the Politics classification. With 

counts of 147, 104, 113, 151, and 105, (MLP) model 

demonstrated respectable performance in all categories, 

especially in sports. (DNN) model, on the other hand, fared 

noticeably worse across all categories, scoring only 22 for 

Business, 43 for Entertainment, 26 for Politics, 27 for Sport, 

and 36 for Technology. While (CNN) demonstrated a 

noticeable weakness with only 24 for Business, 45 for 

Entertainment, 30 for Politics, 33 for Sport, and 34 for 

Technology, (RF) model provided a strong performance with 

counts of 148, 104, 110, 149, and 100, demonstrating particular 

strength once more in Sports. The models' overall efficacy 

varied greatly; Multinomial NB and RF were among the best. 
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Figure 10: Confusion Matrices for all categories 
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The performance of various classification models across all 

categories is depicted in this chart. The most accurate models 

are RF and Multinomial NB, which perform very well in sports 

classification. Strong and reliable results are also shown by 

MLP and LR. On the other hand, CNN and DNN models 

exhibit poor performance in every category, with a 

significantly low percentage of accurate classifications. The  

Confusion matrices show the advantages and disadvantages of 

each model in terms of category differentiation. 

 

Precision (prec), recall, and F1 scores (F1) for different models 

in five categories—politics, sports, technology, entertainment, 

and business—are displayed in Table 1.  SVM consistently 

outperforms the other models, obtaining high scores in every 

category and primarily exhibiting prec, recall, and F1 values 

between 0.96 and 1.00.  Multinomial NB and MLP also 

perform well and consistently, with scores that are not far 

behind SVM's.  However, with far poorer precision, recall, and 

F1 scores—especially in the business category—the (DNN) 

performs the worst across all categories.  In comparison to 

other models, CNN and (DT) also perform poorly, particularly 

in domains like technology and business.  Based on these 

criteria, SVM is the most effective model overall for 

classification, whereas DNN is the least successful. 

 

In Table 2.The models that perform the best are (SVM), 

(MLP), and (multinomial NB), each of which achieves an 

accuracy of 97% and prec, recall, and F1 score of 0.97. With 

overall scores of 0.96, (LR) comes in second, demonstrating a 

great capacity for prediction. (GBC) performs marginally 

worse, scoring 0.95 and having a 95% accuracy rate.  (KNN), 

on the other hand, exhibits more reasonable outcomes, with an 

accuracy of 92%, prec of 0.92, recall of 0.92, and F1 score of 

0.93. Similar to LR, (RF) classifier maintains a balanced 0.96 

across all measures. (DNN) and (CNN) show a notable decline 

in performance, with DNN attaining an accuracy of 72% (0.73 

prec, 0.72 recall, and F1 score) and CNN obtaining an 

accuracy of 78% (0.78 across all metrics), we note that the 

accuracy of both DNN and CNN relatively few, and this is due 

to the fact that the number of epochs used is only 50, and 

perhaps if we increase it, we will get better results for both of 

them.. With an accuracy of 81% (0.81 prec, recall, and F1 

score), (DT) likewise performs poorly.  

 

The models are ranked from best training time to shortest 

training time as follows, based, that is provided: With training 

times of 2.8371810913085938e-05s and 

2.8848648071289062e-05s, respectively, MLP and LR trailed 

closely behind LSTM, which completed in the quickest amount 

of time at 2.7894973754882812e-05s. CNN and RF, two more 

highly competitive models, have training times of 

2.86102294921875e-05s and 2.8848648071289062e-05s, 

respectively. At the same time, Multinomial NB and DT 

completed their training in 2.9325485229492188e-05s. With 

training times ranging from 2.956390380859375e-05s to 

4.076957702636719e-05s, the remaining models-DNN, GBC, 

SVM, and KNN—took longer to train and were ranked  

 

 

Lowest in terms of training efficiency. 

 

Table 3 summarizes the mean scores and standard deviations 

of the machine and deep learning models' performance 

characteristics.  Despite having a relatively low average 

performance, (SVM) shows significant variability in its 

outputs, as evidenced by its 29.6 mean and extremely large 

standard deviation of 302.  With a comparable mean of 29.8 

and a standard deviation of 285, (LR) indicates stability but 

weak predictive power.  (NB) displays similar performance 

levels with a mean of 30.1 and a standard deviation of 206.  

With a high mean of 92.3 and standard deviation of 988, 

(KNN) stands out as a model that produces predictions that are 

remarkably consistent. With a mean of 40.1 and a standard 

deviation of 422, DT exhibits modest performance with 

notable variability. With a mean of 74.2 and a large standard 

deviation of 817,  (RF) exhibits great average performance but 

a wide range of output variance.  With a mean of 59.6 and a 

standard deviation of 128 (GBC) exhibits modest performance 

and variability.  (DNN) exhibits significant output variation 

despite great average performance, as evidenced by its high 

mean of 91.7 and incredibly enormous standard deviation of 

743. With a mean of 95.8 and a standard deviation of 634, 

(CNN) performs well but exhibits significant variability. The 

MLP model has moderate to high performance with noticeable 

output dispersion, as evidenced by its mean of 78.7 and 

standard deviation of 611. Finally, (LSTM) model performs 

poorly and is unpredictable, as evidenced by its lowest mean of 

17.4 and highest standard deviation of 889. Overall, the data 

shows a range of model performance levels, with some 

exhibiting consistent outcomes and others exhibiting notable 

fluctuation. Each model has unique prediction strengths and 

limits. 

The information presented in Table 4, shows the accuracy of 

different deep learning and machine learning models as 

documented in related works and contrasts them with the 

accuracy attained by a suggested method in three different 

investigations. Notably, (SVM) performs admirably, 

outperforming the highest comparable task accuracy of 93.8% 

with an accuracy of 98.02% in the suggested method. 

Similarly, with an astounding accuracy of 98.66%, the 

(Multinomial NB) model fared noticeably better than the 

earlier research. Although precise comparisons from other 

research were not given, the suggested (LR) and (MLP) models 

both demonstrate excellent performance, reaching 96% 

accuracy. However, the effectiveness of (RF) and (DT) models 

varies; in one related work, RF achieved 74.2%, whereas in the 

proposed approach, it achieved 96%. Additionally, the 

performance of DT increased significantly from 78.1% in 

related works to 96% in the proposed approach. In the 

suggested method, (KNN) model performs consistently with 

92%, while in related studies; it performs with 85.9% and 

91.9%. When compared to related research, the suggested 

methods demonstrate a notable improvement across nearly all 

models, suggesting that the new approach may include 

improved tactics or methodologies that lead to higher accuracy 

rates. 
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Table 1: comparison of categorization models' performance in various categories.  In the categories of Politics, Sports, 

Technology, Entertainment, and Business, the table displays the (prec), Recall, and F1 for a variety of machine and deep learning 

models. With excellent precision and recall levels, SVM and LSTM consistently outperform other models in the majority of 

categories. 

 

 
Model politics 

Prec   Recall   F1 

sport 

Prec     Recall  F1 

Technology 

Prec     Recall   F1 

Entertainment 

Prec    Recall    F1 

Business 

Prec   Recall     F1 

SVM 0.97 0.96 0.96 0.99 1.00 1.00 0.96 0.97 0.97 0.99 0.98 0.99 0.96 0.96 0.96 

MLP 0.96 0.95 0.95 0.99 1.00 1.00 0.95 0.97 0.96 0.98 0.95 0.97 0.96 0.97 0.96 

GBC 0.93 0.96 0.94 0.97 0.99 0.98 0.97 0.93 0.95 0.99 0.92 0.95 0.89 0.93 0.91 

LR 0.97 0.92 0.94 0.97 1.00 0.99 0.97 0.93 0.95 0.98 0.96 0.97 0.91 0.97 0.94 

KNN 0.85 0.93 0.89 0.98 0.97 0.98 0.94 0.91 0.92 0.93 0.91 0.92 0.92 0.89 0.91 

multinomialNB 0.94 0.97 0.96 0.97 1.00 0.99 0.98 0.95 0.97 0.99 0.95 0.97 0.97 0.96 0.96 

RF 0.97 0.92 0.95 0.96 0.99 0.97 0.98 0.93 0.95 0.96 0.95 0.96 0.93 0.97 0.95 

DNN 0.60 0.74 0.67 0.77 0.73 0.75 0.78 0.72 0.75 0.78 0.84 0.81 0.65 0.55 0.59 

LSTM 0.99 0.88 0.93 0.99 0.96 0.97 0.94 0.96 0.95 0.99 0.98 0.98 0.89 0.98 0.93 

CNN 0.81 0.86 0.83 0.77 0.89 0.82 0.74 0.68 0.71 0.83 0.88 0.86 0.73 0.60 0.66 

DT 0.87 0.76 0.81 0.87 0.91 0.89 0.85 0.73 0.79 0.80 0.74 0.77 0.70 0.84 0.76 

 

Table 2:  Comparison of training time and model performance: prec, recall, accuracy, F1, and training time for a number of 

classification models are shown in this table.   

The models like CNN and DNN performed poorly, SVM, MLP, and Multinomial NB had the highest accuracy (97%).  All models 

have comparatively low training times, albeit each model's computational efficiencyvaries

. 

 

    

 

Table 3: show the mean and standard deviation of performance 

for each classification model.  

The mean and standard deviation for each model's performance 

are shown in the table. CNN has the highest average. KNN, 

RF, and LSTM show higher standard deviations, indicating 

greater variability, whereas models like SVM, LR, and 

Multinomial NB demonstrate more consistent performance 

with smaller standard deviations. 

 

 

 

Model Mean Standard Deviation 

SVM 29.6 302 

DNN 91.7 743 

GBC 59.6 128 

LR 29.8 285 

KNN 92.3 988 

Multinomial N

B 

30.1 206 

RF 74.2 817 

DT 40.1 422 

LSTM 17.4 889 

CNN 95.8 634 

MLP 78.7 611 

 

 

 

 

Table 4:  Accuracy comparison of the suggested method and 

various models in related work. 

 

The accuracy of several models from relevant publications 

[63], [64], [65], and the suggested method is contrasted in the 

table. The suggested method exhibits significant gains in 

accuracy for models like SVM, Multinomial NB, and MLP. 

 

 

 

Model Weighted avg 

Prec   Recall    F1 

accurac

y 

Training time 

SVM 0.97 0.97 0.97 97 3.337860107421875e-05s 

MLP 0.97 0.97 0.97 97 2.8371810913085938e-05s 

GBC 0.95 0.95 0.95 95 2.9087066650390625e-05s 

LR 0.96 0.96 0.96 96 2.8848648071289062e-05s 

KNN 0.92 0.92 0.93 92 4.076957702636719e-05s 

Multinomial 

NB 

0.97 0.97 0.97 97 2.9325485229492188e-05s 

RF 0.96 0.96 0.96 96 2.8848648071289062e-05s 

DNN 0.73 0.72 0.72 72 2.956390380859375e-05s 

LSTM 0.96 0.96 0.96 96 2.7894973754882812e-05s 

CNN 0.78 0.78 0.78 78 2.86102294921875e-05s 

DT 0.81 0.81 0.81 81 2.9325485229492188e-05s 
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Model Accuracy of Related Work Accuracy of 

the Proposed 

approach 

 [ 63] [ 64] [ 65]  

SVM 93.8% 
 

98.02% 97% 

LR ------- --------

-- 

--------- 96% 

,MLP ------- --------

-- 

--------- 97% 

RF -------- 74.2% --------- 96% 

MultinomialNB 82.8% 74.6% 98.66% 97% 

KNN 85.9% 
 

91.9% 92% 

GBC ------ --------

- 

---------

- 

95% 

DT 78.1% --------

- 

96% 81% 

LSTM --------- -------- --------- 96% 

CNN --------- --------

- 

---------

- 

78% 

DNN --------- --------

-- 

--------- 72% 

 

 

5. Conclusion 

This study shows the advantages and disadvantages of different 

machine learning and deep learning models while highlighting 

the changing field of text document classification within 

(NLP). We have thoroughly examined models like (SVM), 

(MLP), (CNN), (LSTM) and others by carefully examining a 

dataset of 2,225 text documents in five categories: business, 

politics, sports, technology, and entertainment. Our results 

demonstrate the superior performance of ensemble approaches, 

particularly the SVM and MLP, which consistently had 

precision and recall metrics above 0.96 across a variety of 

categories and attained accuracy rates of 97%. These findings 

support the efficiency of optimized machine learning 

algorithms in managing the intricacies of text classification, 

clearly separating successful models from underperforming 

ones, like (CNN) and (DNN), which had generalization issues. 

The study opens the door for further research targeted at 

improving automated text classification systems by 

highlighting the significance of model selection adapted to 

certain classification tasks. Additionally, it tackles common 

problems in document categorization, like data noise and the 

difficulties posed by different text formats. The findings also 

point to the necessity of ongoing model adaptation and 

optimization in order to better accommodate the complex 

properties of the textual input being processed. Furthermore, 

our experimental analyses, which include confusion matrix  

Evaluations and performance metric assessments, support the 

notion that traditional machine learning techniques may 

provide more consistent generalization across a variety of 

datasets, even though deep learning models like (LSTM) show 

promise in sequential data handling. This study is an essential 

resource for academics and professionals who want to use 

these discoveries to further push the limits of text classification 

Techniques as NLP technology develops. 
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