j. Egypt.net.med. Assac 84, no 1. 29 - 45 (2024)

MOLECULAR DETECTION OF SOME VIRULENCE GENES OF E. COLI ISOLATED FROM CALF DIARRHEA IN SIWA OASIS, EGYPT

By

Mohamed Talat Ragab

Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Centre (DRC), Matariya, Cairo, Egypt.

ABSTRACT

Pathogenic *Escherichia coli* (*E. coli*) is the bacteria that causes diarrhea in calves most often, especially in young calves So, this study showed the prevalence and antibiogram pattern of *E. coli* found in calves with diarrhea in different areas in SIWA oasis ,Egypt. In addition, the polymerase chain reaction (PCR) was used to look at six genes that code for virulence (*IutA, iss, fimH, papC, adrA* and *TSH*). One hundred seventy calves were checked to see if they had *E. coli*. From samples of 170 calves with diarrhea, 86 (50, 5%) were found to be *E. coli* infected isoletes were studied were very sensitive to amoxicillin/clavulanic acid, polymixin, enrofloxacin, and ciprofloxacin. On the other hand, they were very resistant to streptomycin, gentamycin, tetracycline, sulfamethoxazole/trimethoprim, chloramphenicol and neomycin. The most common virulence genes found in all of the tested strains were *iss, fimH* and *iutA*. This was followed by (*papC*) gene (76%) (*AdrA*) gene (35%) while TSH (9%). Our research showed that colibacillosis in calves is caused by a strain that is resistant to multiple antibiotics and has virulence genes. This is important for coming up with new ways to control colibacillosis in calves.

Keywords:

Bovine, Escherichia coli, Virulence Gene, Antibiogram, Siwa Oasis.

INTRODUCTION

E. coli is the primary member of the large bacterial family Enterobacteriaceae, or enteric bacteria. These facultative anaerobic Gram-negative rods are found in both healthy and ill animals' intestinal systems (Melha et al., 2002). Even common "nonpathogenic" strains of E. coli can cause infection in weak or immunocompromised hosts, or when gastrointestinal barriers are breached. E. coli often remains harmlessly contained in the intestinal lumen (Aman et al., 2021).

Escherichia coli is commonly considered a commensal bacterium (Lugsomya et al, 2018). It is a major cause of diarrhea in calves and causes neonatal colibacillosis. It causes high death rates and slows growth and it hurts the global livestock industry economically (Lorenz et al., **2011).** Diarrhea-causing *E. coli* strains are broken up into six pathotypes based on the bacterial virulence and the clinical signs they cause in the host. Enterotoxigenic E.coli (ETEC), enteropathogenic E. coli (EPEC), shiga toxin-producing E. coli (STEC), enterohemorrhagic E. coli (EHEC), and enteroinvasive E. coli (DAEC) are examples (Gomes et al., 2016). Each of these pathotypes is a group of clones that share certain traits that make them dangerous. Still, it's important to note that, the flexibility of the E. coli genome has made it hard to identify certain E. coli isolates as pathotypes. This is because some isolates combine the main virulence traits of different pathotypes and are therefore thought to be hybrid pathogenic strains that could be more dangerous (Croxen et al, 2013). ETEC has been found to be the main cause of diarrhea in calves. The other causes are often found in both diarrheal and normal feces (Kolenda et al., **2015).** The main things that make ETEC dangerous and cause diarrhea are fimbrial adhesins and enterotoxins Fimbrial adhesins (F5, F17, and F41) help bacteria attach to epithelial surfaces in the small intestines. This makes it easier for bacteria to colonize with both heat-labile (LT) and heat-stable (STa and STb) enterotoxins. The toxins cause the intestinal epithelial cells to release fluids and electrolytes, which leads to diarrhea (Acres 1985; Kaper et al., 2004; **VuKhac et al., 2008).** It's not clear yet if the STEC is a cause of calf diarrhea, but there have been reports of STEC infections in cattle that killed them (Kolenda et al., 2015). Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2) are made by STEC. It also makes several virulence factors, such as intimin (Encoded by the eae gene), and the STEC auto-agglutinating adhesin (saa), the most important sources of STEC are known to be domestic ruminants, especially cattle (Paton et al., 2001). Berge et al. (2009) showed that, the use of antimicrobial agents is usually a good way to avoid and treat diarrhea in newborn calves. Hammerum and Heuer (2009) reported that this method could lead to the development of bacterial types that can't be killed by several antimicrobial drugs. Also, in the past few years, a lot of foreign surveillance has found animal or human E. coli strains that were resistant to multiple drugs (Woodford et al., 2011). It is important to understand the prevalence, antimicrobial pattern, and distribution of the (*IutA*, iss, fimH, papC, adrA, and TSH) virulence genes between E. coli isolates recovered from

diarrheal calves because diarrhea causes significant economic losses in Egypt's farms and smallholder farmers, especially in the desert.

Material and methods:

Samples:

A total of 170 fecal samples of diarrheic cattle calves aged from 1-8 months from , Siwa oasis, Egypt during the period from September 2022 to May 2023 were collected under aseptic conditions and each in separate sterile polyethylene bags, labeled sent on ice to the Desert Research Center. This study was approved by the Bedouin calves breeder who gave us permission to take diarrhea samples, and all international and governmental rules on how to use and care for the animals were followed.

Isolation of *E. coli*:

Fecal swabs received Peptone water addition, samples were incubated at 37°C for 24 hours, centrifuged, and the supernatant was cultured. A loopful of supernatant was streaked immediately onto 5% sheep blood agar and Sorbitol MacConkey agar plates and incubated for 24 hours at 37°C. Colonies of lactose fermenters were sub-cultured onto Eosin methylene blue agar and incubated aerobically for 18-24 hours at 37°C (**Quin** *et al.*, **1994**).

Identification of *E. coli* **isolates:**

Suspected colonies were subjected to morphological, cultural, and biochemical identification according to (**Murrary** *et al.* **2003**). Each fecal sample was inoculated on MacConkey agar (MBcell, Seoul, and ROK) and blood agar (Asan Pharmaceutical Co., Ltd., ROK) and put in an incubator at 37 °C for 12-18 hours.

Pure colonies that looked like *E. coli* were chosen at random, and their identities were confirmed using standard biochemical tests (API 20E System, BioMérieux, France).

Antibiogram profile:

According to (CLSI, 2002), the antimicrobial susceptibility test of *E. coli* strains was carried out using a Kirby-Bauer disk diffusion assay. The preparation of the bacterial solution followed (**Tenover, 2009**). The susceptibility of 11 Oxoid antimicrobial discs (Tetracycline, chloramphenicol, amoxicillin, clavulanic acid, streptomycin, enrofloxacin, sulfamethoxazole /trimethoprim, gentamicin, neomycin, ciprofloxacin, and polymixin) was then tested on *E. coli* isolates in vitro. According to the interpretation criteria provided by the CLSI standard, the inhibition zone was measured to evaluate the susceptibility or resistance.

j.Egypt.net.med.Assac 84, no 1, 29 - 45 /2024/

DNA extraction, and PCR Detection of virulence Genes and antibiotic resistance gene DNA extraction:

The QIAamp DNA Mini kit (Qiagen, Germany, GmbH) was used to get DNA from samples, but the instructions from the company were slightly modifications. In short, 10 minutes were spent at 56OC mixing 200 µl of the sample solution with 10µl of proteinase K and 200 µl of lysis buffer. After the lysate had been incubated, 200µl of 100% ethanol was added to it. The sample was then washed and put through a centrifuge, just as the maker said to do. 100µl of purification buffer was used to get rid of the nucleic acid.

Oligonucleotide Primers:

Primers used were supplied from Metabion (Germany) are listed in (Table 1).

PCR amplification:

Primers were used in a 25µl reaction that had 12.5 µl of EmeraldAmp Max PCR Master Mix (Takara, Japan),1 µl of each primer at a concentration of 20 pmol, 4.5 µl of water, and 6 µl of DNA template. A machine called an applied biosyst em 2720 thermal cycler was used to do the process.

Analysis of the PCR Products:

Electrophoresis on 1.5% agarose gel (Applichem, Germany, GmbH) in 1x TBE buffer at room temperature with 5V/cm gradients was used to separate the PCR results. For gel analysis, each gel slot was filled with 20μl of the uniplex PCR products and 40 μl of the duplex PCR products. Gelpilot 100 bp and 100 bp plus ladders (Qiagen, gmbh, Germany) and the Generuler 100 bp ladder (Fermentas, Germany) were used to figure out the sizes of the fragments. A gel documentation device (Alpha Innotech or Biometra) took pictures of the gel, and computer software was used to look at the data.

Oligonucleotide Primers:

The primers (Metabion, Steinkirchen, Germany) used for detecting the virulence genes of *E. coli* are listed in (Table1). (IutA) (**Yaguchi** *et al.*, **2007**), adrA (**Bhowmick** *et al.*, **2011**), iss (**Yaguchi** *et al.*, **2007**), TSH (**Delicato** *et al.*, **2003**) and for papC (**Wen-jie** *et al.*, **2008**). Positive and or negative controls were represented by field sample that were previously confirmed to be positive or negative by PCR for the related genes in the Reference laboratory for veterinary quality control on poultry production, Animal health research institute.

Table (1): Primers sequences, target genes and amplicons sizes.

pcr	Target gene	Primers sequences	Amplified segment (bp)	Reference
E. coli	iutA	GGCTGGACATGGGAACTGG CGTCGGGAACGGGTAGAATCG	300	Yaguchi et al., 2007
	adrA	ATGTTCCCAAAAATAATGAA TCATGCCGCCACTTCGGTGC	1113	Bhowmick et al., 2011
	iss	ATGTTATTTTCTGCCGCTCTG CTATTGTGAGCAATATACCC	266	Yaguchi et al., 2007
	fimH	TGCAGAACGGATAAGCCGTGG GCAGTCACCTGCCCTCCGGTA	508	Ghanbarpour and Salehi , 2010
	papC	TGATATCACGCAGTCAGTAGC CCGGCCATATTCACATAA	501	Wen-jie <i>et al.</i> , 2008
	tsh	GGT GGT GCA CTG GAG TGG AGT CCA GCG TGA TAG TGG	620	Delicato et al., 2003

RESULTS AND DISCUSSION

Gupta et al. (2014) paid a lot of attention to the role that E. coli plays in causing diarrhea in claves. Some workers said that, the animals' resistance would be lowered by the cold, dampness, high humidity, overcrowding, and rain, especially in the young calves, and that, this could be the main cause of death (Sayed et al., 2002). The present study revealed that samples were taken from calf that were clinically examined for the frequency watery and mucoid diarrheal cases from small-holder in SIWA oasis, Egypt, Of 170 examined calves samples, 86 (50, 5%) of the examined diarrheic calves were positive for E. coli. Our result, nearly similar to previous studies (52%) Solmaz et al. (2000) in Türkiye., in india Majueeb et al., 2014 (50%), On contrary, this result was higher than other studies in Egypt reported by Mousa, and Shama, (2021) who isolated E. coli from diarrheic calves samples with a prevalence rate of (40%) and (Galal et al., 2013 and Abdelazeem 2020) 28.7%, (El-Seedy et al., 2016) 18.1%, from India (Malik et al., 2013 and Shekhar et al., 2017) 37.61% and 41.6%, respectively from Sweden (Duse et al., 2015) 14.6%. This result was lower than that reported by (Osman et al., 2012, Egypt and Anwarullah et al., 2014 Pakistan) with a prevalence rate of 63.6% and 72.8% respectively. The variations in the outcomes caused by various factors, such as other

microorganism breeding systems predominating, the environment, immunity status methods, differences in the number of samples collected, geographical regions, stress factors, age groups, isolation factors, antibiotic therapy, or hygienic and management systems.

Antimicrobial susceptibility pattern of *E. coli* from diarrheic calves:

In this study, (Table 2) shows that 86%, 76%, 76%, and 64.7% of the E. coli strains that were tested for their ability to respond to antibiotics were sensitive to ciprofloxacin, enrofloxacin, polymixin, and amoxicillin/clavulanic acid, respectively. At the same time, 100 % of the bacteria were resistant to streptomycin, 82.3 percent were resistant to chloramphenicol and Gentamycin (CN), 81% were resistant to tetracycline and sulfamethoxazole/trimethoprim, and 53% were resistant to neomycin. **Khachatryan** et al. (2006) also came to the same conclusion. **Pereira** et al. (2011) and Shahrani et al. (2014) showed that all samples of E. coli were very sensitive to ciprofloxacin and cefepime and resistant to tetracycline, streptomycin, and sulfamethoxazole-trimethoprim. Srivani et al. (2017) found that STEC strains from calves with diarrhea had high antimicrobial resistance to tetracycline (63.21%) but were responsive to chloramphenicol, gentamycin (96.33%), and imipenem (99.06%). Also, 69.81% of these types were resistant to more than one drug. Also, **Hang** et al. (2019) found that tetracycline resistance was highest in E. coli types. The next medicines with the most resistant bugs were sulfamethoxazole, ampicillin, trimethoprim, and ciprofloxacin. Otherwise, Trimethoprim/sulfa and enrofloxacin have been shown to be useful at treating diarrhea in young calves (Ortman and Svensson, 2004). Mous et al. (2021) did a study in Egypt that compared different things. Showed that E. coli isolates were very sensitive to ciprofloxacin, enrofloxacin, polymixin, and amoxicillin / clavulanic acid, with rates of 81.25, 75%, 75%, and 62.5%, respectively. On the other hand, streptomycin had 100% resistance, followed by gentamycin, tetracycline, sulfamethoxazole /trimethoprim, chloramphenicol, and neomycin, which all had 81.25% resistance. El-Seedy et al. (2016) said that marbofloxacin, spectinomycin, and neomycin were all very effective against E. coli.

Table (2): Antibiogram of different *E. coli* isolates.

Antimicrobial class	Antimicrobial agents No of E. coli isolates (%)						
0-3383		R	%	I	%	S	%
Chloramphenico l	Chloramphenicol (C)	70/85	82.3	13/85	15	2/85	2
Tetracycline	Tetracycline (TET)	69/85	81	16/85	18.8	0/85	0
Sulfonamides	Sulfamethoxazole/trimethoprim (SXT)	69/85	81	10/85	11.7	6/85	7
	Gentamycin (CN)	70/85	82.3	15/85	17	0/85	0
Aminoglycosides	Streptomycin (S)	85/85	100	0/85	0	0/85	0
	Neomycin (N)	45/85	53	22/85	26	18/85	21
Fluor quinolones	Ciprofloxacin (CIP)	0/85	0	12/85	14	73/85	86
	Enrofloxacin (ENR	0/85	0	20/85	23.5	65/85	76
Polymixins	Polymixin B (PB)	4/85	4.7	16/85	18.8	65/85	76
Beta - lactams	Amoxicillin/Clavulanic acid (AMC)	10/85	11.7	20/85	23.5	55/85	64.7

Molecular detection of *E. coli* virulence genes:

When it comes to *E. coli* strains, their ability to cause disease is mostly due to the presence of strong toxins and certain virulence determinants. AdrA controls how cilia are made. Also, it is thought that many fimbrial genes play important parts in how *E. coli* sticks to surfaces, attaches to surfaces, and spreads to new areas (Mainil, 2013). (Kaper *et al.*, 2004) found that Shiga toxins link to the glycolipids on (Gb3) sites on the cell surface. This stops protein synthesis and kills the cell.

In our study, we used specific primer sets in a PCR test to look for six virulence genes in *E. coli* isolates (*Iss, fimH, iutA, papC, adrA*, and *TSH*). The results demonstrated that *iss, fimH* and *iutA* were the genes that were found most often in all of the isolates that were tested Fig. (1, 2, 3) followed by the gene encoding fimbria papC 76% Fig. (4), iron acquisition gene 30\85 (*adrA*) gene in 35% Fig. (5) Followed by8\85 (*TSH*) gene in 9% Fig. (6).

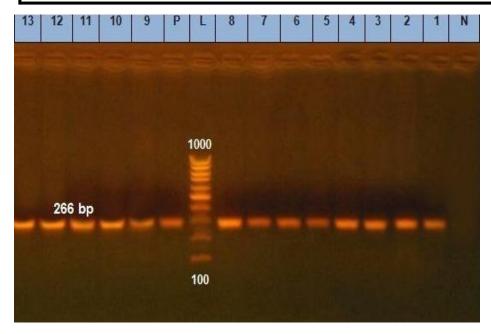


Fig. (1): All E. coli isolates (1-13) were positive for the iss gene (266 bp).

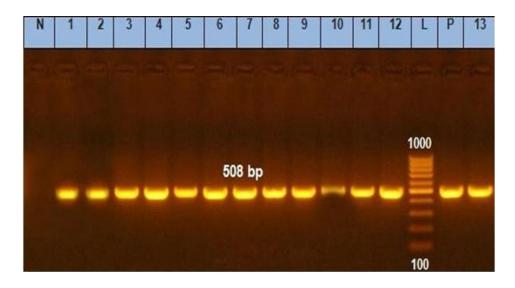


Fig. (2): All E. coli isolates (1-13) were positive for the fimH gene (508 bp).

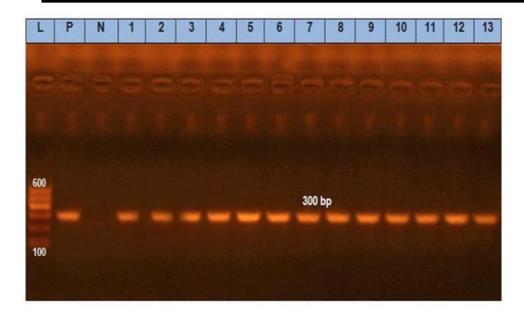


Fig. (3): All E. coli isolates (1-13) were positive for the iutA, gene (300bp).

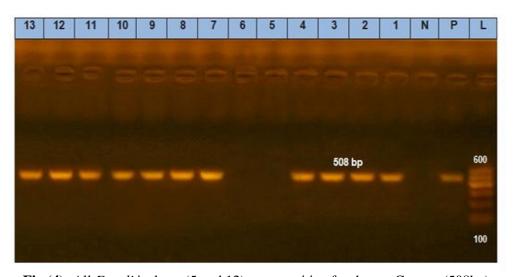


Fig (4): All E. coli isolates (5 and 12) were positive for the papC, gene (508bp).

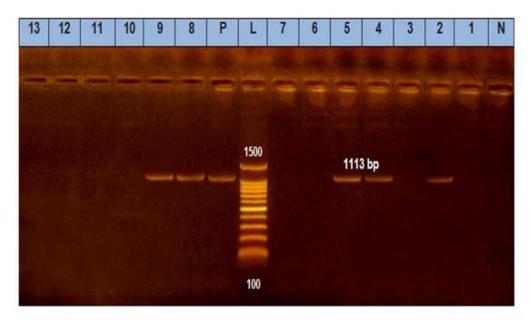


Fig. (5): *E. coli* isolates (2, 4, 5, 8 and 9) were positive for the *adrA*, gene (1113bp).

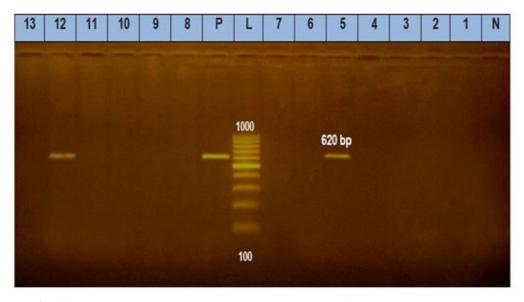


Fig. (6): All E. coli isolates (5 and 12) were positive for the TSH, gene (620bp).

Our results were similar to what **Kwon** *et al.* (2002) found in their study. They talked about how important fimbrial genes like F5 (K99) are for *E. coli* colonization in the mucosa of the small intestine of calves , *iutA* gene encodes the aerobactin siderophore ferric receptor protein, facilitates iron acquisition by mediating the uptake of siderophores They also talked about how

the frequency of the iss gene went from 80% to 100%. **Mellata** *et al.* (2003) found other fimbrial genes (F41 and F17) in ETEC in young calves. **Mousa** *et al.* (2021) found that *iss*, *fimH* present by 100% but *iutA* gene was not detected in any tested samples. Another study (**Lynne** *et al.*, 2007) explained how the *iss* and *bor* genes affect the pathogenicity of *E. coli* strains. These genes are thought to stop the effect of inhibitory mediators made by the host complement and resist the process of phagocytosis, which makes *E. coli* strains more dangerous to the target host, (**Binns** *et al.*, 1982) suggested that, the *Iss* protein may have a role in formation of functional complexes in the junctions between the inner and outer membranes.

In this study, the *TSH* gene was found in the samples by 8%. This led to different results from the researchers. (**Saidenberg** *et al.*, **2013**) showed that 85.3% of *E. coli* poultry strains had the TSH gene. **Mousa** *et al.* (**2021**) cannot detect any positive sample. In another study done in Egypt (**Abdulgayeid** *et al.*, **2015**), the TSH gene was found in 100% of the *E. coli* from calves with diarrhea. Because of this difference, more research needs to be done on the role and frequency of this gene in different animal species, as well as the chance of transmission between species and the environmental risk factor.

Conflict of Interest:

The authors declare that they have no conflict of interest.

Funding:

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

CONCLUSION

Based on the facts concluded through the research, it can be said that *Escherichia coli* diarrhea is very important because it can cause diarrhea in newborn calves and is also a source of infection that spreads among animals and causes high economic losses, especially in Siwa Oasis. The problem is compounded by the fact that there are strains that are becoming resistant to more than one type of antimicrobials and that *E. coli* contains virulence genes that can make calves sick. Also, it is important to identify more virulence genes and keep track of antibiotic resistance.

39

REFERENCES

- Abdelazeem M. Algammal, ,Ali W. El-Kholy, Emad M. Riad, Hossam E. Mohamed, Mahmoud M. Elhaig, Sulaiman A. Al Yousef, Wael N. Hozzein, and Madeha O. I. Ghobashy (2020): Genes Encoding the Virulence and the Antimicrobial Resistance in Enterotoxigenic and Shigatoxigenic *E. coli* Isolated from Diarrheic Calves. Toxins 2020, 12 (6), 383;https://doi.org/10.3390/toxins12060383.
- Acres, S.D. (1985): Enterotoxigenic Escherichia coli infections in newborn calves: a review. J. Dairy Sci 68, 229-256. DOI: 10.3168/jds.S0022-0302 (85) 80814 6.
- Aman, I.M.; Al-Hawary, I.; Elewa, S.M.; El-Kassas, W.M.; ElMagd, M.A.(2021): Microbiological evaluation of some Egyptian fermented dairy products. Journal of the Hellenic Veterinary Medical Society 2021, 72, 2875-2882.
- Anwarullah, M., Khan, J.A, Khan, M.S., Ashraf, K. and Avais, M. (2014): Prevalence of *Salmonella* and Escherichia coli associated with diarrhea in buffalo and cow calves. Buffalo Bull33,332-336.
- Archambault, M.; Petrov, P.; Hendriksen, R.S.; Asseva, G.; Bangtrakulnonth, A.; Hasman, H.; Aarestrup, F.M. (2006): Molecular characterization and occurrence of extended-spectrum beta-lactamase resistance genes among *Salmonella* enterica serovar Corvallis from Thailand, Bulgaria, and Denmark. Microb Drug Resist. Fall; 12 (3):192-8.
- Badri, S., Fassouane, A., Bouslikhane, M., Filliol, I., Hassar, M. and Cohen, N. (2009): Relationship between susceptibility to antimicrobials and virulence factors in Escherichia coli isolated from food in Morocco. Internet J Food Saf 11, 98-101.
- **Berge, A.C., Moore, D. A., Besser, T.E. and Sischo. W.M. (2009):** Targeting therapy to minimize antimicrobial use in preweaned calves: Effects on health, growth, and treatment costs. J. Dairy Sci 92, 4707-4714. DOI: 10.3168/jds.2009-2199.
- **Beutin, L., Kaulfuss, S., Herold, S., Oswald, E. and Schmidt, H.** (2005): Genetic analysis of enteropathogenic and enterohemorrhagic Escherichia coli sero-group O103 strains by molecular typing of virulence and housekeeping genes and pulsed-field gel electrophoresis. J Clin Microbiol 43, 1552-1563. DOI:10.1128/JCM.43.4.1552-1563.2005.
- Bhowmick, P.P.; Devegowda, D.; Ruwandeepika, H.A.D. Fuchs, T.M.; Srikumar, S.; Karunasagar, I. and Karunasagar, I. (2011): gcpA (Stm1987) is critical for cellulose production and biofilm formation on polystyrene surface by *Salmonella* enterica serovar Weltevreden in both high and low nutrient medium. Microbial Pathogenesis 50 (2011) 114e122.

- **Binns MM, Mayden J, Levine RP.** (1982): Further characterization of complement resistance conferred on Escherichia coli by the plasmid genes traT of R100 and iss of ColV, I-K94. Infect Immun 35:654-659. 10.1128/iai.35.2.654-659.1982. [PMC free article] [PubMed] [CrossRef] [Google Scholar.
- Boisen, N.; Ruiz-Perez, F.; Scheutz, F.; Krogfelt, K.A. and Nataro, J.P. (2009): High Prevalence of Serine Protease Auto transporter Cytotoxins among Strains of Enteroaggregative Escherichia coli. Am J Trop Med Hyg; 80 (2): 294 -301.
- Colom K, PèrezJ, Alonso R, Fernández-AranguizA, Lariňo E, Cisterna R. (2003): Simple and reliable multiplex PCR assay for detection of blaTEM, blaSHV and blaOXA-1 genes in Enterobacteriaceae. FEMS Microbiology Letters 223 147-151.
- Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. (2013): Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev. 2013; 26 (4):822-880.
- **Delicato, E.R.; De Brito, B.G.; Gaziri, L.C.J. and Vidotto, M.C. (2003):** Virulence-associated genes in Escherichia coli isolates from poultry with colibacillosis. Veterinary Microbiology 94 97–103.
- Duse, A., Waller, K.P., Emanuelson, U., Unnerstad, H.E., Persson, Y. and Bengtsson, B. (2015): Risk factors for antimicrobial resistance in fecal Escherichia coli from preweaned dairy calves. J Dairy Sci 98, 500-156. DOI:10.3168/jds.2014-8432.
- **Edwards, P.R. and Ewing, W.H. (1972):** Identification of Enterobacteriaceae. 3rd ed. Burgess Publ. Co., Minneapolis Minnesota.
- **El-Seedy, F.R., Abed, A.H., Yanni, H.A. and Abd El-Rahman, S.A.A.** (2016): Prevalence of *Salmonella* and *E. coli* in neonatal diarrheic calves. Beni-Suef University Journal of Basic and Applied Sciences.
- **Fouad, H., Saleh, H., Elazazy, H., Hamed, A., and Samir, S.** (2022): Prevalence of pathogenic *E. coli* in diarrhoeic cattle calves and antibiotic resistance genes. Kafrelsheikh Veterinary Medical Journal, 20 (1), 12-18.
- Galal, H. M., Hakim, A.S., and Dorgham, S. M. (2013): Phenotypic and virulence genes screening of Escherichia coli strains isolated from different sources in delta Egypt. *Life Sci.J*, 10 (2),352-361.
- Gomes, T.A., Elias, W.P., Scaletsky, I. C., Guth, B. E., Rodrigues, J. F., Piazza, R. M., and Martinez, M. B. (2016): Diarrheagenic escherichia coli. Brazilian journal of microbiology, 47, 3-30.
- **Gupta, V.; Roy, A.; Gupta, S.and Katare M.(2014):** Plasmid diversity and transferable antimicrobial drug résistance in *E.coli* isolates from calf diarrhea. Int. J.of Current Microbiology and Applied Sci. Vol.3, No. pp: 474-480.

- **Hammerum, A. M. and Heuer, O. E. (2009):** Human health hazards from antimicrobial-resistant Escherichia coli of animal origin. Clin. Infect. Dis 48, 916-921. DOI: 10.1086/597292.
- Hammerum, A. M., Sandvang, D., Andersen, S. R., Seyfarth, A. M., Porsbo, L. J., Frimodt-Møller, N., and Heuer, O. E. (2006): Detection of sul1, sul2 and sul3 in sulphonamide resistant Escherichia coli isolates obtained from healthy humans, pork and pigs in Denmark. International journal of food microbiology, 106 (2), 235-237.
- Hang, B.P.T., Wredle, E., Börjesson, S., Sjaunja, K.S., Dicksved, J. and Duse, A. (2019): High level of Multidrug-Resistant Escherichia coli in young dairy calves in southern Vietnam. Tropical Animal Health and Production 51, 1405-1411. DOI: 10.1007/s11250-019-01820-6.
- **Jeong, Y.W.; Kim T.E.; Kim, J.H.; Kwon, H.J. (2012):** Pathotypingavian pathogenic Escherichia coli strains in Korea.J Vet Sci. 2012 Jun; 13(2):145-52.
- **Kaper, J.B., Nataro, J.P. and Mobley, H.L. (2004):** Pathogenic Escherichia coli. Nat Rev Microbiol 2,123-140. DOI: 10.1038/nrmicro818.
- Khachatryan, A.R., Besser, T.E., Hancock, D.D. and Call, D.R. (2006): Use of a non-medicated dietary supplement correlates with increased prevalence of streptomycin-sulfa-tetracycline-resistant Escherichia coli on a dairy farm. Appl. Environ. Microbiol 72, 4583-4588.
 DOI:10.1128/AEM.02584-05.
- **Kolenda R, Burdukiewicz M, Schierack P. (2015):** A systematic review and meta-analysis of the epidemiology of pathogenic Escherichia coli of calves and the role of calves as reservoirs for human pathogenic *E. coli*. Front Cell Infect Microbiol. 2015; 5:23.
- **Kwon D, Choi C, Jung T, Chung HK, Kim JP, Bae SS, Cho WS, Kim J, Chae C**. **(2002)** Genotypic prevalence of the fimbrial adhesins (F4, F5, F6, F41 and F18) and toxins (LT, STa, STb and Stx2e) in Escherichia coli isolated from postweaning pigs with diarrhoea or oedema disease in Korea. Vet Rec 150, 35-37
- **Lorenz I, Fagan J, More SJ. (2011):** Calf health from birth to weaning. II. Management of diarrhoea in preweaned calves. Ir Vet J. 2011; 64:9
- Lugsomya, K.; Indeed, J.; Niyomtham, W.; Tribuddharat, C.; Tummaruk, P.; Hampson, D.J.; Prapasarakul, N. (2018): Antimicrobial Resistance in Commensal Escherichia Coli Isolated from Pigs and Pork Derived from Farms Either Routinely Using or Not Using In-Feed Antimicrobials. Microb. Drug Resist. 2018, 24, 1054-1066

- Lynne, A. M., J.A. Skyberg, C. M. Logue, C. Doetkott, S.L. Foley, and L. K. Nolan (2007): Characterization of a series of Tran's conjugant mutants of an avian pathogenic *Escherichia coli* isolate for resistance to serum complement. Avian Dis.51:771-776. [PubMed][Google Scholar]
- Sekhar, M. S., Sharif, N. M., Rao, T. S., and Kiranmayi, C. B. (2017): Detection of Beta-Lactam Resistance in Piscean Escherichia coli using Combination Disc Method and Multiplex PCR. *International journal of current microbiology and applied sciences*, 6 (10), 209-215.
- Mailk, S., Kumar A., Verma, A.K., Gupta, M.K., Sharma, S.D., Sharma, A.K. and Rahal, A. (2013): Incidence and drug resistance pattern of colibacillosis in cattle and buffalo calves in western Utter Pradesh in India. Journal of Animal Health and Production 1, 15-19. https://www.scopus.com/sourceid/21100901155.
- Mainil, J. (2013): Escherichia coli virulence factors. Vet Immunol Immunopathol 152:2-12. DOI:10.1016/j.vetimm.2012.09.032.
- Majueeb, U., Rehman, M.R., Javeed, A.S. and Mohd, A.B. (2014): Molecular epidemiology and antibiotic resistance pattern of Enteropathogenic Escherichia coli isolated from bovines and their handlers in Jammu, India. J Adv Vet Anim Res 1, 177-181. DOI: 10.5455/javar.2014.a30.
- Melha Mellata M, Dho -Moulin M, Do Zois CM Curtiss R, Brown PK, Arne P, Bree A, Desautels C, Fair- brother JM. (2002): Role of virulence factors in resistance of avian pathogenic Escherichia coli to serum and in pathogenicity. Microbiol. Infect. 19:64-40.
- Mellata, M., Dho-Moulin, M, Dozois, C.M., Curtiss, R., Brown, P.K., Arne, P., Bree, A., Desautles, C. and Fairbrother, J.M. (2003): Role of virulence factors in resistance of avian pathogenic Escherichia coli to serum and in pathogenicity. Infect Immun 71, 536 -540.DOI: 10.1128/IAI.71.1.536-540.2003
- Mousa, W. S., and Shama, U. H. A. (2021): Prevalence, antimicrobial resistance and substantial virulence-associated genes of Escherichia coli isolated from colibacillosis in neonatal calves in Egypt. Journal of microbiology, biotechnology and food sciences, 1145-1150.
- Mousa, W. S., and Shama, U. H. A. (2021): Prevalence, antimicrobial resistance and substantial virulence-associated genes of Escherichia coli isolated from colibacillosis in neonatal calves in Egypt. Journal of microbiology, biotechnology and food sciences, 1145-1150.
- Muriel, C., Blanco-Romero, E., Trampari, E., Arrebola, E., Durán, D., Redondo-Nieto, M., and Rivilla, R. (2019): The diguanylate cyclase AdrA regulates flagellar biosynthesis in Pseudomonas fluorescens F113 through SadB. Scientific reports, 9 (1), 8096.

- **Murray P.R.** (2003): Baron E.J., Jorgensen J.H., Pfaller M.A., Yolken R.H. 8th ed. American Society for Microbiology; Washington, DC: Manual of Clinical Microbiology; pp. 110 -122. [Google Scholar].
 - Newton-Foot, M.; Snyman, Y.; Maloba, M.R.B. and Whitelaw, A.C. (2017): Plasmid-mediated mcr-1 colistin resistance in Escherichia coli and Klebsiella spp. Clinical isolates from the Western Cape region of South Africa. Antimicrobial Resistance and Infection Control; 6:78.
 - Orndorff PE, Devapali A, Palestrant S, Wyse A, Everett ML, Bollinger RR, Parker W. (2004): Immunoglobulin-mediated agglutination of and biofilm formation by Escherichia coli K-12 require the type 1 pilus fiber. Infect Immun. 2004; 72:1929 -1938. [PMC free article] [PubMed] [Google Scholar]
 - Osman, K.M., Mustafa, A.M., Aly, M.A.K. and Abd El-Hamed, G.S. (2012): Serotypes, virulence genes, and intimin types of shiga toxin-producing Escherichia coli and enteropathogenic Escherichia coli isolated from mastitic milk relevant to human health in Egypt. Vector Borne Zoonotic Dis 12, 297-305. DOI:10.1089/vbz.2010.0257.
 - Paton AW, Srimanote P, Woodrow MC, Paton JC. (2001): Characterization of Saa, a novel autoagglutinating adhesin produced by locus of enterocyte effacement negative Shigatoxigenic Escherichia coli strains that are virulent for humans. Infect Immun. 2001; 69:6999 -7009.
 - Pereira, R.V.V., Santos, T.M.A., Bicalho, M.L., Caixeta, L.S., Machado, V.S. and Bicalho, R.C. (2011): Antimicrobial resistance and prevalence of virulence factor genes in fecal Escherichia coli of Holstein calves fed milk with and without antimicrobials. J. Dairy Sci 94, 4556-4565. DOI:10.3168/jds.2011-433.
 - Quinn PJ, Carter ME, Markey BK, Carter GR. (1994): Clinical. Veterinary Microbiology. Mosby year book Europe limited, Linton House. London, PP: 109 -126
 - Robicsek, A.; Strahilevitz, J.; Jacoby, G.A.; Macielag, M.; Abbanat, D.; Park, C.H.; Bush, K. and Hooper, D.C. (2006): Fluoroquinolonemodifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 12:83-88.
 - Ryu, J. H., Kim, S., Park, J., and Choi, K. S. (2020): Characterization of virulence genes in Escherichia coli strains isolated from pre-weaned calves in the Republic of Korea. Acta Veterinaria Scandinavica, 62 (1), 1-7.
 - Sayed AS, Ali AA, and Mottelib AA, Abd-El Rahman AA (2002): Bronchopneumonia in buffalocalves in Assuit governorate-I-Studies on bacterial causes, clinical, haematological and biochemical changes associated with the disease. Assuit Vet. MEd. J. 46 (92): 138-155.

- **Shahrani, M., Dehkordi, F.S. and Momta, H. (2014):** Characterization of Escherichia coli virulence genes, pathotypes and antibiotic resistance properties in diarrheic calves in Iran. Biol Res 47, 28 40. DOI: 10.1186/0717-6287-47-28.
- **Solmaz H, Akassakai A, Kaya A.(2000):** Some characteristics and antibiotic sensitivity of Escherichia coliisolated from neonatal calves. Dergisi Y.Y.U. Veteriner Fakuliesi Van Turkey. 10(1/2):47-50.
- Srivani, M., Reddy, Y.N., Subramanyam, K.V., Reddy, M.R. and Srinivasa, R.T. (2017): Prevalence and antimicrobial resistance pattern of Shiga toxigenic Escherichia coli in diarrheic buffalo calves. Veterinary World 10, 774-778. DOI: 10.14202/vetworld.2017.774-778.
- Tenover F. C., Emery S. L., Spiegel C. A., Bradford P. A., Eells S., and Endimiani A., et al. (2009): Identification of plasmid-mediated AmpC β-lactamases in *Escherichia coli*, *Klebsiella* spp., *Proteus* species can potentially improve reporting of cephalosporin susceptibility testing results. *J. Clin. Microbiol.* 47 294–299. 10.1128/JCM.01797-08.
- Umpiérrez, A., Ernst, D., Fernández, M., Oliver, M., Casaux, M. L., Caffarena, R. D., and Zunino,
 P. (2021): Virulence genes of Escherichia coli in diarrheic and healthy calves. Revista
 Argentina de Microbiología, 53 (1), 34-38.
- **VuKhac H, Cornick NA. (2008):** Prevalence and genetic profiles of Shiga toxin producing Escherichia coli strains isolated from buffaloes, cattle, and goats in central Vietnam. Vet Microbiol.; 126:356 63.
- Wen-jie J, Zhi-ming Z, Yong-Zhi Z, Ai-Jian Q, Hong-Xia S, Yue-long L, Jiao W, and Qian-Qian W. (2008): Distribution of Virulence-Associated Genes of Avian Pathogenic Escherichia coli Isolates in China. Agricultural Sciences in China, 7 (12): 1511-1515.
- Woodford, N., Turton, J.F. and Livermore, D.M. (2011): Multiresistant Gramnegative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev 35 (5), 736-55.
- **Woodford, N., Turton, J.F. and Livermore, D.M. (2011):** Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev 35 (5), 736-55. DOI:10.1111/j.1574-6976.2011.00268.x.
- Yaguchi, K.; Ogitani, T.; Osawa, R.; Kawano, M.; Kokumai, N.; Kaneshige, T.; Noro, T.; Masubuchi, K. and Shimizu, Y. (2007): Virulence Factors of Avian Pathogenic Escherichia coli Strains Isolated from Chickens with Coli septicemia in Japan. Avian Dis. Sep;51(3):656-62.
- **Zhou, Y., Fang, J., Davood, Z., Han, J., and Qu, D. (2021):** Fitness cost and compensation mechanism of sulfonamide resistance genes (Sul1, Sul2, and Sul3) in Escherichia coli. Environmental microbiology, 23 (12), 7538-7549.