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Abstract: This paper explores the ideas of p-infimal convolution (p-ic), (h□pk)(ξ ) = infη [h
1
p (ξ −η)+ k

1
p (η)]p, and p-supremal

convolution (p-sc), (h⊠p k)(ξ ) = supη [h
p(ξ −η)+ kp(η)]

1
p where 0 < p < 1, as an extension of infimal and supremal convolutions,

and we demonstrate that these operations are commutative and associative for any p. Meanwhile, we show that the (p-ic) increases
with p while the (p-sc) decreases and notice that when applying the (p-ic) for a certain function several times, we get a sub-additive
function, while applying the supremal convolution several times we get a super-additive function. Also, we extend the convolution of

two functions to p-convolution (p-c), (h∗p k)(t) =
[∫ t

0(h(τ)k(t− τ))
1
p dτ

]p
, which can calculate the Laplace transform for numerous

functions, and we go on to demonstrate its practical applications. We present a new framework for solving a Volterra integral equation

in the p form , u(ξ ) = h(ξ )+λ

[∫ ξ

0 k
1
p (ξ − t)u

1
p (t)dt

]
, using the (p-c) definition.

Keywords: convolution, infimal convolution, supremal convolution.

2020 AMS Subject Classifications: 46A03, 46A04, 46A16, 46A55, 52A15, 68M07.

1 Introduction

Infimal and supremal convolutions have several applications in many fields such as convex analysis, functional analysis,
optimization theory, integral equations and image processing. The convolution allows the combination of functions in a
way that preserves certain properties such as convexity, the approximation of non-smooth functions and the construction
of weak solutions of partial differential equations. In [1], the operation of infimal convolution,
(h□k)(ξ ) = infη [h(ξ −η)+ k(η)], was introduced by Rockefeller which is a tool widely used in convex analysis and
optimization theory. For more properties of this operation, see [2], [3] and [4]. In [5], Kiselman found that infimal
convolution provides an effective framework for defining distances within the image plane. By using infimal convolution,
he proved that a function h is sub-additive if and only if it satisfies the inequality h□h ≥ h. One of his interesting results
is that by repeating infimal convolution an infinite number of times for a certain function, he obtains a sub-additive
function. We found that this technique can be applied to (p-ic), which occurs when applying (p-ic) to a certain function
several times. In this case, we obtain a sub-additive function, whereas applying the supremal convolution several times

∗ Corresponding author name and e-mail: hanyabdelghaffar@sci.asu.edu.eg
© 2025 NIDOC
National Information and Documentation Center

https://joems.journals.ekb.eg/
http://dx.doi.org/10.21608/JOEMS.2025.410188.1054
https://orcid.org/0000-0002-9593-9699
https://orcid.org/0000-0003-3253-3330
https://orcid.org/0009-0004-6224-3830
https://orcid.org/0009-0005-3590-096X


84 Hany Abd El Ghaffar: Fractional Infimal and Supremal Convolutions With Applications

yields a super-additive function. We noticed that sub-additivity (or super-additivity) can be characterized in terms of
(p-ic) (or (p-sc)), so if (h□ph)

1
p ≥ h

1
p thenh

1
p is sub-additive. Moreover, if (h⊠p h)p ≤ hpthen hp is super-additive. The

convolution (h∗ k)(t) =
∫ t

0 h(τ)k(t− τ)dτ is an important operation in mathematics with many applications in diverse
areas. It is an effective technique for solving differential and integral equations [6], [7], calculating probabilities [8] and
defining important functions in number theory [9]. Also, it has numerous applications in signal
processing [10], [11], [12], deep learning [13] and image processing such as filtering, smoothing, enhancing, and
extracting features from data [14], [15], [10], [16], [17].
In this paper, we introduce new notions of convolutions such as p-convolution (p-c)

(h∗p k)(t)=
[∫ t

0(h(τ)k(t− τ))
1
p dτ

]p

, p-infimal convolution (p-ic) (h□pk)(ξ ) = infη [h
1
p (ξ −η)+ k

1
p (η)]p and

p-supremal convolution (p-sc) (h⊠p k)(ξ ) = supη [h
p(ξ −η)+ kp(η)]

1
p where 0 < p < 1. In section two, some basic

definitions are introduced. In section three, we introduce (p-ic) and demonstrate that its operation is both commutative
and associative (Proposition 2). We prove that sub-additivity of a certain function can be characterized in terms of (p-ic)
(Proposition 1). We notice that when applying (p-ic) for a certain function several times we get a sub-additive function
(Theorem 1). In section four, we provide (p-sc) and illustrate that it has the properties of commutativity and associativity.
(Proposition 4) and show that super-additivity of a certain function can be characterized in terms of (p-sc)(Proposition 5).
We notice that when applying the (p-sc) for a certain function several times we get a super-additive function (Theorem 2)
and then introduce an interesting relation between (p− ic), (p− sc), infimal convolution and supremal convolution. We
notice that (h□pk) is increasing with p while (h⊠p k) is decreasing with p (Proposition 6). In Section five, we introduce
the definition of (p-c), followed by examples and prove the fractional convolution theorem (Theorem 4). We then provide
some applications in Laplace transformations. In section six, we solve the p-Volterra integral equation

u(ξ ) = h(ξ )+λ

[∫ ξ

0 k
1
p (ξ − t)u

1
p (t)dt

]
as an application using the definition of (p-c).

2 Preliminaries

We begin by outlining the core definitions and principles that underpin this study.

Definition 1 [18], [1], [19] Let U be a vector space over the field R of real numbers. A subset X of U is said to be convex
if the line segment, [ξ ,η ] = (1−λ )ξ +λη ,0 ≤ λ ≤ 1 is contained in X for any given choice of ξ ,η ∈ X; essentially, if
ξ ,η ∈ Ximplies [ξ ,η ] ∈ X.

Definition 2 [18], [1], [19] Let U ⊂ Rn be a nonempty convex set. A function h : U → R is said to be convex on U if for
any ξ ,η ∈ X and 0 ≤ λ ≤ 1, we have h((1−λ )ξ +λη)≤ (1−λ )h(ξ )+λh(η).

Definition 3 [20], [21], [19] Let U ⊂ Rn and 0 < p < 1. If for each ξ ,η ∈ U, λ ,µ ≥ 0 such that λ p +µp = 1 ,
λξ +µη ∈ U, then U is called a p-convex set in Rn. The p-convexity of U can also be formalized as follows

λξ +(1−λ
p)

1
p η ∈ U

for all ξ ,η ∈ U and λ ,µ ∈ [0,1].

Definition 4 [20], [21], [19] Let U ⊂ Rn be a nonempty p-convex set. A function h : U → R is said to be p-convex on U if
for any ξ ,η ∈ U and λ ,µ ∈ [0,1], then we have

h(λξ +µη)≤ λh(ξ )+µh(η)

such that λ p +µp = 1.
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Definition 5 [18], [22], [2], [1] Let h,k be two functions which act on the set X and produce values in the extended real
line [−∞,+∞]. The infimal convolution h□k of f and k is defined by

(h□k)(ξ ) = inf
η∈X

[h(ξ −η)+ k(η)]

Definition 6Let h,k be two functions which act on the set X and produce values in the extended real line [−∞,+∞]. The
supremal convolution h⊠ k of h and k is defined by

(h⊠ k)(ξ ) = sup
η∈X

[h(ξ −η)+ k(η)]

3 Fractional Infimal Convolution

We dedicate the subsequent section to a detailed presentation of the p-infimal convolution (p− ic) (h□pk) of two functions
h, k in definition 7. Moreover, we show in Proposition 2 that (p− ic) is a commutative and associative operation.

Definition 7 [23] Let h,k be two functions which act on the set X and produce values in the extended real line [−∞,+∞].
For 0 < p < 1, we define the p-infimal convolution (p− ic) h□pk of two functions h and k as follows:

(h□pk)(ξ ) = inf
η∈X

[h
1
p (ξ −η)+ k

1
p (η)]p,ξ ∈ X. (1)

For p = 1, see [24], [25], [1].

Proposition 1A necessary condition for a function h
1
p to be sub-additive (i.e., h

1
p (ξ +η) ≤ h

1
p (ξ )+h

1
p (η) ) is that

(h□ph)
1
p ≥ h

1
p . Moreover, if h

1
p is super-additive (i.e., h

1
p (ξ +η)≥ h

1
p (ξ )+h

1
p (η) ) then (h□ph)

1
p ≤ h

1
p .

Proof . Assume,
(h□ph)

1
p (ξ )≥ h

1
p (ξ ) (2)

then from equation (1) we get,

inf
η∈X

[h
1
p (ξ −η)+h

1
p (η)]≥ h

1
p (ξ ) (3)

In particular, when replacing ξ by ξ +η in equation (2) we get,

(h□ph)
1
p (ξ +η)≥ h

1
p (ξ +η) (4)

So from equation (1) and from the property that the infimum of a set is always less than or equal to every element of the
set [26] we get,

h
1
p (ξ )+h

1
p (η)≥ inf

η∈X
[h

1
p (ξ )+h

1
p (η)]≥ h

1
p (ξ +η)

Hence, h
1
p is sub-additive.

Similarly, let h
1
p be super-additive then

h
1
p (ξ ) = h

1
p (ξ +η −η)≥ h

1
p (ξ −η)+h

1
p (η),∀η ∈ X

≥ inf
η∈X

[h
1
p (ξ −η)+h

1
p (η)] = (h□ph)

1
p .

Proposition 2 [23] Fractional infimal convolution is an operation that is both commutative and associative.

© 2025 NIDOC
National Information and Documentation Center



86 Hany Abd El Ghaffar: Fractional Infimal and Supremal Convolutions With Applications

Proof . (I) Commutativity: Assuming ζ = ξ −η we get from definition (7),

(h□pk)(ξ ) = inf
η∈X

[h
1
p (ξ −η)+ k

1
p (η)]p = inf

ζ∈X
[h

1
p (ζ )+ k

1
p (ξ −ζ )]p = (k□ph)(ξ ).

(II)Associativity:

(h□p(k□pr))(ξ ) = inf
η∈X

[h
1
p (ξ −η)+(k□pr)

1
p (η)]p f rom De f .7

= inf
η∈X

[h
1
p (ξ −η)+ inf

ζ∈X
(k

1
p (η −ζ )+ r

1
p (ζ ))]p f rom De f .7

since the term h
1
p (ξ −η) is independent on ζ , we can write

= inf
η∈X

[ inf
ζ∈X

[h
1
p (ξ −η)+ k

1
p (η −ζ )+ r

1
p (ζ )]p]

= inf
ζ∈X

inf
η∈X

[r
1
p (ζ )+(k

1
p (η −ζ )+h

1
p (ξ −η))]p

the term r
1
p (ζ ) is independent on η so,

= inf
ζ∈X

[r
1
p (ζ )+ inf

η∈X
(k

1
p (η −ζ )+h

1
p (ξ −η))]p

by adding and subtract ζ in term o f h
1
p (ξ −ζ ) we get,

= inf
ζ∈X

[r
1
p (ζ )+ inf

η−ζ∈X
(h

1
p ((ξ −ζ )− (η −ζ ))+ k

1
p (η −ζ ))]p

= inf
ζ∈X

[r
1
p (ζ )+ inf

η̃∈X
(h

1
p ((ξ −ζ )− (η̃))+ k

1
p (η̃))]p where, η −ζ = η̃ .

= inf
ζ∈X

[r
1
p (ζ )+(h□pk)

1
p (ξ −ζ )]p = ((h□pk)□pr)(ξ ).

An n-fold convolution is defined as

(h1□p . . .□phn)(ξ ) = inf [
n

∑
i=1

h
1
p
i (ξ

i)]p,

where the infimum is taken over all choices of elements ξ i ∈ X for i = 1,2, . . .n such that ξ 1 + · · ·+ξ n = ξ .
The next proposition will be used in the proof of Theorem 1.

Proposition 3Let h,k : X → [0,∞] be nonnegative functions and let 0 < p < 1. Then the following inequality holds
pointwise:

(h(ξ )+ k(ξ ))p ≤ hp(ξ )+ kp(ξ ), ∀ξ ∈ X.

For a proof, see [27], [28].

Theorem 1Let K : X → [0,∞] be a function on X satisfying K(0) = 0. Define a sequence of functions (Kj)
∞
j=1 by putting,

K1 = K, Kj = (Kp
j−1□pKp)

1
p , j = 2,3, . . .. Then the sequence (Kp

j ) is decreasing and its limKp
j = k ≥ 0 is sub-additive.

Proof . We’ll show that the sequence Kp
j is decreasing, taking η = 0 in the definition of K j we get, for j = 2,

Kp
2(ξ ) = (Kp

1□pKp)(ξ ) = (Kp□pKp)(ξ ) f rom De f .7 we have,

= inf
η∈X

[K(ξ −η)+K(η)]p taking η = 0 we get,

= inf
η∈X

[K(ξ −0)+K(0)]p
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from Proposition 3 and from the property that is the infimum of a set is always less than or equal to every element of the
set we obtain,

Kp
2(ξ )≤ [Kp(ξ )+Kp(0)]

≤ Kp(ξ )≤ Kp
1(ξ ).

For j = 3,

Kp
3(ξ ) = (Kp

2□pKp)(ξ )

= inf
η∈X

[K2(ξ −0)+K(0)]p f rom De f .7

≤ [Kp
2(ξ )+Kp(0)] f rom Prop.3

≤ Kp
2(ξ ).

For j = j+1,

Kp
j+1(ξ ) = (Kp

j □pKp)(ξ )

= inf
η∈X

[Kj(ξ −0)+K(0)]p f rom De f .7

≤ [Kp
j (ξ )+Kp(0)]≤ Kp

j (ξ ). f rom Prop.3

So, we get Kp
2 ≤ Kp

1 , Kp
3 ≤ Kp

2 and Kp
j+1 ≤ Kp

j . Therefore, the sequence (Kp
j ) is decreasing. Next, we shall prove that the

limit of the sequence (Kp
j ) is sub-additive (i.e. k(ξ +η)≤ k(ξ )+ k(η)). Since the sequence is decreasing, then

infjK
p
j (ξ ) = k(ξ ). Let ξ ,η be given with k(ξ ),k(η) < +∞ and consider a fixed positive number ε . Then we can find

numbers j,r such that Kp
j (ξ )< k(ξ )+ ε and Kp

r (ξ )< k(η)+ ε . Replacing ξ by ξ +η in the case of Kp
j+1 we obtain,

Kp
j+1(ξ +η)≤ Kp

j (ξ )+Kp(η),

Kp
j+2(ξ +η) = Kp

j+2(ξ +η +ζ −ζ )≤ Kp
j+1(ξ +ζ )+Kp(η −ζ )

≤ Kp
j (ξ )+Kp(ζ )+Kp(η −ζ )

≤ Kp
j (ξ )+ inf

ζ∈X
[Kp(η −ζ )+Kp(ζ )]

≤ Kp
j (ξ )+Kp

2(η).

Similarly we get,
Kp

j+r(ξ +η)≤ Kp
j (ξ )+Kp

r (η),

k(ξ +η)≤ Kp
j+r(ξ +η)≤ Kp

j (ξ )+Kp
r (η)< k(ξ )+ k(η)+2ε.

Since ε is arbitrary, the inequality k(ξ +η)≤ k(ξ )+ k(η) follows. Therefore, the limit k is sub-additive.

For p = 1 see, [5].
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4 Fractional Supremal Convolution

In this section, we present the p-supremal convolution (p− sc) (h⊠p k) of the two functions h,k in definition 8. Moreover,
in proposition 4 (p− sc) is shown to be commutative and associative operations.

Definition 8Consider two functions h,k defined on the domain X and mapping to the extended real line [0,+∞]. For
0 < p < 1, we define the p-supremal convolution (p− sc) (h⊠p k) of two functions h and k as follows:

(h⊠p k)(ξ ) = sup
η∈X

[hp(ξ −η)+ kp(η)]
1
p ,ξ ∈ X.

Proposition 4Fractional supremal convolution is an operation that is both commutative and associative.

Proof . (I) Commutativity: By setting ζ = ξ −η we obtain from definition (8),

(h⊠p k)(ξ ) = sup
η∈X

[hp(ξ −η)+ kp(η)]
1
p = sup

ζ∈X
[hp(ζ )+ kp(ξ −ζ )]

1
p = (k⊠p h)(ξ ).

(II)Associativity:

[h⊠p (k⊠p r)](ξ ) = sup
η∈X

[hp(ξ −η)+(k⊠p r)p(η)]
1
p f rom De f .8

= sup
η∈X

[hp(ξ −η)+ sup
ζ∈X

(kp(η −ζ )+ rp(ζ ))]
1
p f rom De f .8

since the term hp(ξ −η) is independent on ζ , we can write

= sup
η∈X

[sup
ζ∈X

[hp(ξ −η)+ kp(η −ζ )+ rp(ζ )]
1
p ]

= sup
ζ∈X

sup
η∈X

[rp(ζ )+(kp(η −ζ )+hp(ξ −η))]
1
p

the term rp(ζ ) is independent on η so,

= sup
ζ∈X

[rp(ζ )+ sup
η∈X

(kp(η −ζ )+hp(ξ −η))]
1
p

by adding and subtracting ζ in term o f hp(ξ −ζ ) we get,

= sup
ζ∈X

[rp(ζ )+ sup
η−ζ∈X

(hp((ξ −ζ )− (η −ζ ))+ kp(η −ζ ))]
1
p

= sup
ζ∈X

[rp(ζ )+ sup
η̃∈X

(hp((ξ −ζ )− (η̃))+ kp(η̃))]
1
p where,η −ζ = η̃

= sup
ζ∈X

[rp(ζ )+(h⊠p k)p(ξ −ζ )]
1
p

= [(h⊠p k)⊠p r](ξ ).

Proposition 5A necessary condition for a function hp to be super-additive is that (h⊠p h)p ≤ hp. Moreover, if hp is sub-
additive then (h⊠p h)p ≥ hp.

Proof . Assume,
(h⊠p h)p(ξ )≤ hp(ξ )
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i.e.

sup
η∈X

[hp(ξ −η)+hp(η)]≤ hp(ξ )

In particular,

(h⊠p h)p(ξ +η)≤ hp(ξ +η)

so,

hp(ξ )+hp(η)≤ sup
η∈X

[hp(ξ )+hp(η)]≤ hp(ξ +η)

Hence, hp is super-additive.
Similarly, let hp is sub-additive then

hp(ξ ) = hp(ξ +η −η)≤ hp(ξ −η)+hp(η), ∀η ∈ X

≤ sup
η∈X

[hp(ξ −η)+hp(η)] = (h⊠p h)p.

An example can be constructed using Proposition 4 for a p norm ∥ ξ ∥. If we take hp(ξ ) =∥ ξ ∥p so we get,

∥ ξ ∥p≤∥ ξ −η ∥p + ∥ η ∥p= hp(ξ −η)+hp(η),∀η ∈ X

Then,

∥ ξ ∥p≤ sup
η∈X

[hp(ξ −η)+hp(η)]

i.e. (h⊠p h)p ≥ hp.

Theorem 2Let K : X → [0,∞] be a function on X satisfying K(0) = 0. Define a sequence of functions (K j)
∞
j=1 by putting,

K1 = K, K j = (K
1
p
j−1⊠p K

1
p )p, j = 2,3, . . .. Then the sequence (K

1
p
j ) is increasing and its limK

1
p
j = k ≥ 0 is super-additive.

Proof . This proof establishes that the sequence K
1
p
j is increasing, taking η = 0 in the definition of K j we get, for j = 2,

K
1
p
2 (ξ ) = (K

1
p
1 ⊠p K

1
p )(ξ ) = (K

1
p ⊠p K

1
p )(ξ )

= sup
η∈X

[K(ξ −0)+K(0)]
1
p f rom De f .8

≥ [K(ξ −0)+K(0)]
1
p since

1
p
> 1 then,

≥ [K
1
p (ξ )+K

1
p (0)]

≥ K
1
p (ξ )≥ K

1
p
1 (ξ ).

For j = 3,

K
1
p
3 (ξ ) = (K

1
p
2 ⊠p K

1
p )(ξ )

def8
= sup

η∈X
[K2(ξ −0)+K(0)]

1
p

≥ [K
1
p
2 (ξ )+K

1
p (0)]≥ K

1
p
2 (ξ ).
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For j = j+1,

K
1
p
j+1(ξ ) = (K

1
p
j ⊠p K

1
p )(ξ )

= sup
η∈X

[Kj(ξ −0)+K(0)]
1
p

≥ [K
1
p
j (ξ )+K

1
p (0)]≥ K

1
p
j (ξ ).

So, we get K
1
p
2 ≥ K

1
p
1 , K

1
p
3 ≥ K

1
p
2 and K

1
p
j+1 ≥ K

1
p
j .Therefore, the sequence (K

1
p
j ) is increasing. Next, we shall prove that

k(ξ +η) ≥ k(ξ )+ k(η). Let supj K
1
p
j (ξ ) = k(ξ ) and let ξ ,η be given with k(ξ ),k(η) < +∞ and suppose ε is a positive

real number. Then we can find numbers j,r such that K
1
p
j (ξ )> k(ξ )− ε and K

1
p
r (ξ )> k(η)− ε . We have,

K
1
p
j+1(ξ +η)≥ K

1
p
j (ξ )+K

1
p (η),

K
1
p
j+2(ξ +η)≥ K

1
p
j+1(ξ +ζ )+K

1
p (η −ζ )

≥ K
1
p
j (ξ )+K

1
p (ζ )+K

1
p (η −ζ )

≥ K
1
p
j (ξ )+ sup

ζ∈X
[K

1
p (η −ζ )+K

1
p (ζ )]

≥ K
1
p
j (ξ )+K

1
p
2 (η).

Similarly, we get

K
1
p
j+r(ξ +η)≥ K

1
p
j (ξ )+K

1
p
r (η),

k(ξ +η)≥ K
1
p
j+r(ξ +η)

≥ K
1
p
j (ξ )+K

1
p
r (η)

> k(ξ )+ k(η)−2ε.

Since ε is arbitrary, the inequality k(ξ +η)≥ k(ξ )+ k(η) follows. Therefore, the limit k is super-additive.

We will introduce an interesting relation between (p− ic),(p− sc), infimal convolution and supremal convolution. We
notice that (h□pk) increases with p, while (h⊠p k) decreases with p. More precisely, we get the following proposition.

Before proceeding, we state the following theorem, which will be used in the proof of the next proposition.

Theorem 3 (Jensen’s inequality)Let a1,a2, . . . ,an be real or complex numbers. If 0 < p < q, then(
n

∑
i=1

|ai|q
)1/q

≤

(
n

∑
i=1

|ai|p
)1/p

.

For a proof see, [29], [30], [31].

Proposition 6For 0 < p < q < 1 we get

(h□pk)≤ (h□qk)≤ (h□k)≤ (h⊠ k)≤ (h⊠q k)≤ (h⊠p k).
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Proof . From Definition 7, we get,

(h□pk)(ξ ) = inf
η∈X

[h
1
p (ξ −η)+ k

1
p (η)]p

From Jensen’s inequality, Proposition 3 and for p < q we have,

(h□pk)(ξ ) = inf
η∈X

[h
1
p (ξ −η)+ k

1
p (η)]p ≤ inf

η∈X
[h

1
q (ξ −η)+ k

1
q (η)]q ≤

≤ inf
η∈X

[h(ξ −η)+ k(η)]≤ sup
η∈X

[h(ξ −η)+ k(η)] = h⊠ k.

Similarly,

(h⊠p k)(ξ )= sup
η∈X

[hp(ξ −η)+ kp(η)]
1
p ≥ sup

η∈X
[hq(ξ −η)+ kq(η)]

1
q ≥

≥ sup
η∈X

[h(ξ −η)+ k(η)]≥ inf
η∈X

[h(ξ −η)+ k(η)] = h□k.

Remark 1

sup
p
(h□pk)(ξ ) = inf

p
(h⊠p k)(ξ ) = (h□k)(ξ ).

5 Fractional convolution

In this section, we present the (p-c) (h∗p k) of the two functions h,k in definition 9. Moreover, we introduce in theorem 4
Laplace transformation for (p-c).

Definition 9The fractional convolution of two functions h(t) and k(t) defined for t > 0, h,k ∈ Lp, is given by the integral

(h∗p k)(t) =
[∫ t

0

(
h(τ)k(t− τ)

) 1
p

dτ

]p

which exists if h and k are piece-wise continuous [32].

Substituting u = t− τ gives

(h∗p k)(t) =
[∫ t

0

(
h(t−u)k(u)

) 1
p

du
]p

= (k ∗p h)(t)

then, the fractional convolution is commutative. In addition, the p-convolution exhibits these fundamental properties: :
(i)c(h∗p k) = ch∗p k = h∗p ck,c constant;
(ii)h∗p (k ∗p r) = (h∗p k)∗p r(associative property);
(iii)h∗p (k+ r) = (h∗p k)+(h∗p r) (distributive property).
Properties (i) and (iii) are routinely verified. As for (ii),
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[h∗p (k ∗p r)](t) =
[∫ t

0

(
h(τ)(k ∗p r)(t− τ)

) 1
p

dτ

]p

=

[∫ t

0
h

1
p (τ)

(∫ t−τ

0
k

1
p (ξ )r

1
p (t− τ −ξ )dξ

)
dτ

]p

=

[∫ t

0
h

1
p (τ)

∫ t

τ

k
1
p (u− τ)r

1
p (t−u)dudτ

]p

,(ξ = u− τ)

=

[∫ t

0

(∫ u

0
h

1
p (τ)k

1
p (u− τ)dτ

)
r

1
p (t−u)du

]p

= [(h∗p k)∗p r](t)

For p = 1 see, [33], [32], [34].

Example 1h(t) = e
t
2 ,k(t) =

√
t, then for p = 1/2,

(h∗p k)(t) =
[∫ t

0
eτ(t− τ)dτ

] 1
2

=

[
teτ

∣∣∣∣t
0
− (τeτ − eτ)

∣∣∣∣t
0

] 1
2

=

[
tet − t− tet + et − e0

] 1
2

=

[
et − t−1

] 1
2

.

First, we want to define Hp- transform which has a form

Hp(s) =
∫

∞

0
h

1
p (t).e−stdt

Let, L (h(t)) = Hp(s), we can obtain the table of Hp-integral transforms as follows (Table 1);

h(t) H 1
2
(s) H 1

3
(s) Hp(s)

1 1
s

1
s

1
s

t 2
s3

6
s4

(1/p)!
s(1/p)+1

tn (2n)!
s2n+1

(3n)!
s3n+1

(n/p)!
s(n/p)+1

eat 1
s−2a

1
s−3a

p
sp−a

sin(wt) 2w2

4sw2+s2
6w3

(w2+s2)(9w2+s2)
p (1+1/p)

2w

(
1

(s−i)1+1/p +
1

(s+i)1+1/p

)
cos(wt) 2w2+s2

4sw2+s2
s(7w2+s2)

(w2+s2)(9w2+s2)
− ip (1+1/p)

2w

(
1

(s−i)1+1/p − 1
(s+i)1+1/p

)
Table 1: Table of Hp- integral transforms

We introduce Laplace transform of the (p-c) of two functions by using the following theorem.

Theorem 4(Fractional Convolution Theorem). If h and k are functions in Lp, piece-wise continuous on [0,∞] and of
exponential order α , L (h(t)) = Hp(s),L (k(t)) = Kp(s) then

L (h∗p k)
1
p (t) = Hp(s).Kp(s)

where, (h∗p k)(t) =
[∫ t

0(h(τ)k(t− τ))
1
p dτ

]p

and Hp(s) =
∫

∞

0 h
1
p (t).e−stdt,Kp(s) =

∫
∞

0 k
1
p (t).e−stdt.
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Proof . Let’s begin with the product

Hp(s).Kp(s) =
∫

∞

τ=0
h

1
p (τ).e−sτ dτ

∫
∞

u=0
k

1
p (u).e−sudu

=
∫

∞

τ=0
h

1
p (τ)dτ

∫
∞

u=0
k

1
p (u).e−su.e−sτ du

=
∫

∞

τ=0

(∫
∞

u=0
h

1
p (τ)k

1
p (u).e−s(u+τ)du

)
dτ.

Since τ is treated as a constant in the interior integral, we can substitute t = τ +u, to find that du = dt. This yields

Hp(s).Kp(s) =
∫

∞

τ=0

(∫
∞

τ

h
1
p (τ)k

1
p (t− τ).e−stdt

)
dτ

.

If we define k1/p(t) = 0 for t < 0, then k1/p(t− τ) = 0 for t < τ and we can write

Hp(s).Kp(s) =
∫

∞

τ=0

∫
∞

t=0
h

1
p (τ)k

1
p (t− τ).e−stdtdτ.

Now we can reverse the order of integration, τ : 0 → ∞, t : 0 → ∞ reverse τ : 0 → t, t : 0 → ∞, so that

Hp(s).Kp(s) =
∫

∞

t=0

∫
∞

τ=0
h

1
p (τ)k

1
p (t− τ).e−stdτdt

=
∫

∞

t=0

(∫ t

τ=0
h

1
p (τ)k

1
p (t− τ).e−stdτ

)
dt

=
∫

∞

t=0

(∫ t

τ=0
h

1
p (τ)k

1
p (t− τ)dτ

)
.e−stdt

= L (h∗p k)
1
p (t).

for p=1 see, [32], [34]

Example 2let f (t) =
√

t, k(t) =
√

sin(t) then for p = 1/2 the 1/2-convolution will be

(h∗1/2 k)2(t) =
∫ t

τ=0

(
h(τ)k(t− τ)

)2

dτ =
∫ t

τ=0
τsin(t− τ)dτ =

=

[
τcos(t− τ)+ sin(t− τ)

]t

0
= t− sint

By taking Laplace transformation of 1/2-convolution we have,

L ((h∗1/2 k)2(t)) = L (t− sint) = L (t)−L (sint) =

=
1
s2 − 1

s2 +1
=

1
s2(s2 +1)

=

= H1/2(s).K1/2(s)

.

where,H1/2(s) =
∫

∞

0 h2(t).e−stdt,K1/2(s) =
∫

∞

0 k2(t).e−stdt.
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Example 3let h(t) =
√

cos(t), k(t) =
√

sin(t) then for p = 1/2 the 1/2-convolution will be

(h∗1/2 k)2(t) =
∫ t

τ=0

(
h(τ)k(t− τ)

)2

dτ

=
∫ t

τ=0
cos(τ)sin(t− τ)dτ

=
∫ t

τ=0
cos(τ)(sint.cosτ − cost.sinτ)dτ

=
∫ t

τ=0
(1+ cos(2τ))dτ − cost

[
sin2τ

2

]t

0

=
1
2

sint
[

τ +
sin2τ

2

]t

0
− 1

2
cost.sin2t

=
sint
2

(t+
sin2t

2
− 1

2
(cost.sin2t)

=
tsint

2
+

2sin2tcost
4

− costsin2t
2

=
1
2

tsint.

By taking Laplace transformation of 1/2-convolution we have,

L ((h∗1/2 k)2(t)) = L (
1
2

tsint) =
1
2
L (tsint) =−1

2
d
ds

H(s) =

=−1
2

d
ds

(
1

s2 +1

)
=

s
(s2 +1)2 = H1/2(s).K1/2(s)

where,H1/2(s) =
∫

∞

0 h2(t).e−stdt,K1/2(s) =
∫

∞

0 k2(t).e−stdt.

In the next section, we present the application of the (p− c) in the integral equations.

6 p-Volterra integral equation of p-convolution type

A p-volterra integral equation is

u(ξ ) = h(ξ )+λ

[∫
ξ

0
k

1
p (ξ − t)u

1
p (t)dt

]
where h is a given function and u is an unknown function, u,h and k are functions in Lp. The function k1/p is called the
kernel. Taking the Laplace transform for both sides;

L

(
u(ξ )

)
= L

(
h(ξ )

)
+λL

(∫
ξ

0
k

1
p (ξ − t)u

1
p (t)dt

)
From Definition 9, we get

L

(
u(ξ )

)
= L

(
h(ξ )

)
+λL

(
(k ∗p u)

1
p (ξ )

)
From Theorem 4, we have

L

(
u(ξ )

)
= L (h(ξ ))+λ

[
L

(
k(ξ )

)
.L

(
u(ξ )

)]
L

(
u(ξ )

)[
1−λL

(
k(ξ )

)]
= L

(
h(ξ )

)
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L

(
u(ξ )

)
=

L

(
h(ξ )

)
1−λL

(
k(ξ )

) = L

(
h(ξ )

)
.L

(
τ(ξ )

)
= L (h∗p τ)

1
p (ξ )

where

L

(
τ(ξ )

)
=;

1

1−λL

(
k(ξ )

) , τ ∈ Lp

Taking Laplace inverse for both sides, then we get the solution of p-Volterra integral equation.

u(ξ ) = (h∗p τ)
1
p =

∫
ξ

0
h

1
p (ξ − t).τ

1
p (t)dt f rom De f .9

for p=1 see, [35], [36], [37], [38].

7 Conclusion

We generalize infimal and supremal convolutions to fractional infimal and supremal convolutions and study the properties
of these operations. We notice that when applying the fractional infimal (or supremal) convolution for a certain function
several times we get a sub-additive (or super-additive) function. Also, we extend the notion of convolution to fractional
convolution and present its applications in Laplace transformation and Volterra integral equations.
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