

Journal of the Egyptian Mathematical Society

Journal homepage https://joems.journals.ekb.eg/ Print ISSN: 1110-256X Online ISSN: 2090-9128

http://dx.doi.org/10.21608/JOEMS.2025.410188.1054

Fractional Infimal and Supremal Convolutions With Applications

Nashat Faried¹, Hewayda Mohamed Lotfy¹, Hany Abd El Ghaffar^{1,*}, Rabab Mostafa²

Received: 10 Aug. 2025, Revised: 16 Oct. 2025, Accepted: 17 Oct. 2025, Published online: 23 Nov. 2025

Abstract: This paper explores the ideas of *p-infimal* convolution (p-ic), $(h\Box_p k)(\xi) = \inf_{\eta} [h^{\frac{1}{p}}(\xi - \eta) + k^{\frac{1}{p}}(\eta)]^p$, and *p-supremal* convolution (p-sc), $(h\boxtimes_p k)(\xi) = \sup_{\eta} [h^p(\xi - \eta) + k^p(\eta)]^{\frac{1}{p}}$ where 0 , as an extension of infimal and supremal convolutions, and we demonstrate that these operations are commutative and associative for any <math>p. Meanwhile, we show that the (p-ic) increases with p while the (p-sc) decreases and notice that when applying the (p-ic) for a certain function several times, we get a sub-additive function, while applying the supremal convolution several times we get a super-additive function. Also, we extend the convolution of two functions to p-convolution (p-c), $(h*_p k)(t) = \left[\int_0^t (h(\tau)k(t-\tau))^{\frac{1}{p}}d\tau\right]^p$, which can calculate the Laplace transform for numerous functions, and we go on to demonstrate its practical applications. We present a new framework for solving a Volterra integral equation in the p form , $u(\xi) = h(\xi) + \lambda \left[\int_0^\xi k^{\frac{1}{p}}(\xi-t)u^{\frac{1}{p}}(t)dt\right]$, using the (p-c) definition.

Keywords: convolution, infimal convolution, supremal convolution.

2020 AMS Subject Classifications: 46A03, 46A04, 46A16, 46A55, 52A15, 68M07.

1 Introduction

Infimal and supremal convolutions have several applications in many fields such as convex analysis, functional analysis, optimization theory, integral equations and image processing. The convolution allows the combination of functions in a way that preserves certain properties such as convexity, the approximation of non-smooth functions and the construction of weak solutions of partial differential equations. In [1], the operation of infimal convolution, $(h\Box k)(\xi) = \inf_{\eta} [h(\xi - \eta) + k(\eta)]$, was introduced by Rockefeller which is a tool widely used in convex analysis and optimization theory. For more properties of this operation, see [2], [3] and [4]. In [5], Kiselman found that infimal convolution provides an effective framework for defining distances within the image plane. By using infimal convolution, he proved that a function h is sub-additive if and only if it satisfies the inequality $h\Box h \geq h$. One of his interesting results is that by repeating infimal convolution an infinite number of times for a certain function, he obtains a sub-additive function. We found that this technique can be applied to (p-ic), which occurs when applying (p-ic) to a certain function several times. In this case, we obtain a sub-additive function, whereas applying the supremal convolution several times

¹Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt.

²Basic Sciences Department, Modern Academy, Cairo, Egypt.

^{*} Corresponding author name and e-mail: hanyabdelghaffar@sci.asu.edu.eg

yields a super-additive function. We noticed that sub-additivity (or super-additivity) can be characterized in terms of (p-ic) (or (p-sc)), so if $(h\square_p h)^{\frac{1}{p}} \ge h^{\frac{1}{p}}$ then $h^{\frac{1}{p}}$ is sub-additive. Moreover, if $(h\boxtimes_p h)^p \le h^p$ then h^p is super-additive. The convolution $(h*k)(t) = \int_0^t h(\tau)k(t-\tau)d\tau$ is an important operation in mathematics with many applications in diverse areas. It is an effective technique for solving differential and integral equations [6], [7], calculating probabilities [8] and defining important functions in number theory [9]. Also, it has numerous applications in signal processing [10], [11], [12], deep learning [13] and image processing such as filtering, smoothing, enhancing, and extracting features from data [14], [15], [10], [16], [17].

In this paper, we introduce new notions of convolutions such as p-convolution (p-c)

$$(h*_p k)(t) = \left[\int_0^t (h(\tau)k(t-\tau))^{\frac{1}{p}} d\tau \right]^p, \text{ p-infimal convolution } (p-ic) \ (h\Box_p k)(\xi) = \inf_{\eta} [h^{\frac{1}{p}}(\xi-\eta) + k^{\frac{1}{p}}(\eta)]^p \text{ and } \right]$$

p-supremal convolution (p-sc) $(h\boxtimes_p k)(\xi) = \sup_{\eta} [h^p(\xi-\eta)+k^p(\eta)]^{\frac{1}{p}}$ where 0 . In section two, some basic definitions are introduced. In section three, we introduce <math>(p-ic) and demonstrate that its operation is both commutative and associative (Proposition 2). We prove that sub-additivity of a certain function can be characterized in terms of (p-ic) (Proposition 1). We notice that when applying (p-ic) for a certain function several times we get a sub-additive function (Theorem 1). In section four, we provide (p-sc) and illustrate that it has the properties of commutativity and associativity. (Proposition 4) and show that super-additivity of a certain function can be characterized in terms of (p-sc) (Proposition 5). We notice that when applying the (p-sc) for a certain function several times we get a super-additive function (Theorem 2) and then introduce an interesting relation between (p-ic), (p-sc), infimal convolution and supremal convolution. We notice that $(h\square_p k)$ is increasing with p while $(h\boxtimes_p k)$ is decreasing with p (Proposition 6). In Section five, we introduce the definition of (p-c), followed by examples and prove the fractional convolution theorem (Theorem 4). We then provide some applications in Laplace transformations. In section six, we solve the p-Volterra integral equation $u(\xi) = h(\xi) + \lambda \left[\int_0^\xi k^{\frac{1}{p}} (\xi-t) u^{\frac{1}{p}}(t) dt\right]$ as an application using the definition of (p-c).

2 Preliminaries

We begin by outlining the core definitions and principles that underpin this study.

Definition 1 [18], [1], [19] Let U be a vector space over the field R of real numbers. A subset X of U is said to be convex if the line segment, $[\xi, \eta] = (1 - \lambda)\xi + \lambda\eta$, $0 \le \lambda \le 1$ is contained in X for any given choice of $\xi, \eta \in X$; essentially, if $\xi, \eta \in X$ implies $[\xi, \eta] \in X$.

Definition 2 [18], [1], [19] Let $U \subset \mathbb{R}^n$ be a nonempty convex set. A function $h: U \to \mathbb{R}$ is said to be convex on U if for any $\xi, \eta \in X$ and $0 \le \lambda \le 1$, we have $h((1-\lambda)\xi + \lambda\eta) \le (1-\lambda)h(\xi) + \lambda h(\eta)$.

Definition 3 [20], [21], [19] Let $U \subset \mathbb{R}^n$ and $0 . If for each <math>\xi, \eta \in U$, $\lambda, \mu \geq 0$ such that $\lambda^p + \mu^p = 1$, $\lambda \xi + \mu \eta \in U$, then U is called a p-convex set in \mathbb{R}^n . The p-convexity of U can also be formalized as follows

$$\lambda \xi + (1 - \lambda^p)^{\frac{1}{p}} \eta \in U$$

for all $\xi, \eta \in U$ and $\lambda, \mu \in [0, 1]$.

Definition 4 [20], [21], [19] Let $U \subset \mathbb{R}^n$ be a nonempty p-convex set. A function $h: U \to \mathbb{R}$ is said to be p-convex on U if for any $\xi, \eta \in U$ and $\lambda, \mu \in [0, 1]$, then we have

$$h(\lambda \xi + \mu \eta) \leq \lambda h(\xi) + \mu h(\eta)$$

such that $\lambda^p + \mu^p = 1$.

Definition 5 [18], [22], [2], [1] Let h, k be two functions which act on the set X and produce values in the extended real line $[-\infty, +\infty]$. The infimal convolution $h\Box k$ of f and k is defined by

$$(h\Box k)(\xi) = \inf_{\eta \in X} [h(\xi - \eta) + k(\eta)]$$

Definition 6*Let h,k be two functions which act on the set X and produce values in the extended real line* $[-\infty, +\infty]$ *. The supremal convolution h* \boxtimes *k of h and k is defined by*

$$(h\boxtimes k)(\xi) = \sup_{\eta\in X}[h(\xi-\eta)+k(\eta)]$$

3 Fractional Infimal Convolution

We dedicate the subsequent section to a detailed presentation of the p-infimal convolution (p-ic) $(h\square_p k)$ of two functions h, k in definition 7. Moreover, we show in Proposition 2 that (p-ic) is a commutative and associative operation.

Definition 7 [23] Let h, k be two functions which act on the set X and produce values in the extended real line $[-\infty, +\infty]$. For 0 , we define the <math>p-infimal convolution (p - ic) $h \square_p k$ of two functions h and k as follows:

$$(h\Box_{p}k)(\xi) = \inf_{\eta \in X} [h^{\frac{1}{p}}(\xi - \eta) + k^{\frac{1}{p}}(\eta)]^{p}, \xi \in X.$$
 (1)

For p = 1, see [24], [25], [1].

Proposition 1A necessary condition for a function $h^{\frac{1}{p}}$ to be sub-additive (i.e., $h^{\frac{1}{p}}(\xi+\eta) \leq h^{\frac{1}{p}}(\xi) + h^{\frac{1}{p}}(\eta)$) is that $(h\Box_p h)^{\frac{1}{p}} \geq h^{\frac{1}{p}}$. Moreover, if $h^{\frac{1}{p}}$ is super-additive (i.e., $h^{\frac{1}{p}}(\xi+\eta) \geq h^{\frac{1}{p}}(\xi) + h^{\frac{1}{p}}(\eta)$) then $(h\Box_p h)^{\frac{1}{p}} \leq h^{\frac{1}{p}}$.

Proof . Assume,

$$(h\square_p h)^{\frac{1}{p}}(\xi) \ge h^{\frac{1}{p}}(\xi) \tag{2}$$

then from equation (1) we get,

$$\inf_{\eta \in X} [h^{\frac{1}{p}}(\xi - \eta) + h^{\frac{1}{p}}(\eta)] \ge h^{\frac{1}{p}}(\xi) \tag{3}$$

In particular, when replacing ξ by $\xi + \eta$ in equation (2) we get,

$$(h\square_p h)^{\frac{1}{p}}(\xi + \eta) \ge h^{\frac{1}{p}}(\xi + \eta) \tag{4}$$

So from equation (1) and from the property that the infimum of a set is always less than or equal to every element of the set [26] we get,

$$h^{rac{1}{p}}(\xi) + h^{rac{1}{p}}(\eta) \geq \inf_{\eta \in X} [h^{rac{1}{p}}(\xi) + h^{rac{1}{p}}(\eta)] \geq h^{rac{1}{p}}(\xi + \eta)$$

Hence, $h^{\frac{1}{p}}$ is sub-additive.

Similarly, let $h^{\frac{1}{p}}$ be super-additive then

$$h^{rac{1}{p}}(\xi) = h^{rac{1}{p}}(\xi + \eta - \eta) \ge h^{rac{1}{p}}(\xi - \eta) + h^{rac{1}{p}}(\eta), orall \eta \in X$$
 $\geq \inf_{\eta \in X} [h^{rac{1}{p}}(\xi - \eta) + h^{rac{1}{p}}(\eta)] = (h\Box_p h)^{rac{1}{p}}.$

Proposition 2 [23] Fractional infimal convolution is an operation that is both commutative and associative.

Proof . (I) Commutativity: Assuming $\zeta = \xi - \eta$ we get from definition (7),

$$(h\Box_p k)(\xi) = \inf_{\eta \in X} [h^{\frac{1}{p}}(\xi - \eta) + k^{\frac{1}{p}}(\eta)]^p = \inf_{\zeta \in X} [h^{\frac{1}{p}}(\zeta) + k^{\frac{1}{p}}(\xi - \zeta)]^p = (k\Box_p h)(\xi).$$

(II)Associativity:

$$\begin{split} (h\Box_{p}(k\Box_{p}r))(\xi) &= \inf_{\eta \in X}[h^{\frac{1}{p}}(\xi - \eta) + (k\Box_{p}r)^{\frac{1}{p}}(\eta)]^{p} \quad from \, Def.7 \\ &= \inf_{\eta \in X}[h^{\frac{1}{p}}(\xi - \eta) + \inf_{\zeta \in X}(k^{\frac{1}{p}}(\eta - \zeta) + r^{\frac{1}{p}}(\zeta))]^{p} \quad from \, Def.7 \\ &= \inf_{\eta \in X}[\inf_{\zeta \in X}[k^{\frac{1}{p}}(\xi - \eta) + \inf_{\zeta \in X}(k^{\frac{1}{p}}(\eta - \zeta) + r^{\frac{1}{p}}(\zeta)]^{p}] \\ &= \inf_{\eta \in X}[\inf_{\zeta \in X}[r^{\frac{1}{p}}(\zeta) + (k^{\frac{1}{p}}(\eta - \zeta) + h^{\frac{1}{p}}(\xi - \eta))]^{p} \\ &= \inf_{\zeta \in X}[r^{\frac{1}{p}}(\zeta) + \inf_{\eta \in X}(k^{\frac{1}{p}}(\eta - \zeta) + h^{\frac{1}{p}}(\xi - \eta))]^{p} \\ &= \inf_{\zeta \in X}[r^{\frac{1}{p}}(\zeta) + \inf_{\eta \in X}(k^{\frac{1}{p}}(\eta - \zeta) + h^{\frac{1}{p}}(\xi - \eta))]^{p} \\ &= \inf_{\zeta \in X}[r^{\frac{1}{p}}(\zeta) + \inf_{\eta \in X}(h^{\frac{1}{p}}((\xi - \zeta) - (\eta - \zeta)) + k^{\frac{1}{p}}(\eta - \zeta))]^{p} \\ &= \inf_{\zeta \in X}[r^{\frac{1}{p}}(\zeta) + \inf_{\tilde{\eta} \in X}(h^{\frac{1}{p}}((\xi - \zeta) - (\tilde{\eta})) + k^{\frac{1}{p}}(\tilde{\eta}))]^{p} \, where, \, \eta - \zeta = \tilde{\eta}. \\ &= \inf_{\zeta \in X}[r^{\frac{1}{p}}(\zeta) + (h\Box_{p}k)^{\frac{1}{p}}(\xi - \zeta)]^{p} = ((h\Box_{p}k)\Box_{p}r)(\xi). \end{split}$$

An n-fold convolution is defined as

$$(h_1\square_p \ldots \square_p h_n)(\xi) = inf[\sum_{i=1}^n h_i^{\frac{1}{p}}(\xi^i)]^p,$$

where the infimum is taken over all choices of elements $\xi^i \in X$ for i = 1, 2, ... n such that $\xi^1 + \cdots + \xi^n = \xi$. The next proposition will be used in the proof of Theorem 1.

Proposition 3Let $h, k: X \to [0, \infty]$ be nonnegative functions and let 0 . Then the following inequality holds pointwise:

$$(h(\xi) + k(\xi))^p < h^p(\xi) + k^p(\xi), \quad \forall \xi \in X.$$

For a proof, see [27], [28].

Theorem 1Let $K: X \to [0, \infty]$ be a function on X satisfying K(0) = 0. Define a sequence of functions $(K_j)_{j=1}^{\infty}$ by putting, $K_I = K$, $K_j = (K_{j-1}^p \Box_p K^p)^{\frac{1}{p}}$, $j = 2, 3, \ldots$ Then the sequence (K_j^p) is decreasing and its $\lim K_j^p = k \ge 0$ is sub-additive.

Proof. We'll show that the sequence K_i^p is decreasing, taking $\eta = 0$ in the definition of K_j we get, for j = 2,

$$\begin{split} K_2^p(\xi) &= (K_I^p \square_p K^p)(\xi) = (K^p \square_p K^p)(\xi) \quad \textit{from Def. 7 we have}, \\ &= \inf_{\eta \in X} [K(\xi - \eta) + K(\eta)]^p \quad \textit{taking } \eta = 0 \textit{ we get}, \\ &= \inf_{\eta \in Y} [K(\xi - \theta) + K(\theta)]^p \end{split}$$

from Proposition 3 and from the property that is the infimum of a set is always less than or equal to every element of the set we obtain,

$$K_2^p(\xi) \le [K^p(\xi) + K^p(0)]$$

$$\le K^p(\xi) \le K_I^p(\xi).$$

For j = 3,

$$\begin{split} K_{3}^{p}(\xi) &= (K_{2}^{p} \square_{p} K^{p})(\xi) \\ &= \inf_{\eta \in X} [K_{2}(\xi - 0) + K(0)]^{p} \quad from \, Def.7 \\ &\leq [K_{2}^{p}(\xi) + K^{p}(0)] \quad from \, Prop.3 \\ &\leq K_{2}^{p}(\xi). \end{split}$$

For j = j + 1,

$$\begin{split} K_{j+I}^{p}(\xi) &= (K_{j}^{p} \square_{p} K^{p})(\xi) \\ &= \inf_{\eta \in X} [K_{j}(\xi - 0) + K(0)]^{p} \quad from \ Def.7 \\ &\leq [K_{j}^{p}(\xi) + K^{p}(0)] \leq K_{j}^{p}(\xi). \quad from \ Prop.3 \end{split}$$

So, we get $K_2^p \leq K_1^p$, $K_3^p \leq K_2^p$ and $K_{j+1}^p \leq K_j^p$. Therefore, the sequence (K_j^p) is decreasing. Next, we shall prove that the limit of the sequence (K_j^p) is sub-additive (i.e. $k(\xi+\eta) \leq k(\xi) + k(\eta)$). Since the sequence is decreasing, then $\inf_j K_j^p(\xi) = k(\xi)$. Let ξ, η be given with $k(\xi), k(\eta) < +\infty$ and consider a fixed positive number ε . Then we can find numbers j, r such that $K_j^p(\xi) < k(\xi) + \varepsilon$ and $K_r^p(\xi) < k(\eta) + \varepsilon$. Replacing ξ by $\xi + \eta$ in the case of K_{j+1}^p we obtain,

$$K_{i+1}^p(\xi+\eta) \leq K_i^p(\xi) + K^p(\eta),$$

$$\begin{split} K_{j+2}^{p}(\xi+\eta) &= K_{j+2}^{p}(\xi+\eta+\zeta-\zeta) \leq K_{j+1}^{p}(\xi+\zeta) + K^{p}(\eta-\zeta) \\ &\leq K_{j}^{p}(\xi) + K^{p}(\zeta) + K^{p}(\eta-\zeta) \\ &\leq K_{j}^{p}(\xi) + \inf_{\zeta \in X} [K^{p}(\eta-\zeta) + K^{p}(\zeta)] \\ &\leq K_{i}^{p}(\xi) + K_{2}^{p}(\eta). \end{split}$$

Similarly we get,

$$K_{j+r}^p(\xi+\eta) \leq K_j^p(\xi) + K_r^p(\eta),$$

$$k(\xi + \eta) \le K_{j+r}^p(\xi + \eta) \le K_j^p(\xi) + K_r^p(\eta) < k(\xi) + k(\eta) + 2\varepsilon.$$

Since ε is arbitrary, the inequality $k(\xi + \eta) \le k(\xi) + k(\eta)$ follows. Therefore, the limit k is sub-additive.

For p = 1 see, [5].

4 Fractional Supremal Convolution

In this section, we present the p-supremal convolution (p - sc) $(h \boxtimes_p k)$ of the two functions h, k in definition 8. Moreover, in proposition 4 (p - sc) is shown to be commutative and associative operations.

Definition 8Consider two functions h,k defined on the domain X and mapping to the extended real line $[0,+\infty]$. For 0 , we define the <math>p-supremal convolution (p - sc) $(h \boxtimes_p k)$ of two functions h and k as follows:

$$(h\boxtimes_p k)(\xi) = \sup_{oldsymbol{\eta}\in X} [h^p(\xi-oldsymbol{\eta}) + k^p(oldsymbol{\eta})]^{rac{1}{p}}, \xi\in X.$$

Proposition 4Fractional supremal convolution is an operation that is both commutative and associative.

Proof . (I) Commutativity: By setting $\zeta = \xi - \eta$ we obtain from definition (8),

$$(h \boxtimes_{p} k)(\xi) = \sup_{\eta \in X} [h^{p}(\xi - \eta) + k^{p}(\eta)]^{\frac{1}{p}} = \sup_{\zeta \in X} [h^{p}(\zeta) + k^{p}(\xi - \zeta)]^{\frac{1}{p}} = (k \boxtimes_{p} h)(\xi).$$

(II)Associativity:

$$\begin{split} [h\boxtimes_{p}(k\boxtimes_{p}r)](\xi) &= \sup_{\eta\in X}[h^{p}(\xi-\eta) + (k\boxtimes_{p}r)^{p}(\eta)]^{\frac{1}{p}} \quad from \, Def. 8 \\ &= \sup_{\eta\in X}[h^{p}(\xi-\eta) + \sup_{\zeta\in X}(k^{p}(\eta-\zeta) + r^{p}(\zeta))]^{\frac{1}{p}} \quad from \, Def. 8 \\ &since \, the \, term \, h^{p}(\xi-\eta) \, is \, independent \, on \, \zeta, \, we \, can \, write \\ &= \sup_{\eta\in X}[\sup_{\zeta\in X}[h^{p}(\xi-\eta) + k^{p}(\eta-\zeta) + r^{p}(\zeta)]^{\frac{1}{p}}] \\ &= \sup_{\zeta\in X}\sup_{\eta\in X}[r^{p}(\zeta) + (k^{p}(\eta-\zeta) + h^{p}(\xi-\eta))]^{\frac{1}{p}} \\ &the \, term \, r^{p}(\zeta) \, is \, independent \, on \, \eta \, so, \\ &= \sup_{\zeta\in X}[r^{p}(\zeta) + \sup_{\eta\in X}(k^{p}(\eta-\zeta) + h^{p}(\xi-\eta))]^{\frac{1}{p}} \end{split}$$

by adding and subtracting ζ in term of $h^p(\xi - \zeta)$ we get,

$$\begin{split} &= \sup_{\zeta \in X} [r^p(\zeta) + \sup_{\eta - \zeta \in X} (h^p((\xi - \zeta) - (\eta - \zeta)) + k^p(\eta - \zeta))]^{\frac{1}{p}} \\ &= \sup_{\zeta \in X} [r^p(\zeta) + \sup_{\tilde{\eta} \in X} (h^p((\xi - \zeta) - (\tilde{\eta})) + k^p(\tilde{\eta}))]^{\frac{1}{p}} \quad where, \eta - \zeta = \tilde{\eta} \\ &= \sup_{\zeta \in X} [r^p(\zeta) + (h \boxtimes_p k)^p(\xi - \zeta)]^{\frac{1}{p}} \\ &= [(h \boxtimes_p k) \boxtimes_p r](\xi). \end{split}$$

Proposition 5A necessary condition for a function h^p to be super-additive is that $(h \boxtimes_p h)^p \leq h^p$. Moreover, if h^p is sub-additive then $(h \boxtimes_p h)^p \geq h^p$.

Proof . Assume,

$$(h \boxtimes_p h)^p(\xi) \leq h^p(\xi)$$

i.e.

$$\sup_{\eta \in X} [h^p(\xi - \eta) + h^p(\eta)] \le h^p(\xi)$$

In particular,

$$(h \boxtimes_p h)^p(\xi + \eta) \leq h^p(\xi + \eta)$$

so,

$$h^p(\xi) + h^p(\eta) \le \sup_{\eta \in X} [h^p(\xi) + h^p(\eta)] \le h^p(\xi + \eta)$$

Hence, h^p is super-additive.

Similarly, let h^p is sub-additive then

$$h^p(\xi) = h^p(\xi + \eta - \eta) \le h^p(\xi - \eta) + h^p(\eta), \ \forall \eta \in X$$

$$\le \sup_{\eta \in X} [h^p(\xi - \eta) + h^p(\eta)] = (h \boxtimes_p h)^p.$$

An example can be constructed using Proposition 4 for a p norm $\|\xi\|$. If we take $h^p(\xi) = \|\xi\|^p$ so we get,

$$\parallel \xi \parallel^p \leq \parallel \xi - \eta \parallel^p + \parallel \eta \parallel^p = h^p(\xi - \eta) + h^p(\eta), \forall \eta \in X$$

Then,

$$\parallel \xi \parallel^p \leq \sup_{\eta \in X} [h^p(\xi - \eta) + h^p(\eta)]$$

i.e. $(h \boxtimes_p h)^p \ge h^p$.

Theorem 2Let $K: X \to [0, \infty]$ be a function on X satisfying K(0) = 0. Define a sequence of functions $(K_j)_{j=1}^{\infty}$ by putting, $K_1 = K$, $K_j = (K_{j-1}^{\frac{1}{p}} \boxtimes_p K_j^{\frac{1}{p}})^p$, $j = 2, 3, \ldots$ Then the sequence $(K_j^{\frac{1}{p}})$ is increasing and its $\lim_{j \to \infty} K_j^{\frac{1}{p}} = k \ge 0$ is super-additive.

Proof. This proof establishes that the sequence $K_j^{\frac{1}{p}}$ is increasing, taking $\eta = 0$ in the definition of K_j we get, for j = 2,

$$\begin{split} K_{2}^{\frac{l}{p}}(\xi) &= (K_{I}^{\frac{l}{p}} \boxtimes_{p} K^{\frac{l}{p}})(\xi) = (K^{\frac{l}{p}} \boxtimes_{p} K^{\frac{l}{p}})(\xi) \\ &= \sup_{\eta \in X} [K(\xi - 0) + K(0)]^{\frac{l}{p}} \quad \textit{from Def.} 8 \\ &\geq [K(\xi - 0) + K(0)]^{\frac{l}{p}} \quad \textit{since } \frac{l}{p} > l \textit{ then}, \\ &\geq [K^{\frac{l}{p}}(\xi) + K^{\frac{l}{p}}(0)] \\ &\geq K^{\frac{l}{p}}(\xi) \geq K^{\frac{l}{p}}(\xi). \end{split}$$

For j = 3,

$$\begin{split} K_{3}^{\frac{l}{p}}(\xi) &= (K_{2}^{\frac{l}{p}} \boxtimes_{p} K^{\frac{l}{p}})(\xi) \\ &\stackrel{\text{def8}}{=} \sup_{\eta \in X} [K_{2}(\xi - 0) + K(0)]^{\frac{l}{p}} \\ &\geq [K_{2}^{\frac{l}{p}}(\xi) + K^{\frac{l}{p}}(0)] \geq K_{2}^{\frac{l}{p}}(\xi). \end{split}$$

For j = j + 1,

$$\begin{split} K_{j+I}^{\frac{1}{p}}(\xi) &= (K_{j}^{\frac{1}{p}} \boxtimes_{p} K^{\frac{1}{p}})(\xi) \\ &= \sup_{\eta \in X} [K_{j}(\xi - 0) + K(0)]^{\frac{1}{p}} \\ &\geq [K_{j}^{\frac{1}{p}}(\xi) + K^{\frac{1}{p}}(0)] \geq K_{j}^{\frac{1}{p}}(\xi). \end{split}$$

So, we get $K_{j}^{\frac{1}{p}} \geq K_{1}^{\frac{1}{p}}$, $K_{3}^{\frac{1}{p}} \geq K_{2}^{\frac{1}{p}}$ and $K_{j+1}^{\frac{1}{p}} \geq K_{j}^{\frac{1}{p}}$. Therefore, the sequence $(K_{j}^{\frac{1}{p}})$ is increasing. Next, we shall prove that $k(\xi + \eta) \geq k(\xi) + k(\eta)$. Let $\sup_{j} K_{j}^{\frac{1}{p}}(\xi) = k(\xi)$ and let ξ, η be given with $k(\xi), k(\eta) < +\infty$ and suppose ε is a positive real number. Then we can find numbers j, r such that $K_{j}^{\frac{1}{p}}(\xi) > k(\xi) - \varepsilon$ and $K_{r}^{\frac{1}{p}}(\xi) > k(\eta) - \varepsilon$. We have,

$$K_{j+1}^{\frac{1}{p}}(\xi+\eta) \ge K_{j}^{\frac{1}{p}}(\xi) + K_{j}^{\frac{1}{p}}(\eta),$$

$$\begin{split} K_{j+2}^{\frac{l}{p}}(\xi+\eta) &\geq K_{j+1}^{\frac{l}{p}}(\xi+\zeta) + K^{\frac{l}{p}}(\eta-\zeta) \\ &\geq K_{j}^{\frac{l}{p}}(\xi) + K^{\frac{l}{p}}(\zeta) + K^{\frac{l}{p}}(\eta-\zeta) \\ &\geq K_{j}^{\frac{l}{p}}(\xi) + \sup_{\zeta \in X} [K^{\frac{l}{p}}(\eta-\zeta) + K^{\frac{l}{p}}(\zeta)] \\ &\geq K_{j}^{\frac{l}{p}}(\xi) + K_{j}^{\frac{l}{p}}(\eta). \end{split}$$

Similarly, we get

$$egin{split} K_{j+r}^{rac{1}{p}}(\xi+\eta) &\geq K_{j}^{rac{1}{p}}(\xi) + K_{r}^{rac{1}{p}}(\eta), \ k(\xi+\eta) &\geq K_{j+r}^{rac{1}{p}}(\xi+\eta) \ &\geq K_{j}^{rac{1}{p}}(\xi) + K_{r}^{rac{1}{p}}(\eta) \ &\geq k(\xi) + k(\eta) - 2arepsilon. \end{split}$$

Since ε is arbitrary, the inequality $k(\xi + \eta) \ge k(\xi) + k(\eta)$ follows. Therefore, the limit k is super-additive.

We will introduce an interesting relation between (p-ic), (p-sc), infimal convolution and supremal convolution. We notice that $(h\square_p k)$ increases with p, while $(h\boxtimes_p k)$ decreases with p. More precisely, we get the following proposition.

Before proceeding, we state the following theorem, which will be used in the proof of the next proposition.

Theorem 3 (Jensen's inequality)Let a_1, a_2, \ldots, a_n be real or complex numbers. If 0 , then

$$\left(\sum_{i=1}^{n} |a_i|^q\right)^{1/q} \le \left(\sum_{i=1}^{n} |a_i|^p\right)^{1/p}.$$

For a proof see, [29], [30], [31].

Proposition 6*For* 0*we get*

$$(h\square_p k) \le (h\square_q k) \le (h\square k) \le (h\boxtimes k) \le (h\boxtimes_q k) \le (h\boxtimes_p k).$$

Proof . From Definition 7, we get,

$$(h\square_p k)(\xi) = \inf_{oldsymbol{\eta} \in X} [h^{rac{l}{p}}(\xi - oldsymbol{\eta}) + k^{rac{l}{p}}(oldsymbol{\eta})]^p$$

From Jensen's inequality, Proposition 3 and for p < q we have,

$$(h\square_p k)(\xi) = \inf_{\eta \in X} [h^{\frac{1}{p}}(\xi - \eta) + k^{\frac{1}{p}}(\eta)]^p \le \inf_{\eta \in X} [h^{\frac{1}{q}}(\xi - \eta) + k^{\frac{1}{q}}(\eta)]^q \le$$

 $\le \inf_{\eta \in X} [h(\xi - \eta) + k(\eta)] \le \sup_{\eta \in X} [h(\xi - \eta) + k(\eta)] = h \boxtimes k.$

Similarly,

$$(h \boxtimes_{p} k)(\xi) = \sup_{\eta \in X} [h^{p}(\xi - \eta) + k^{p}(\eta)]^{\frac{1}{p}} \ge \sup_{\eta \in X} [h^{q}(\xi - \eta) + k^{q}(\eta)]^{\frac{1}{q}} \ge$$
$$\ge \sup_{\eta \in X} [h(\xi - \eta) + k(\eta)] \ge \inf_{\eta \in X} [h(\xi - \eta) + k(\eta)] = h \square k.$$

Remark 1

$$\sup_{p}(h\square_{p}k)(\xi)=\inf_{p}(h\boxtimes_{p}k)(\xi)=(h\square k)(\xi).$$

5 Fractional convolution

In this section, we present the (p-c) $(h*_p k)$ of the two functions h,k in definition 9. Moreover, we introduce in theorem 4 Laplace transformation for (p-c).

Definition 9*The fractional convolution of two functions* h(t) *and* k(t) *defined for* t > 0, $h, k \in L^p$, *is given by the integral*

$$(h*_{p}k)(t) = \left[\int_{0}^{t} \left(h(\tau)k(t-\tau)\right)^{\frac{1}{p}} d\tau\right]^{p}$$

which exists if h and k are piece-wise continuous [32].

Substituting $u = t - \tau$ gives

$$(h *_{p} k)(t) = \left[\int_{0}^{t} \left(h(t - u)k(u) \right)^{\frac{1}{p}} du \right]^{p} = (k *_{p} h)(t)$$

then, the fractional convolution is commutative. In addition, the p-convolution exhibits these fundamental properties: :

 $(i)c(h*_p k) = ch*_p k = h*_p ck, c$ constant;

 $(ii)h*_p(k*_pr) = (h*_pk)*_pr$ (associative property);

 $(iii)h*_p(k+r) = (h*_pk) + (h*_pr)$ (distributive property).

Properties (i) and (iii) are routinely verified. As for (ii),

$$\begin{split} [h*_{p}(k*_{p}r)](t) &= \left[\int_{0}^{t} \left(h(\tau)(k*_{p}r)(t-\tau) \right)^{\frac{1}{p}} d\tau \right]^{p} \\ &= \left[\int_{0}^{t} h^{\frac{1}{p}}(\tau) \left(\int_{0}^{t-\tau} k^{\frac{1}{p}}(\xi) r^{\frac{1}{p}}(t-\tau-\xi) d\xi \right) d\tau \right]^{p} \\ &= \left[\int_{0}^{t} h^{\frac{1}{p}}(\tau) \int_{\tau}^{t} k^{\frac{1}{p}}(u-\tau) r^{\frac{1}{p}}(t-u) du d\tau \right]^{p}, (\xi = u - \tau) \\ &= \left[\int_{0}^{t} \left(\int_{0}^{u} h^{\frac{1}{p}}(\tau) k^{\frac{1}{p}}(u-\tau) d\tau \right) r^{\frac{1}{p}}(t-u) du \right]^{p} \\ &= [(h*_{p}k)*_{p}r](t) \end{split}$$

For p = 1 see, [33], [32], [34].

Example 1 $h(t) = e^{\frac{t}{2}}, k(t) = \sqrt{t}$, then for p = 1/2,

$$(h*_{p}k)(t) = \left[\int_{0}^{t} e^{\tau}(t-\tau)d\tau\right]^{\frac{1}{2}} = \left[te^{\tau}\Big|_{0}^{t} - (\tau e^{\tau} - e^{\tau})\Big|_{0}^{t}\right]^{\frac{1}{2}} = \left[te^{t} - t - te^{t} + e^{t} - e^{0}\right]^{\frac{1}{2}} = \left[e^{t} - t - I\right]^{\frac{1}{2}}.$$

First, we want to define H_p - transform which has a form

$$H_p(s) = \int_0^\infty h^{\frac{l}{p}}(t).e^{-st}dt$$

Let, $\mathcal{L}(h(t)) = H_p(s)$, we can obtain the table of H_p -integral transforms as follows (Table 1);

h(t)	$H_{\frac{1}{2}}(s)$	$H_{\frac{1}{3}}(s)$	$H_p(s)$
1	$\frac{1}{s}$	$\frac{1}{s}$	$\frac{I}{s}$
t	$\frac{2}{s^3}$	$\frac{6}{s^4}$	$\frac{(I/p)!}{s^{(I/p)+I}}$
t^n	$\frac{(2n)!}{s^{2n+1}}$	$\frac{(3n)!}{s^{3n+1}}$	$\frac{(n/p)!}{s^{(n/p)+I}}$
e^{at}	$\frac{1}{s-2a}$	$\frac{1}{s-3a}$	$\frac{p}{sp-a}$
sin(wt)	$\frac{2w^2}{4sw^2+s^2}$	$\frac{6w^3}{(w^2+s^2)(9w^2+s^2)}$	$\frac{p = (1+1/p)}{2w} \left(\frac{1}{(s-i)^{1+1/p}} + \frac{1}{(s+i)^{1+1/p}} \right)$
cos(wt)	$\frac{2w^2+s^2}{4sw^2+s^2}$	$\frac{s(7w^2+s^2)}{(w^2+s^2)(9w^2+s^2)}$	$-\frac{ip \blacksquare (1+1/p)}{2w} \left(\frac{1}{(s-i)^{1+1/p}} - \frac{1}{(s+i)^{1+1/p}} \right)$

Table 1: *Table of* H_p *- integral transforms*

We introduce Laplace transform of the (p-c) of two functions by using the following theorem.

Theorem 4(Fractional Convolution Theorem). If h and k are functions in L^p , piece-wise continuous on $[0,\infty]$ and of exponential order α , $\mathcal{L}(h(t)) = H_p(s)$, $\mathcal{L}(k(t)) = K_p(s)$ then

$$\mathcal{L}(h*_pk)^{\frac{1}{p}}(t) = H_p(s).K_p(s)$$

where,
$$(h*_p k)(t) = \left[\int_0^t (h(\tau)k(t-\tau))^{\frac{1}{p}} d\tau\right]^p$$
 and $H_p(s) = \int_0^\infty h^{\frac{1}{p}}(t).e^{-st} dt, K_p(s) = \int_0^\infty k^{\frac{1}{p}}(t).e^{-st} dt.$

Proof. Let's begin with the product

$$\begin{split} H_{p}(s).K_{p}(s) &= \int_{\tau=0}^{\infty} h^{\frac{1}{p}}(\tau).e^{-s\tau}d\tau \int_{u=0}^{\infty} k^{\frac{1}{p}}(u).e^{-su}du \\ &= \int_{\tau=0}^{\infty} h^{\frac{1}{p}}(\tau)d\tau \int_{u=0}^{\infty} k^{\frac{1}{p}}(u).e^{-su}.e^{-s\tau}du \\ &= \int_{\tau=0}^{\infty} \left(\int_{u=0}^{\infty} h^{\frac{1}{p}}(\tau)k^{\frac{1}{p}}(u).e^{-s(u+\tau)}du \right)d\tau. \end{split}$$

Since τ is treated as a constant in the interior integral, we can substitute $t = \tau + u$, to find that du = dt. This yields

$$H_p(s).K_p(s) = \int_{\tau=0}^{\infty} \left(\int_{\tau}^{\infty} h^{\frac{l}{p}}(\tau) k^{\frac{l}{p}}(t-\tau).e^{-st} dt \right) d\tau$$

If we define $k^{1/p}(t) = 0$ for t < 0, then $k^{1/p}(t - \tau) = 0$ for $t < \tau$ and we can write

$$H_p(s).K_p(s) = \int_{\tau=0}^{\infty} \int_{t=0}^{\infty} h^{\frac{1}{p}}(\tau) k^{\frac{1}{p}}(t-\tau).e^{-st} dt d\tau.$$

Now we can reverse the order of integration, $\tau: 0 \to \infty, t: 0 \to \infty$ reverse $\tau: 0 \to t, t: 0 \to \infty$, so that

$$H_{p}(s).K_{p}(s) = \int_{t=0}^{\infty} \int_{\tau=0}^{\infty} h^{\frac{1}{p}}(\tau)k^{\frac{1}{p}}(t-\tau).e^{-st}d\tau dt$$

$$= \int_{t=0}^{\infty} \left(\int_{\tau=0}^{t} h^{\frac{1}{p}}(\tau)k^{\frac{1}{p}}(t-\tau).e^{-st}d\tau \right)dt$$

$$= \int_{t=0}^{\infty} \left(\int_{\tau=0}^{t} h^{\frac{1}{p}}(\tau)k^{\frac{1}{p}}(t-\tau)d\tau \right).e^{-st}dt$$

$$= \mathcal{L}(h *_{p} k)^{\frac{1}{p}}(t).$$

for p=1 see, [32], [34]

Example 2*let* $f(t) = \sqrt{t}$, $k(t) = \sqrt{\sin(t)}$ then for p = 1/2 the 1/2-convolution will be

$$(h*_{I/2}k)^{2}(t) = \int_{\tau=0}^{t} \left(h(\tau)k(t-\tau)\right)^{2} d\tau = \int_{\tau=0}^{t} \tau \sin(t-\tau)d\tau =$$

$$= \left[\tau \cos(t-\tau) + \sin(t-\tau)\right]_{0}^{t} = t - \sin t$$

By taking Laplace transformation of 1/2-convolution we have,

$$\begin{split} \mathscr{L}((h*_{1/2}k)^2(t)) &= \mathscr{L}(t-sint) = \mathscr{L}(t) - \mathscr{L}(sint) = \\ &= \frac{1}{s^2} - \frac{1}{s^2+1} = \frac{1}{s^2(s^2+1)} = \\ &= H_{1/2}(s).K_{1/2}(s) \end{split}$$

where, $H_{1/2}(s) = \int_0^\infty h^2(t).e^{-st}dt, K_{1/2}(s) = \int_0^\infty k^2(t).e^{-st}dt.$

Example 3*let* $h(t) = \sqrt{\cos(t)}$, $k(t) = \sqrt{\sin(t)}$ then for p = 1/2 the 1/2-convolution will be

$$\begin{split} (h*_{1/2}k)^2(t) &= \int_{\tau=0}^t \left(h(\tau)k(t-\tau)\right)^2 d\tau \\ &= \int_{\tau=0}^t \cos(\tau)\sin(t-\tau)d\tau \\ &= \int_{\tau=0}^t \cos(\tau)(\sin t.\cos \tau - \cos t.\sin \tau)d\tau \\ &= \int_{\tau=0}^t (1+\cos(2\tau))d\tau - \cot\left[\frac{\sin^2\tau}{2}\right]_0^t \\ &= \frac{1}{2}sint\left[\tau + \frac{\sin 2\tau}{2}\right]_0^t - \frac{1}{2}cost.\sin^2t \\ &= \frac{\sin t}{2}(t + \frac{\sin 2t}{2} - \frac{1}{2}(\cos t.\sin^2t) \\ &= \frac{t\sin t}{2} + \frac{2\sin^2t \cos t}{4} - \frac{\cos t\sin^2t}{2} = \frac{1}{2}t\sin t. \end{split}$$

By taking Laplace transformation of 1/2-convolution we have,

$$\mathcal{L}((h*_{1/2}k)^{2}(t)) = \mathcal{L}(\frac{1}{2}tsint) = \frac{1}{2}\mathcal{L}(tsint) = -\frac{1}{2}\frac{d}{ds}H(s) =$$

$$= -\frac{1}{2}\frac{d}{ds}\left(\frac{1}{s^{2}+1}\right) = \frac{s}{(s^{2}+1)^{2}} = H_{1/2}(s).K_{1/2}(s)$$

where,
$$H_{1/2}(s) = \int_0^\infty h^2(t) \cdot e^{-st} dt$$
, $K_{1/2}(s) = \int_0^\infty k^2(t) \cdot e^{-st} dt$.

In the next section, we present the application of the (p-c) in the integral equations.

6 p-Volterra integral equation of p-convolution type

A p-volterra integral equation is

$$u(\xi) = h(\xi) + \lambda \left[\int_0^{\xi} k^{\frac{1}{p}} (\xi - t) u^{\frac{1}{p}}(t) dt \right]$$

where h is a given function and u is an unknown function, u, h and k are functions in L^p . The function $k^{1/p}$ is called the kernel. Taking the Laplace transform for both sides;

$$\mathscr{L}\left(u(\xi)\right) = \mathscr{L}\left(h(\xi)\right) + \lambda \mathscr{L}\left(\int_0^{\xi} k^{\frac{1}{p}}(\xi - t)u^{\frac{1}{p}}(t)dt\right)$$

From Definition 9, we get

$$\mathscr{L}\left(u(\xi)\right) = \mathscr{L}\left(h(\xi)\right) + \lambda \mathscr{L}\left((k*_{p}u)^{\frac{1}{p}}(\xi)\right)$$

From Theorem 4, we have

$$\begin{split} \mathcal{L}\bigg(u(\xi)\bigg) &= \mathcal{L}(h(\xi)) + \lambda \left[\mathcal{L}\bigg(k(\xi)\bigg).\mathcal{L}\bigg(u(\xi)\bigg)\right] \\ \mathcal{L}\bigg(u(\xi)\bigg) \left[I - \lambda \mathcal{L}\bigg(k(\xi)\bigg)\right] &= \mathcal{L}\bigg(h(\xi)\bigg) \end{split}$$

$$\mathscr{L}\bigg(u(\xi)\bigg) = \frac{\mathscr{L}\bigg(h(\xi)\bigg)}{I - \lambda \mathscr{L}\bigg(k(\xi)\bigg)} = \mathscr{L}\bigg(h(\xi)\bigg) . \mathscr{L}\bigg(\tau(\xi)\bigg) = \mathscr{L}(h *_p \tau)^{\frac{1}{p}}(\xi)$$

where

$$\mathscr{L}igg(au(\xi)igg)=;rac{1}{1-\lambda\mathscr{L}igg(k(\xi)igg)},\quad au\in L^p$$

Taking Laplace inverse for both sides, then we get the solution of p-Volterra integral equation.

$$u(\xi) = (h *_{p} \tau)^{\frac{1}{p}} = \int_{0}^{\xi} h^{\frac{1}{p}}(\xi - t) \cdot \tau^{\frac{1}{p}}(t) dt$$
 from Def.9

for p=1 see, [35], [36], [37], [38].

7 Conclusion

We generalize infimal and supremal convolutions to fractional infimal and supremal convolutions and study the properties of these operations. We notice that when applying the fractional infimal (or supremal) convolution for a certain function several times we get a sub-additive (or super-additive) function. Also, we extend the notion of convolution to fractional convolution and present its applications in Laplace transformation and Volterra integral equations.

Conflict of Interest

The authors declare that he has no competing interests.

Funding

Open access funding, provided by the Science, Technology and Innovation Funding Authority (STDF) and The Egyptian Knowledge Bank (EKB), supported this research. The work was performed by the authors during their employment at the Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt.

Authors' Contributions

I completed the manuscript without anyone's contribution. The authors read and approved the final manuscript.

Availability of data and materials

All references are listed at the end of the paper; no additional data was used.

Declaration of Competing Interest

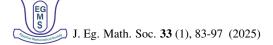
The authors declare that no conflict of interest associated with this study and no financial support for this work could have influenced its outcome.

Acknowledgement

The authors would like to thank editorial office for their cooperation.

References

- [1] R. T. Rockafellar. Convex analysis. Princeton Univ., Princeton, NJ, 1970.
- [2] Yiming Gao and Xiaoping Yang. Infimal convolution type regularization of tgv and shearlet transform for image restoration. *Computer Vision and Image Understanding*, 182:38–49, 2019.
- [3] Jean Jacques Moreau. Inf-convolution des fonctions numériques sur un space vectoriel. *Comptes rendus hebdomadaires des séances de l'Académie des sciences*, 256:5047–5049, 1963.
- [4] Thomas Strömberg. The operation of infimal convolution, 1996.
- [5] Christer O. Kiselman. Regularity properties of distance transformations in image analysis. *Computer Vision and Image Understanding*, 64(3):390–398, 1996.
- [6] Lokenath Debnath and Dambaru Bhatta. Integral transforms and their applications. CRC Press, 2014.
- [7] Luc Tartar. H-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations. *Proceedings of the Royal Society of Edinburgh Section A: Mathematics*, 115(3–4):193–230, 1990.
- [8] Saralees Nadarajah, Tibor K. Pogány, and Ram K. Saxena. On the characteristic function for burr distributions. *Statistics*, 46(3):419–428, 2012.
- [9] Jitender Singh. Sums of products involving power sums of integers. Journal of Numbers, 2014.
- [10] Rafael C. Gonzalez. Richard E. woods. Digital image processing, volume 2. 2008.
- [11] Stefano Marsi et al. A non-linear convolution network for image processing. *Electronics*, 10(2):201, 2021.
- [12] Douglas G. Myers. Digital signal processing: efficient convolution and Fourier transform techniques. Prentice-Hall, Inc., 1990.
- [13] Frank Emmert-Streib et al. An introductory review of deep learning for prediction models with big data. *Frontiers in Artificial Intelligence*, 3:4, 2020.
- [14] Tony F. Chan and Jianhong Shen. *Image processing and analysis: variational, PDE, wavelet, and stochastic methods.* Society for Industrial and Applied Mathematics, 2005.
- [15] Guy Gilboa and Stanley Osher. Nonlocal operators with applications to image processing. *Multiscale Modeling and Simulation*, 7(3):1005–1028, 2009.
- [16] Sung Kim and Riley Casper. Applications of convolution in image processing with matlab. *University of Washington*, pages 1–20, 2013.
- [17] Yiming Gao and Kristian Bredies. Infimal convolution of oscillation total generalized variation for the recovery of images with structured texture. *math.NA*, 2018.
- [18] Heinz H. Bauschke et al. *Correction to: Convex Analysis and Monotone Operator Theory in Hilbert Spaces*. Springer International Publishing, 2017.
- [19] Sevda Sezer et al. p-convex functions and some of their properties. *Numerical Functional Analysis and Optimization*, 42(4):443–459, 2021.
- [20] Julio Bernués and Ana Pena. On the shape of p-convex hulls, 0 . Acta Mathematica Hungarica, 74(4):345, 1997.
- [21] N. Tenney Peck. Banach-mazur distances and projections on p-convex spaces. Mathematische Zeitschrift, 177(1):131–142, 1981.
- [22] Luis Bayón et al. The operation of infimal/supremal convolution in mathematical economics. *International Journal of Computer Mathematics*, 93(5):735–748, 2016.
- [23] Aboubakr Bayoumi, Nashat Faried, and Rabab Mostafa. Regularity properties of p-distance transformations in image analysis. *Int. J. Contemp. Math. Sci*, 10:143–157, 2015.
- [24] Heinz H. Bauschke et al. The proximal average: basic theory. SIAM Journal on Optimization, 19(2):766-785, 2008.
- [25] Christer O. Kiselman. Digital geometry and mathematical morphology, 2002. Lecture Notes, Uppsala University, Department of Mathematics.
- [26] R. P. Gillespie. Principles of mathematical analysis. by walter rudin. pp. x, 227. 40s. 1953.(mcgraw-hill)-theory of functions of real variable. by henry p. thielman. pp. xiv, 209. 35s. 1953.(butterworth scientific publications, london). *The Mathematical Gazette*, 39(329):258–259, 1955.
- [27] Gerald B. Folland. A guide to advanced real analysis. Number 37. American Mathematical Society, 2009.
- [28] Godfrey Harold Hardy, John Edensor Littlewood, and George Pólya. *Inequalities*. Cambridge University Press, 1952.
- [29] Richard Bellman and Edwin Ford Beckenbach. *Inequalities*. Springer-Verlag, Berlin, Germany, 1961.
- [30] Johan Ludwig William Valdemar Jensen. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. *Acta Mathematica*, 30(1):175–193, 1906.
- [31] Dragoslav S. Mitrinovic and Petar M. Vasic. Analytic inequalities, volume 1. Springer, Berlin, 1970.
- [32] Joel L. Schiff. The Laplace transform theory and applications. Springer Science and Business Media, 2013.
- [33] Gustavo D. Medina et al. Fractional laplace transform and fractional calculus. International Mathematical Forum, 12(20), 2017.
- [34] Dennis G. Zill. A first course in differential equations with modeling applications. Cengage Learning, 2012.



- [35] A. L. Karchevsky. On a solution of the convolution type volterra equation of the 1st kind. *Advanced Math. Models and Applications*, 2(1):1–5, 2017.
- [36] Hwajoon Kim and Kamsing Nonlaopon. The solution of convolution-typed volterra integral equation by g-transform. *Int. J. Eng. Technol*, 7:6665–6669, 2018.
- [37] John S. Lew. On linear volterra integral equations of convolution type. *Proceedings of the American Mathematical Society*, 35(2):450–456, 1972.
- [38] Matiur Rahman. Integral equations and their applications. WIT Press, 2007.