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Abstract: In this paper, we establish several criteria for examining the oscillatory properties of solutions to a class of fourth-order
neutral differential equations. Using the principle of comparison, we obtain sufficient conditions for oscillation based on some new
monotonic properties. Furthermore, the Euler differential equation yields a sharp result when using some of the new criteria. To assess
the efficacy of the new criteria, we compare them with previous studies to highlight the differences.
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1 Introduction

In mathematics, differential equations are an essential tool that is used in many different scientific fields. The basic idea
is to explain the relationship between a quantity and another, typically involving time or space. Differential equations are
essential for simulating and comprehending dynamic systems in many different domains. Differential equations offer vital
insights into how systems change or space, whether they are used in economics to model financial markets, epidemiology
to comprehend the spread of illnesses, or physics to forecast the motion of objects. From basic biological models to
intricate simulations in engineering, environmental research, and climate modeling, they are incredibly versatile. They
aid in the description of biological processes in medicine, including population expansion and drug absorption. They are
employed in astronomy to monitor the motion of celestial bodies and comprehend astrophysical occurrences, see [1, 2].

Understanding the characteristics and behavior of differential equation solutions without necessarily solving them
explicitly is the main goal of the qualitative theory of differential equations. Its goal is to investigate the long-term
behavior, stability, and structure of solutions. As a part of the qualitative theory, oscillation theory is essential to
comprehending the qualitative behavior of solutions, especially when identifying whether they show oscillatory or
non-oscillatory behavior over time. The primary focus of this field is the study of differential equations of various orders,
both linear and nonlinear. For forecasting and examining the oscillatory character of differential equations, it offers a
strong framework. It is an effective instrument for theoretical investigation as well as real-world use in a wide range of
engineering and scientific fields [3].
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A significant class of mathematical equations known as functional differential equations (FDEs) incorporates
functions of advanced or delayed arguments to expand on the idea of ordinary differential equations (ODEs). It offers a
comprehensive framework for simulating memory- or delay-effect systems. They are a dynamic field of study with
important applications since they integrate theoretical analysis, computational methods, and applications [4, 5].

In a set of differential equations known as delay differential equations (DDEs), the rate of change of a system at a
particular point in time depends on both the system’s current and previous states. They are frequently used to simulate
systems with intrinsic time delays in disciplines like biology, physics, engineering, and economics. It offers a strong
framework for simulating time-delayed systems, capturing dynamics that ODEs by themselves are unable to capture.
They are crucial for precisely modeling and comprehending a broad variety of delayed processes in both natural and
artificial systems, notwithstanding their complexity. Applications include modeling disease spread, population dynamics,
and neural networks in biology; control systems with feedback delays in engineering; and systems having delayed impacts,
including supply chain dynamics, in economics [6].

Derivatives of the dependent variable and its advanced (or delayed) versions are included in the significant class of
functional differential equations known as neutral differential equations (NDDEs). Numerous scientific and engineering
fields, including signal processing, control systems, and population dynamics, use these equations. It is a crucial and
intricate field of research in mathematical modeling, with many real-world applications and substantial theoretical
difficulties. As computational methods and mathematics continue to progress, so does their study [7].

Fourth-order differential equations are crucial in many scientific and technical fields, particularly when higher-order
derivatives are required to describe the behavior of a system. Here’s an outline of their importance: Certain sophisticated
models in quantum mechanics [8], like higher-order perturbation theories, control engineering [9], complex dynamics
like those found in aerospace engineering (like flight stability), and vibration analysis in mechanical systems to identify
critical frequencies and amplitudes, require fourth-order differential equations to describe particle behavior under
specific circumstances. Fourth-order equations are integral to modeling diffusion processes, population dynamics, and
other advanced phenomena, see [10].

Consider the fourth order NDDE
z(4) (ι)+q(ι)x(g(ι)) = 0, (1)

where ι ≥ ι0,
z(ι) = x(ι)+ p(ι)x(h(ι)) ,

and we assume that

(A1)p,q ∈ C([ι0,∞)), 0 ≤ p(ι)< 1, and q(ι)≥ 0;
(A2)h,g ∈ C([ι0,∞)), h(ι)≤ ι , g(ι)≤ ι , g′ (ι)≥ 0, limι→∞ h(ι) = ∞, and limι→∞ g(ι) = ∞.

A solution to (1) is defined as a real-valued function x that is four times differentiable and satisfies (1) for all sufficiently
large ι . Only those solutions of (1) that satisfy the condition sup{|x(ι)| : ι ≥ ι0} > 0 are of interest to us, for all ι ≥ ι0.
A solution of Eq. (1) is called non-oscillatory if it is eventually positive or eventually negative; otherwise, it is called
oscillatory. The equation is said to be oscillate, if all of the solutions are oscillatory.

Several approaches, strategies, and results about the oscillation of NDDE solutions were described and summarized
by Agarwal et al. [11, 12] and Gyori and Ladas [13]. Moreover, oscillation theory for second-order NDDE solutions was
developed in part because of the results in [14]– [17].

Research on the sufficient conditions for the oscillatory and nonoscillatory features of fourth- and higher-order
differential equations has been ongoing in recent years, see [18]– [23]. Because there is such a wide collection of
relevant work on this topic, we will show some previous results in the literature.

Sufficient conditions for oscillation of solutions of the DDE

z(n)(ι)+q(ι)x(g(ι)) = 0, for n ≥ 2, (2)
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and specific cases of this equation have been the subject of numerous publications, see [24]– [26]. These works have an
advantage over others because they considered all of the positive values of p(ι).

The oscillation of (2), was examined by Agarwal et al. [24]. They concluded that there was a new relationship between
the solution x and the related function z.

Baculikova et al. [25] and Xing et al. [26] investigated the required conditions for oscillation of (2) using a different
method (compared with the first-order delay equation).

Furthermore, in order to get one condition that ensures oscillation for (2), Baculikova et al. [27] devised a novel Riccati
substitution.

Agarwal et al. [28] concerned the even-order NDDE (2). They obtained some sufficient conditions for the oscillation
by using the Riccati transformation technique.

Grace and Lalli [29] used the weighted integral method to study the oscillatory behavior of the nth even-order nonlinear
DDE

x(4) (ι)+q(ι)F (x(g(ι))) = 0, (3)

and its damped form

x(n) (ι)+ p(ι)
∣∣∣x(n−1) (ι)

∣∣∣β x(n−1) (ι)+q(ι)F (x(g(ι))) = 0,

for β ≥ 0. They established some earlier famous oscillation criteria of (3) in its second order form (i.e. at n = 2) to n ≥ 2
by using the condition ∫

∞

ι0

g′ (ς)gn−2 (ς)

(∫
∞

ς

q(ξ )dξ

)
dς = ∞,

for g ∈ C([ι0,∞) ,R+), g′ > 0 and limι→∞ g(ι) = ∞.
Zafer [30] studied the oscillation behavior of the nonlinear NDDE

[x(ι)+ p(ι)x(h(ι))](n)+F (ι ,x(ι) ,x(g(ι))) = 0, (4)

under two conditions

liminf
ι→∞

∫
ι

g(ι)
gn−1 (ι)(1− p(g(ς)))q(ς)dς >

(n−1)2(n−1)(n−2)

e
, (5)

or
limsup

ι→∞

∫
ι

g(ι)
gn−1 (ι)(1− p(g(ς)))q(ς)dς > (n−1)2(n−1)(n−2).

Zhang et al. [31] considered the higher-order DDE

(r (ι)
(

x(n−1) (ι)
)α

)′+q(ι)xβ (g(ι)) = 0, (6)

where α, β are a ration of odd integers and 0 < β ≤ α . Moreover, Zhang et al. [40] studied the oscillation of (6) and
improved the results in [31].

Numerous researchers have recently examined the oscillatory behavior of solutions to a higher-order delay differential
equation, see [32]– [35]. However, the study of the qualitative characteristics of fractional and difference equations reflects
the advancements in the study of the qualitative behavior of differential equation solutions (see [36]– [39]).

The following lemmas are required in order to demonstrate the primary results.

Lemma 1. [41] Suppose that x be an eventually positive and n times-differentiable solution on [ι0,∞) . Then, there exists
a positive integer such that

x(i) (ι)> 0,

for i = 1,2, ....,ζ , and
x(ζ+1) (ι)< 0,

eventually.
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Lemma 2. [41] Suppose that x be as in Lemma 1, then there is ι > ιλ > ι0 for every λ ∈ (0,1), such that

ι ix(i) (ι)
i!

<
1
λ

(
ζ

i

)
x(ι) ,

for any i = 1,2, ....,ζ .

2 Preliminary Results

Before analyzing the oscillatory behavior of NDDEs, identifying the signs of the derivatives of x and z plays a
fundamental role. To enhance clarity, we introduce specific notations that facilitate the exposition of the results.
Furthermore, supplementary lemmas are presented to provide additional support for the main theorems.

Notation 1To keep things brief, we define the functions

Q(ι) := q(ι)(1− p(g(ι))) ,

and
Q̂(ι) :=

∫
∞

ι

∫
∞

u
Q(s)dsdu.

The following lemma, which is immediately deduced from [42], is presented for the classification of positive solutions
to equation (1). Thus,

Lemma 3. For (1), let x be a positive solution. Then z satisfies one of the following cases:

C1 : z(ι)> 0, z′ (ι)> 0, z′′ (ι)> 0, z′′′ (ι)> 0

and
C2 : z(ι)> 0, z′ (ι)> 0, z′′ (ι)< 0, z′′′ (ι)> 0.

Lemma 4. Let x be a positive solution of (1) and satifies case C1. If∫
∞

ι0

g3 (s)Q(s)ds = ∞, (7)

then z′′(ι)
ι

is decreasing and tends to zero.

Proof . For (1), let x be a positive solution and satisfies case C1 for ι ≥ ι0. Then,(
ι

2
[

z′′

ι

]′)′

=
(
ιz′′′− z′′

)′
= ιz(4)+ z′′′− z′′′

= ιz(4)

= −ιq(ι)x(g(ι)) . (8)

Since z′ (ι)> 0 and h(ι)≤ ι , we have that

x(ι) = z(ι)− p(ι)x(h(ι))

≥ z(ι)− p(ι)z(h(ι))

= (1− p(ι))z(ι)
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Thus, (8) becomes (
ι

2
[

z′′

ι

]′)′

≤−ιQ(ι)z(g(ι)) . (9)

Since zi (ι)> 0 for i = 0,1,2,3 and z(4) (ι)< 0, it follows from Lemmas 1 and 2 that

z(ι)>
λ

6
ι

2z′′ (ι) , (10)

for λ ∈ (0,1), which with (9) gives (
ι

2
[

z′′

ι

]′)′

≤−λ

6
ιg2 (ι)Q(ι)z′′ (g(ι)) .

Integration of (9) from ι0 to ι yields

ι
2
(

z′′

ι

)′
≤ −L−

∫
ι

ι0

sg2 (s)Q(s)z′′ (g(s))ds (11)

≤ −L− z′′ (g(ι0))
∫

ι

ι0

sg2 (s)Q(s)ds

where

L :=−
[

ι
2
(

z′′

ι

)′]
ι=ι0

.

Using (7) gives (
z′′

ι

)′
≤ 0,

and L > 0.
Setting w = z′′

ι
. Since w is positive and decreasing, we get that limι→∞ w(ι) = w0 ≥ 0. Suppose that w0 > 0. From

(11), we obtain

w′ (ι)+
1
ι2

∫
ι

ι0

sg2 (s)Q(s)z′′ (g(s))ds ≤− L
ι2 < 0,

or
w′ (ι)+

1
ι2

∫
ι

ι0

sg3 (s)Q(s)w(g(s))ds ≤− L
ι2 < 0, (12)

Integration of (12) from ι0 to ∞ yields

w(ι0) > w0 +
λ

6
w0

∫
∞

ι0

1
u2

∫ u

ι0

sg3 (s)Q(s)dsdu

= w0 +
λ

6
w0

∫
∞

ι0

g3 (s)Q(s)ds.

This a contradiction with (7). Therefore, w0 = 0.

Lemma 5. Let x be a positive solution of (1) and and satifies case C2. If∫
∞

ι0

g(s) Q̂(s)ds = ∞, (13)

then then z(ι)
ι

is decreasing and tends to zero.
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Proof . For (1), let x be a positive solution and satisfies case C2 for ι ≥ ι0,

x(ι)> z(ι)(1− p(ι))

which with (1) yields
0 ≥ z(4) (ι)+Q(ι)z(g(ι)) (14)

Integrating (14) from ι to ∞, we obtain

−z′′′ (ι)+ z(g(ι))
∫

∞

ι

Q(s)ds ≤ 0. (15)

Integrating (15) from ι to ∞, we have

z′′ (ι)+
∫

∞

ι

z(g(u))
∫

∞

ι

Q(s)dsdu ≤ 0,

yields,
z′′ (ι)+ Q̂(ι)z(g(ι))≤ 0. (16)

After that, we see that (
ι

2
[

z(ι)
ι

]′)′

=
(
ιz′ (ι)− z′ (ι)

)′
= ιz′′ (ι)

= −ιQ̂(ι)z(g(ι)) . (17)

After integrating (17) through [ι0, ι ], we get

ι
2
[

z(ι)
ι

]′
− ι

2
0

[
z(ι0)

ι0

]′
≤−

∫
ι

ι0

sQ̂(ι)z(g(s))ds.

After taking K = ι2
0

[
z(ι0)

ι0

]′
, we find that

ι
2
[

z(ι)
ι

]′
≤ K −

∫
ι

ι0

sQ̂(s)z(g(s))ds. (18)

Hence,

ι
2
[

z(ι)
ι

]′
≤ K − z(g(ι0))

∫
ι

ι0

sQ̂(s)ds.

We determine that z(ι)
ι

is decreasing using (13), indicating that K is positive.
Setting w̄ = z

ι
. Since w̄ is positive and decreasing, we get that limι→∞ w̄(ι) = w̄0 ≥ 0. Assume that w̄0 > 0. From (18),

we obtain
w̄′+

1
ι2

∫
ι

ι0

sg(s) Q̂(s) w̄(g(s))ds ≤−K
ι2 < 0. (19)

By integrating (19) from ι0 to ∞, we have

w̄(ι0) > w̄0 +
∫

∞

ι0

1
u2

∫
ι

ι0

sg(s) Q̂(s) w̄(g(s))dsdu

> w̄0 + w̄0

∫
∞

ι0

g(s) Q̂(s)ds,

which is in conflict with (13). Consequently, w̄0 = 0. The proof is finished.
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3 Main Results

Based on the results obtained in the preceding section, we establish new oscillation criteria for Eq. (1), which are
formulated in the subsequent theorems.

3.1 Oscillation Criteria

Theorem 1. Assume that (7) and (13) hold. If

liminf
ι→∞

∫
ι

g(ι)

1
u2

∫ u

0
sg3 (s)Q(s)dsdu >

6
λe

, (20)

for any λ ∈ (0,1), and

liminf
ι→∞

∫
ι

g(ι)

1
u2

∫ u

0
sg(s) Q̂(s)dsdu >

1
e
, (21)

then equation (1) is oscillatory.

Proof . Let x be a positive solution of (1). We have two cases from Lemma 3. The case C1:
From Lemma 4, we can infer that (12) holds. Consequently,

w′ (ι) ≤ − 1
ι2

[
L+

λ

6

∫
ι

ι1

sg3 (s)Q(s)w(g(s))ds
]

≤ − 1
ι2

[
L+

λ

6
w(g(ι))

∫
ι

ι1

sg3 (s)Q(s)ds
]

≤ − 1
ι2

[
L+

λ

6
w(g(ι))

∫
ι

0
sg3 (s)Q(s)ds− λ

6
w(g(ι))

∫
ι0

0
sg3 (s)Q(s)ds

]
= − 1

ι2

[
L+

λ

6
w(g(ι))

∫
ι

0
sg3 (s)Q(s)ds−Mw(g(ι))

]
, (22)

where M = λ

6
∫ ι0

0 sg3 (s)Q(s)ds. There is ι1 ≥ ι0 such that L−M w(g(ι)) ≥ 0 since w(ι) converges to zero. Thus, (22)
turns into

w′ (ι)+
λ

6
1
ι2 w(g(ι))

∫
ι

0
sg3 (s)Q(s)ds ≤ 0. (23)

The existence of a positive solution w(ι) to inequality (23) defies condition (20), as stated in [43, Theorem 2.1.1]. The
case C2:

Lemma 5 indicates that (19) is true. As in the last case, condition (21), we likewise obtain a contradiction. As a result,
all solutions oscillates.

3.2 Improved criteria for oscillation

3.2.1 Part one

This part involves enhancing the monotonic properties of the functions w and w̄, followed by an examination of the impact
on the oscillation criterion. For convenience, the following symbols are also defined:

η (ι) = exp
(

λ

6

∫
ι

ι0

1
u2

∫ u

ι1

sg3 (s)Q(s)dsdu
)

and

µ (ι) = exp
(∫

ι

ι0

1
u2

∫ u

ι0

sg(s) Q̂(s)dsdu
)
.
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Lemma 6. Let x be a positive solution of (1), (7) and (13) hold. Then, the functions ηw and µw̄ are decreasing for
λ ∈ (0,1).

Proof . For (1), let x be a positive solution. The case C1:
From Lemma 4, we can infer that (12) holds. Consequently,

w′ (ι)+
λ

6
1
ι2 w(ι)

∫
ι

ι1

sg3 (s)Q(s)ds < 0,

hence,

(η (ι)w(ι))′ = η (ι)w′ (ι)+w(ι)η
′ (ι)

= η (ι)w′ (ι)+w(ι)η (ι)

(
λ

6
1
ι2 w(ι)

∫
ι

ι1

sg3 (s)Q(s)ds
)

= η (ι)

(
w′ (ι)+w(ι)

λ

6
1
ι2 w(ι)

∫
ι

ι1

sg3 (s)Q(s)ds
)

< 0.

Similarly, The case C2, from Lemma 5, we find that (19) holds. Consequently,

w̄′+
1
ι2 w̄(ι)

∫
ι

ι0

sg(s) Q̂(s)ds < 0,

hence,

(µ (ι) w̄(ι))′ = µ (ι) w̄′ (ι)+ w̄(ι)µ
′ (ι)

= µ (ι) w̄′ (ι)+ w̄(ι)µ (ι)

(
1
ι2

∫ u

ι0

sg(s) Q̂(s)ds
)

= µ (ι)

(
w̄′ (ι)+

1
ι2 w̄(ι)

∫ u

ι0

sg(s) Q̂(s)ds
)

< 0.

The proof is finished.

Theorem 2. Assume that (7) and (13) hold. If

liminf
ι→∞

∫
ι

g(ι)

η (g(u))
u2

∫ u

0

sg3 (s)Q(s)
η (g(s))

dsdu >
6

λe
, (24)

for any λ ∈ (0,1), and

liminf
ι→∞

∫
ι

g(ι)

µ (g(u))
u2

∫ u

0

sg(s) Q̂(s)
µ (g(s))

dsdu >
1
e
, (25)

then equation (1) is oscillatory.

Proof . For (1), let x be a positive solution. We have two cases from Lemma 3. The case C1:
From Lemma 4, we can infer that (12) holds. Given that ηw is decreasing, It is evident from (12) that

w′ (ι)+
λ

6
η (g(ι))

ι2 w(g(ι))
∫

ι

ι1

sg3 (s)Q(s)
η (g(s))

ds < 0. (26)

The existence of a positive solution w(ι) to inequality (26) defies condition (24), as stated in [43, Theorem 2.1.1].
The case C2:
Lemma 5 indicates that (19) is true. As in the last case, condition (25), we likewise obtain a contradiction. As a result,

all solutions oscillates.
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3.2.2 Part two

In this part, we will improve the monotonic features using a different approach. Next, we assess how the additional features
affect the oscillation criterion in equation (1). The following symbols are also provided for convenience:

Ψ (ι) = ι
3 +

λ1

6

∫
ι

ι1

s3g3 (s)Q(s)ds

and
Ψ̂ (ι) = ι +λ3

∫
ι

ι1

sg(s) Q̂(s)ds.

Theorem 3. For any λi ∈ (0,1) and ι1 ≥ ι0. If

liminf
ι→∞

∫
ι

g(ι)
Q(s)Ψ (g(s))ds >

6
λ2e

, (27)

and
liminf

ι→∞

∫
ι

g(ι)
Q̂(s)Ψ̂ (g(s))ds >

1
λ3e

, (28)

then equation (1) is oscillatory.

Proof . For (1), let x be a positive solution. We have two cases from Lemma 3. The case C1:
Let 𭟋= z′, then 𭟋( j) > 0 for j = 0,1,2 and 𭟋(3) < 0. Once we apply Lemmas 1 and 2 to z and once to 𭟋, we obtain

z(ι)>
λ1

6
ι

3z′′′ (ι)

and
1
λ2

𭟋>
ι2

2
𭟋′′ → z′ (ι)>

λ2

2
ι

2z′′′ (ι) , (29)

for λi ∈ (0,1). Equation (1) therefore reduces to

z(4) (ι)≤−λ1

6
Q(ι)g3 (ι)z′′′ (g(ι)) . (30)

Utilizing (29) and (30), we arrive at(
z(ι)− λ2

6
ι

3z′′′ (ι)
)′

= z′ (ι)− λ2

6

(
ι

3z(4) (ι)+3ι
2z′′′ (ι)

)
> −λ2

6
ι

3z(4) (ι)

>
λ1λ2

36
ι

3g3 (ι)Q(ι)z′′′ (g(ι)) . (31)

After integrating (31) from ι1 to ι , we get

z(ι)− λ2

6
ι

3z′′′ (ι)>
λ1λ2

36

∫
ι

ι1

s3g3 (s)Q(s)z′′′ (g(s))ds.

Consequently,

z(ι) >
λ2

6
ι

3z′′′ (ι)+
λ1λ2

36

∫
ι

ι1

s3g3 (s)Q(s)z′′′ (g(s))ds

>
λ2

6
z′′′ (ι)

[
ι

3 +
λ1

6

∫
ι

ι1

s3g3 (s)Q(s)ds
]

=
λ2

6
z′′′ (ι)Ψ (ι) . (32)
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When we set z′′′ (ι) = Ω (ι) and combine (1) with (32), we discover that Ω (ι) is a positive solution of

Ω
′ (ι)+

λ2

6
Q(ι)Ψ (g(ι))Ω (g(ι))≤ 0.

There is a contradiction with (27), according to [43, Theorem 2.1.1].
In the case C2 we have Lemma 5 implies that (16) holds. According to Lemmas 1 and 2, we find that

z(ι)> λ3ιz′ (ι) ,

for λ3 ∈ (0,1). After that, from (16), we get(
z(ι)−λ3ιz′ (ι)

)′
= z′ (ι)−λ3

(
ιz′′ (ι)+ z′ (ι)

)
= (1−λ3)z′ (ι)−λ3ιz′′ (ι)

> −λ3ιz′′ (ι)

> λ3ιQ̂(ι)z(g(ι))

> λ
2
3 ιg(ι) Q̂(ι)z′ (g(ι)) . (33)

After integrating (33) from ι1 to ι , we obtain

z(ι) > λ3ιz′ (ι)+λ
2
3

∫
ι

ι1

sg(s) Q̂(s)z′ (g(s))ds

> λ3z′ (ι)
[

ι +λ3

∫
ι

ι1

sg(s) Q̂(s)ds
]

= λ3z′ (ι)Ψ̂ (ι) .

When we set 𭟋(ι) = z′ (ι) and combine (1) with (32), we discover that 𭟋(ι) is a positive solution of

𭟋′ (ι)+λ3Q̂(ι)Ψ̂ (g(ι))𭟋(g(ι))≤ 0.

There is a contradiction with (28), according to [43, Theorem 2.1.1]. The proof is so finished.

4 Examples and Discussions

In the following, we apply these results to a classical form of Euler-type differential equations to assess their practical
applicability and identify the criteria that provide the sharpest bounds. Furthermore, we present a numerical comparison
with earlier studies to emphasize the improvements attained through our approach.

Example 1. For ι ≥ 1. Consider NDDE

(x(ι)+ p0x(δι))′′′′+
q0

ι4 x(ξ ι) = 0, (34)

where δ , ξ ∈ (0,1) and q0 > 0. We note that p(ι) = p0, h(ι) = δι , q(ι) = q0/ι4 and g(ι) = ξ ι . It is simple to confirm
that

Q(ι) =
q0

ι4 (1− p0) ,

and

Q̂(ι) : =
∫

∞

ι

∫
∞

u

q0

s4 (1− p0)dsdu

=
q0

ι2 (1− p0) .
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Before using the following Theorems, we must confirm that∫
∞

ι0

g3 (s)Q(s)ds =
∫

∞

ι0

ξ
3s3 q0

s4 (1− p0)ds

= ξ
3q0 (1− p0)

∫
∞

ι0

ds
s

= ∞,

and ∫
∞

ι0

g(s) Q̂(s)ds =
∫

∞

ι0

ξ s
q0

s2 (1− p0)ds

= ξ q0 (1− p0)
∫

∞

ι0

ds
s

= ∞

are fulfilled. Thus, the Conditions (20) and (21) are satisfied if

q0 >
6

λξ 3 (1− p0) ln(1/ξ )e
,

and
q0 >

1
ξ (1− p0) ln(1/ξ )e

,

respectively. Therefore, by using Theorem 1, we see that (34) is oscillatory if

q0 > max
{

6
λξ 3 (1− p0) ln(1/ξ )e

,
1

ξ (1− p0) ln(1/ξ )e

}
=

6
λξ 3 (1− p0) ln(1/ξ )e

(35)

Likewise, by using Theorem 2, we see that (34) is oscillatory if

q0 > max
{

−λξ 3 (1− p0)+1
λξ 3 (1− p0) ln(1/ξ )e

,
−ξ (1− p0)+1

ξ (1− p0) ln(1/ξ )e

}
>

−λξ 3 (1− p0)+1
λξ 3 (1− p0) ln(1/ξ )e

. (36)

From Theorem 3, we obtain that (34) is oscillatory if

q0 >
6

eλ2ξ 3 (1− p0)
(

1+ λ1
18 ξ 3q0 (1− p0)

)
ln(1/ξ )

. (37)

Remark. However, by using Theorem 2 in [30], equation (34) is oscillatory if

q0 >
192

eξ 3 (1− p0) ln(1/ξ )
(38)

Table Table 1 provides a comparative analysis of the effectiveness and originality of our results compared to criteria (38)
mentioned in previous studies and also compares the Theorem 1 criteria with the Theorem 3 criteria. Specifically, the table
shows the lower bounds of the coefficient q0 corresponding to different values p0, δ and ξ .

We can notice from Table 1 that

1.Theorem 3 improves Theorem 1 and provides a better criterion for testing the oscillation.
2.By comparing our results with those of [30], it is observed that our results improve upon and complement the related

previous works.
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Table 1: Comparison of new results with previous relevant findings in the literature.

(35) (37) (38)
p0 = 1/2,δ = 1/2,ξ = 0.9 q0 > 57.4 q0 > 34.02 q0 > 1839.2
p0 = 1/3,δ = 1/3,ξ = 0.8 q0 > 28.98 q0 > 1.64 q0 > 927.35
p0 = 1/4,δ = 1/4,ξ = 0.7 q0 > 24.05 q0 > 1.203 q0 > 769.8

Fig. 1: Comparison between criteria (36) and (37).

5 Conclusion

In this work, the oscillatory behavior of a fourth-order NDDE in the standard case is studied. Classifying positive solutions
according to the sign of their derivatives always comes first when examining the oscillations of NDDEs. In the oscillation
theory of NDDEs, finding the relationships between the solution and its corresponding function is crucial. We then used
the new relationships and properties to derive a set of oscillation criteria. By comparing our results with those of previous
studies such as [30], the value of the new criteria was evaluated numerically. The results demonstrate that our criteria
are more accurate and general, providing significant improvements in predicting oscillation behavior across different test
cases. We suggest applying our results to higher-order non-standards, as the number of derivative signs increases in this
case and thus becomes an interesting research topic.
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