

Journal of the Egyptian Mathematical Society

Journal homepage https://joems.journals.ekb.eg/ Print ISSN: 1110-256X Online ISSN: 2090-9128

http://dx.doi.org/10.21608/JOEMS.2025.365906.1028

Common Best Proximity Results for Several Generalized Non-Self Alpha-Conjoint Proximal Beta-Quasi Contraction Mappings

Salwa Hamdy^{1,*} , Sarah Tawfeek ² , Nashat Faried ³, Hleil Alrweili ⁴

Received: 2 Apr. 2025, Revised: 23 Aug. 2025, Accepted: 26 Oct. 2025, Published online: 23 Nov. 2025

Abstract: Fixed point theory is a fundamental concept in mathematics, which ensures the existence and uniqueness of fixed points for self-mappings in complete metric spaces. The Banach contraction principle, explicitly stated in Banach's 1922 thesis, laid the groundwork for this field. However, for non-self mappings $H: F \to K$, where F and K are subsets of a metric space E, fixed points may not exist. This led to the development of best proximity point theory, which seeks to find elements f in F where d(f, Hf) = d(F, K). This study introduces new concepts in the field of best proximity point theory, extending the existing framework with the formulation of conjoint proximal β -quasi contraction, α -generalized conjoint proximal β -quasi contraction, and generalized conjoint β -quasi contraction. These innovative constructs are utilized to investigate the existence of common best proximity points on metric spaces for both double and multiple non-self mappings. The research also presents a concrete example involving two non-self mappings, thereby illustrating the practical application of these theoretical concepts. Furthermore, the study explores various implications and consequences arising from these new formulations.

Keywords: Best proximity point, non-self mapping, P-property, approximately compact and special generalized proximal beta-quasi contraction

2020 AMS Subject Classifications: 81Q10, 81Q15, 35J10.

1 Introduction

The evolution of this field has been marked by significant contributions from various mathematicians. Fan's 1969 best approximation theorem [1] acted as a catalyst, stimulating extensive subsequent research. S. Reich's 1972 [2] work extended Fan's theorem to set-valued inward functions. Between 1988 and 1989, Sehgal and colleagues [3]-[4] investigated best proximity points for non-self contractions, furthering the field's scope.

Kirk and colleagues (2003) [5] investigated proximinality and best proximity point theorems in hyperconvex metric spaces within Hilbert spaces, offering optimal approximate solutions for mappings without fixed points. Sadiq Basha [6] established important existence conditions for proximal contractions of both first and second kinds. Jleli and collaborators [7] introduced a new category of non-self contractive mappings and examined the existence and uniqueness of best proximity points for these mappings.

¹ Egyptian Meteorological Authority, Forecasting center, Abasia, Cairo, Egypt.

^{2,3} Department of Mathematics, Ain Shams University, Abasia, Cairo, Egypt.

⁴ Department of Mathematics, College of Science, Northern Border University, Arar, Saudi Arabia.

^{*} Corresponding author name and e-mail: solihamdy123@gmail.com

Recent advancements include Almeida et al.'s 2014 [8] application of P-property to locate best proximity points, and M. Ayari et al.'s findings on best proximity points for special generalized proximal beta-quasi contraction [9]. The field continues to expand, with ongoing research exploring concepts such as conjoint proximal β -quasi contraction, α -generalized conjoint β -quasi contraction, and their applications to finite numbers of non-self mappings on metric spaces.

This paper has led to a deeper understanding of fixed point theory and its extensions, providing powerful tools for analyzing diverse mathematical structures and their properties.

2 Preliminaries

This passage provides important definitions and notations. Let me summarize the key points:

Notation 1*For F and K nonempty subsets of a metric space* (E,d)*:*

$$d(F,K):=\inf\{d(f,k):f\in F,k\in K\},$$

$$F_0:=\{f\in F: there \ exists \ k\in K \ such \ that \ d(f,k)=d(F,K)\},$$

$$K_0:=\{k\in K: \ there \ exists \ f\in F \ such \ that \ d(f,k)=d(F,K)\}.$$

Definition 1. [6] For $H: F \to K$, an element f^* is a best proximity point of H if $d(f^*, Hf^*) = d(F, K)$.

Definition 2. [9] For $\chi : [0, +\infty) \to [0, +\infty)$ such that

1. χ is non-decreasing,

2. The $\lim_{n\to\infty}\chi^n_{\beta}(t)=0$ such that t>0 where χ^n_{β} the n-th iterate of χ_{β} and $\chi_{\beta}(t)=\chi(\beta t)$,

$$3.s \in (0,+\infty)$$
 as $\sum_{n=1}^{\infty} \chi_{\beta}^{n}(s) < \infty$ exists.

For some $\beta \in (0, +\infty)$ and χ is called β -comparison function and denoted by Ξ_{β} .

Example 1. [9] For $\chi:[0,+\infty)\to[0,+\infty)$ where $\chi(t)=at$, $a\in(0,\beta^{-1})$ and $\beta>0$ then $\chi\in\Xi_{\beta}$. Remark that, if a>1 then $\chi(t)>t$ and so $\Sigma_{n=1}^{\infty}\chi^n(t)=\infty$

Lemma 1. [9] For $\chi \in \Xi_{\beta}$. We have

 $1.\chi_{\beta}$ is non decreasing,

$$2.\chi_{\beta}(t) < t$$
 for all $t > 0$,

$$3. \sum_{n=1}^{\infty} \chi_{\beta}^{n}(t) < \infty \text{ for all } t > 0.$$

Definition 3. [10] For nonempty subsets F and K of a metric space (E,d). The nonempty subsets F and K of a metric space (E,d) will have P-property if

$$d(\xi_1, \eta_1) = d(\xi_2, \eta_2) = d(F, K) \Longrightarrow d(\xi_1, \xi_2) = d(\eta_1, \eta_2)$$

such that ξ_1 , $\xi_2 \in F$ and η_1 , $\eta_2 \in K$.

Definition 4. [11] Approximately compact with respect to a nonempty subset F of a metric space (E,d) for a subset K of a metric space (E,d) iff

$$\lim_{n\to+\infty}d(\xi,\eta_n)=d(\xi,K).$$

3 Main Consequences

3.1 Best Proximity Point for Two Mappings

Definition 5. Consider F and K nonempty subsets of a metric space (E,d). If

$$d(H\xi, G\eta) \le \chi(M_{H,G}(\xi, \eta)), \quad \forall \xi, \eta \in F, \tag{1}$$

and

$$\begin{split} M_{H,G}(\xi,\eta) &= \max\{\alpha_0 d(\xi,\eta), \alpha_1(d(\xi,H\xi) - d(F,K)), \\ \alpha_2(d(\eta,S\eta) - d(F,K)), \alpha_3(d(\eta,H\xi) - d(F,K)), \\ \alpha_4(d(\xi,G\eta) - d(F,K))\}. \end{split}$$

whenever $\chi \in \Xi_{\beta}$ and positive numbers α_i , i = 0, 1, 2, 3, 4, $\beta \in (0, +\infty)$. So, $H, G : F \to K$ are called α -conjoint proximal β -quasi contraction mappings.

Let us give an example on definition 5

Example 2. Let $E = \mathbb{R}$ with $d(\xi, \eta) = |\xi - \eta|$ and F = [0, 1] and K = [0, 4]. Since K is compact, then K = [0, 4] is approximately compact with respect to F = [0, 1]. Moreover, For $H, G : F \to K$ define by $H(\xi) = \frac{\xi}{2}$ and $G(\xi) = \frac{\xi}{2} + 2$. Then d(F, K) = 1 and $F_0 = 1$, $K_0 = 2$. Thus, $H(F_0) = H(\{1\}) = \{2\} = K_0$ and $G(F_0) = G(\{1\}) = \{2\} = K_0$. H is conjoint proximal \mathcal{B} -quasi contraction with $\chi(\zeta) = \frac{1}{2}\zeta, \beta = 2, \alpha_0 = 2$ and $\alpha_i = 0$ for i = 1, 2, 3, 4.

Now, since

$$L.H.S = d(H\xi, G\eta) = |\frac{\xi}{2} - \frac{\eta}{2} - 2|$$
 (2)

Also,

$$\begin{split} M_{H,G}(\xi,\eta) &= \max\{\alpha_0 d(\xi,\eta), \alpha_1(d(\xi,H\xi) - d(F,K)), \\ &\alpha_2(d(\eta,S\eta) - d(F,K)), \alpha_3(d(\eta,H\xi) - d(F,K)), \\ &\alpha_4(d(\xi,G\eta) - d(F,K))\} \\ &= \max\{2|\xi-\eta|,0,0,0,0\} = 2|\xi-\eta| \end{split}$$

Moreover,

$$R.H.S = \chi(M_{H,G}(\xi,\eta)) = \chi(2|\xi-\eta|) = \frac{2|\xi-\eta|}{2} = |\xi-\eta|$$
(3)

Then, from equations (2) and (3), we get

$$L.H.S = d(H\xi, G\eta) = |\frac{\xi}{2} - \frac{\eta}{2} - 2| = \frac{1}{2}|\xi - \eta - 4| \le |\xi - \eta - 4| \le |\xi - \eta| = \chi(M_{H,G}(\xi, \eta)) = R.H.S.$$

Theorem 2. For mappings H and G on nonempty closed subsets F and K of a complete metric space (E,d) where F_0 is nonempty. Let's break down the key components of this theorem:

- 1. The pair (F,K) satisfies P-property and $H(F_0) \subset K_0$, $G(F_0) \subset K_0$.
- 2.K is approximately compact with respect to F.
- 3. Occurring $\xi_1, \xi_2, \xi_3 \in F$ such that

$$d(\xi_2, H\xi_1) = d(\xi_3, G\xi_2) = d(F, K).$$

4. There occurs $\beta \ge \max_{0 \le r \le 3} \{\alpha_r, 2\alpha_4\}$ whereas H and G are α -conjoint proximal β -quasi contraction mappings.

In Addition, either χ is continuous, or $\beta > max\{\alpha_2, \alpha_4\}$

Then under these conditions, either $d(\xi, H\xi) = d(\xi, G\xi) = d(F, K)$ or H and G have a unique common best proximity point $\xi \in F$.

Proof . There exists $\xi_1 \in F_0$ such that $H(\xi_1) \in K_0$ because $H(F_0) \subseteq K_0$. As a result of condition 3, we obtain $\xi_2 \in F_0$ such that

$$d(\xi_2, H\xi_1) = d(F, K) \tag{4}$$

From condition 3 and $G(F_0) \subseteq K_0$, we deduce that there exists $\xi_3 \in F_0$ such that

$$d(\xi_3, G\xi_2) = d(F, K) \tag{5}$$

We derive from equations (4) and (5) that:

$$d(\xi_2, H\xi_1) = d(\xi_3, G\xi_2) = d(F, K).$$

We consider a sequence $\{\xi_n\} \subseteq F_0$ by repeating this procedure where

$$d(\xi_{n+2}, H\xi_{n+1}) = d(\xi_{n+3}, G\xi_{n+2}) = d(F, K), \quad n \in \{0\} \cup \mathbb{N}.$$
(6)

By using *P*-property condition, we get

$$d(\xi_{n+2}, \xi_{n+3}) = d(H\xi_{n+1}, G\xi_{n+2}), \quad n \in \{0\} \cup \mathbb{N}.$$
(7)

We'll now demonstrate that $\{\xi_n\}$ is a Cauchy sequence.

Since H and G are α -conjoint proximinal β -quasi contraction, then

$$d(\xi_{n+2}, \xi_{n+3}) = d(H\xi_{n+1}, G\xi_{n+2}) \le \chi(M_{H,G}(\xi_{n+1}, \xi_{n+2}))$$
(8)

And

$$\begin{split} M_{H,G}(\xi_{n+1},\xi_{n+2}) &= \max\{\alpha_0 d(\xi_{n+1},\xi_{n+2}),\alpha_1 (d(\xi_{n+1},H\xi_{n+1}) - d(F,K)),\\ & \alpha_2 (d(\xi_{n+2},G\xi_{n+2}) - d(F,K)),\alpha_3 (d(\xi_{n+2},H\xi_{n+1}) - d(F,K)),\\ & \alpha_4 (d(\xi_{n+1},G\xi_{n+2}) - d(F,K))\}\\ &= \max\{\alpha_0 d(\xi_{n+1},\xi_{n+2}),\alpha_1 (d(\xi_{n+1},H\xi_{n+1}) - d(F,K)),\\ & \alpha_2 (d(\xi_{n+2},G\xi_{n+2}) - d(F,K)),\alpha_4 (d(\xi_{n+1},G\xi_{n+2}) - d(F,K))\}\\ &\leq \max\{\alpha_0 d(\xi_{n+1},\xi_{n+2}),\alpha_1 d(\xi_{n+1},\xi_{n+2}),\alpha_2 d(\xi_{n+2},\xi_{n+3}),\\ & \alpha_4 (d(\xi_{n+1},\xi_{n+2}) + d(\xi_{n+2},\xi_{n+3}))\}\\ &\leq \beta \max\{d(\xi_{n+1},\xi_{n+2}),d(\xi_{n+2},\xi_{n+3})\} \end{split}$$

By utilizing equations (6), (7), (8) as well as triangle inequality. As a result,

$$M_{H,G}(\xi_{n+1}, \xi_{n+2}) \le \beta \max\{d(\xi_{n+1}, \xi_{n+2}), d(\xi_{n+2}, \xi_{n+3})\}$$
(9)

whereas $\beta \ge \max_{0 \le r \le 3} \{\alpha_r, 2\alpha_4\}$. From equations (8) and (9), we deduce

$$d(\xi_{n+2},\xi_{n+3}) \le \chi(\beta \max\{d(\xi_{n+1},\xi_{n+2}),d(\xi_{n+2},\xi_{n+3})\}) = \chi_{\beta}(\max\{d(\xi_{n+1},\xi_{n+2}),d(\xi_{n+2},\xi_{n+3})\})$$

If for some n, we have $d(\xi_{n+1}, \xi_{n+2}) \leq d(\xi_{n+2}, \xi_{n+3})$ and from lemma 1. It follows that $d(\xi_{n+2}, \xi_{n+3}) \leq \chi_{\beta}(d(\xi_{n+2}, \xi_{n+3})) < d(\xi_{n+2}, \xi_{n+3})$ which gives a contradiction.

Then for all $n \in \{0\} \cup \mathbb{N}$, we have $d(\xi_{n+2}, \xi_{n+3}) < d(\xi_{n+1}, \xi_{n+2})$ and it follows that

$$d(\xi_{n+2}, \xi_{n+3}) \le \chi_{\beta}(d(\xi_{n+1}, \xi_{n+2})) \quad n \in \{0\} \cup \mathbb{N}$$
(10)

Then, by establishing an inductive relationship for the distances between successive terms of a sequence ξ_n :

$$d(\xi_{n+2}, \xi_{n+3}) \le \chi_{\beta}^{n}(d(\xi_{2}, \xi_{1})) \quad n \in \{0\} \cup \mathbb{N}$$
(11)

Let $\varepsilon > 0$ be fixed. Since $\Sigma_{n=1}^{+\infty} \chi_{\beta}^n(d(\xi_2, \xi_1))$ converges, occurs $n_0 \in \mathbb{Z}^+$ whereas $\Sigma_{n \geq n_0}^{+\infty} \chi_{\beta}^n(d(\xi_2, \xi_1)) < \varepsilon$. For $m > n > n_0$ and equation (11), we obtain

$$d(\xi_n, \xi_m) \le \sum_{k=n}^{m-1} d(\xi_k, \xi_{k+1})$$

$$\le \sum_{k=n}^{m-1} \chi_B^k (d(\xi_2, \xi_1)).$$

Since $\Sigma_{n=1}^{+\infty} \chi_{\beta}^{n}(t)$ converges for all $t \geq 0$; as a result

$$\Sigma_{k=n}^{m-1}\chi_{\beta}^{k}(d(\xi_{2},\xi_{1})) \rightarrow 0$$
 as $n,m \rightarrow +\infty$.

It then proves that $\{\xi_n\}$ is Cauchy using F is closed in a complete metric (E,d), so the sequence $\{\xi_n\}$ converges to some element $\xi \in F$.

Moreover,

$$d(\xi, K) \leq d(\xi, H\xi_{n+1})$$

$$\leq d(\xi, \xi_{n+2}) + d(\xi_{n+2}, H\xi_{n+1})$$

$$= d(\xi, \xi_{n+2}) + d(F, K)$$

$$\leq d(\xi, \xi_{n+2}) + d(\xi, K).$$

If $n \to \infty$, so $d(\xi, H\xi_{n+1})$ converges to $d(\xi, K)$. According to condition (2), then there exists a sub sequence $\{\xi_{n(k)}\}$ of $\{\xi_n\}$ for which $\{H\xi_{n(k)}\}$ converges to some $\eta \in K$. Similarly, we may deduce that $\{\xi_{n(k)}\}$ is a sub sequence of $\{\xi_n\}$ such that $\{G\xi_{n(k)}\}$ converges to $\eta^* \in K$.

So,

$$\begin{aligned} d(F,K) &\leq d(\xi,\eta) \\ &\leq d(\xi,\xi_{n_{k+1}}) + d(\xi_{n_{k+1}},H\xi_{n_k}) + d(H\xi_{n_k},\eta) \\ &= d(\xi,\xi_{n_{k+1}}) + d(F,K) + d(H\xi_{n_k},\eta). \end{aligned}$$

While $n \to \infty$, so $d(\xi, \eta) = d(F, K)$ and $\xi \in F_0$.

Since $G(F_0) \subset K_0$, there exists $u \in F$ where $d(u, G\xi) = d(F, K)$. Therefore, we find $d(u, G\xi) = d(\xi_{n+2}, H\xi_{n+1}) = d(F, K)$. According to P-property, we conclude that $d(u, \xi_{n+2}) = d(G\xi, H\xi_{n+1})$.

Since H, G are α -conjoint proximal β -quasi contraction mappings, we find

$$d(u,\xi_{n+2}) = d(H\xi_{n+1},G\xi) \leq \chi(M_{H,G}(\xi_{n+1},\xi)) \quad \forall n \in \{0\} \cup \mathbb{N},$$
(12)

where

$$M_{H,G}(\xi_{n+1},\xi) = \max\{\alpha_0 d(\xi_{n+1},\xi), \alpha_1 (d(\xi_{n+1},H\xi_{n+1}) - d(F,K)), \alpha_2 (d(\xi,G\xi) - d(F,K)), \alpha_3 (d(\xi,H\xi_{n+1}) - d(F,K)), \alpha_4 (d(\xi_{n+1},G\xi) - d(F,K))\}.$$
(13)

Further, from (6),

$$M_{H,G}(\xi_{n+1},\xi) = max\{\alpha_0 d(\xi_{n+1},\xi), \alpha_1 d(\xi_{n+1},\xi_{n+2}),$$

$$\alpha_{2}(d(\xi, G\xi) - d(F, K)), \alpha_{3}d(\xi, \xi_{n+2}),$$

$$\alpha_{4}(d(\xi_{n+1}, \xi) + d(\xi, G\xi) - d(F, K))\}.$$
(14)

From triangle inequality and equation (6), we get

$$d(\xi, G\xi) \le d(\xi, \xi_{n+2}) + d(\xi_{n+2}, H\xi_{n+1}) + d(H\xi_{n+1}, G\xi)$$

= $d(\xi, \xi_{n+2}) + d(F, K) + d(H\xi_{n+1}, G\xi) \quad \forall n \in \{0\} \cup \mathbb{N}.$ (15)

From (15) and (12), then

$$d(\xi, G\xi) - d(\xi, \xi_{n+2}) - d(F, K) \le \chi(M_{H,G}(\xi_{n+1}, \xi)), \quad \forall n \in \{0\} \cup \mathbb{N}.$$
(16)

The proof then considers $f = d(\xi, G\xi) - d(F, K)$, and let $n \to +\infty$ in (14), we find

$$\lim_{n \to +\infty} M_{H,G}(\xi_{n+1}, \xi) \le \max\{\alpha_2, \alpha_4\} f \tag{17}$$

Say $f \ge 0$, χ continuous and non decreasing. Also, $n \to +\infty$ in (16), we get

$$f \le \chi(\max\{\alpha_2, \alpha_4\}f) \le \chi(\beta f) = \chi_{\beta}(f) < f,$$

when $\beta > max\{\alpha_2, \alpha_4\}$ a contradiction occurs. We further argue f = 0. Suppose that f > 0.

From (17) then, there exist $\varepsilon > 0$ and N > 0 such that, for all n > N, we have

 $M_{H,G}(\xi_{n+1},\xi) < (max\{\alpha_2,\alpha_4\} + \varepsilon)f$. Since χ is non decreasing, from (17), resulting

$$d(\xi, G\xi) - d(\xi, \xi_{n+2}) - d(F, K) \leq \chi(M_{H,G}(\xi_{n+1}, \xi))$$

$$\leq \chi((\max\{\alpha_2, \alpha_4\} + \varepsilon)f)$$

$$= \chi_{\beta}(\frac{\max\{\alpha_2, \alpha_4\} + \varepsilon}{\beta}f)$$

$$< \frac{\max\{\alpha_2, \alpha_4\} + \varepsilon}{\beta}f < f$$

$$(18)$$

For $n \to +\infty$ in (18), we have

$$f < \frac{\max\{\alpha_2, \alpha_4\} + \varepsilon}{\beta} f < f$$

This result causes a contradiction. Wherefore, f must be zero or $d(\xi, G\xi) - d(F, K) = 0$, As a response $d(\xi, G\xi) = d(F, K)$, proving that ξ is the best proximity point of G.

Similarly, we can get that ξ is the best proximity point of H or $d(\xi, G\xi) = d(\xi, H\xi) = d(F, G)$. In another word, H and G have a common best proximity point $\xi \in F$. Whereas $d(\xi, H\xi) = d(\xi, G\xi) = d(F, K)$.

This rigorous proof establishes the existence of a best proximity point for the mapping G under the given conditions. The approach could likely be adapted to prove a similar result for H, leading to the conclusion of a common best proximity point for both H and G.

To prove the uniqueness, let ξ and θ two separate best proximity points such that $d(\xi, H\xi) = d(\xi, G\xi) = d(\theta, H\theta) = d(\theta, G\theta) = d(F, K)$. From *P*-property condition, we found $d(\xi, \theta) = d(H\xi, G\theta)$.

Further, since H and G are α -conjoint proximal β -quasi contraction mappings, thus we conclude that

$$d(\xi, \theta) = d(H\xi, G\theta) \le \chi(M_{H,G}(\xi, \theta)),$$

Where

$$M_{H,G}(\xi,\theta) = \max\{\alpha_0 d(\xi,\theta), \alpha_3 (d(\theta,H\xi)-d(F,K)), \alpha_4 (d(\xi,G\theta)-d(F,K))\}.$$

We drive from triangular inequalities in $M_{H,G}(\xi,\theta)$ and ξ and θ are best proximity points for H and G that:

$$M_{H,G}(\xi,\theta) \leq \max\{\alpha_0,\alpha_3,\alpha_4\}d(\xi,\theta).$$

Let's say $r = d(\xi, \theta)$. Since χ is non decreasing, we observe

$$r \leq \chi(\max\{\alpha_0, \alpha_3, \alpha_4\}r) \leq \chi(\beta r) = \chi_{\beta}(r) < r$$

That make a discrepancy. So, $\xi = \theta$. Then H and G have a unique common best proximity point $\xi \in F$ such that $d(\xi, H\xi) = d(\xi, G\xi) = d(F, K)$.

Remark. If we put in the contraction G = H in the last theorem, we get the results in Mohamed Jleli and Ayari [[7], [11]] as a spacial case.

Example 3. Let $E = \mathbb{R}$ with $d(\xi, \eta) = |\xi - \eta|$ and F = [0, 1] and K = [0, 4]. Since K is compact, then K = [0, 4] is approximately compact with respect to F = [0, 1]. Moreover, For $H, G : F \to K$ define by $H(\xi) = \frac{\xi}{2}$ and $G(\xi) = \frac{\xi}{2} + 2$. Then d(F, K) = 1 and $F_0 = 1$, $K_0 = 2$. Thus, $H(F_0) = H(\{1\}) = \{2\} = K_0$ and $G(F_0) = G(\{1\}) = \{2\} = K_0$. H is conjoint proximal β -quasi contraction with $\chi(\zeta) = \frac{1}{2}\zeta, \beta = 2, \alpha_0 = 2$ and $\alpha_i = 0$ for i = 1, 2, 3, 4.

Since

$$d(H\xi, G\eta) = \left|\frac{\xi}{2} - \frac{\eta}{2} - 2\right|$$

Also,

$$\begin{split} M_{H,G}(\xi,\eta) &= \max\{\alpha_0 d(\xi,\eta), \alpha_1(d(\xi,H\xi) - d(F,K)), \\ \alpha_2(d(\eta,S\eta) - d(F,K)), \alpha_3(d(\eta,H\xi) - d(F,K)), \\ \alpha_4(d(\xi,G\eta) - d(F,K))\} \\ &= \max\{2|\xi-\eta|, 0,0,0,0\} = 2|\xi-\eta| \end{split}$$

And

$$\chi(M_{H,G}(\xi,\eta)) = \chi(2|\xi-\eta|) = \frac{2|\xi-\eta|}{2} = |\xi-\eta|$$

So,

$$d(H\xi, G\eta) = |\frac{\xi}{2} - \frac{\eta}{2} - 2| = \frac{1}{2}|\xi - \eta - 4| \le |\xi - \eta| = M_{H,G}(\xi, \eta) = \frac{1}{2}max\{2d(\xi, \eta), 0, 0, 0, 0\}$$

Since $\chi(\zeta)$ is continuous mapping and $\beta = 2 \ge \max\{\alpha_2, \alpha_4\} = 0$. Also, by Theorem 2, we deduce that H and G have a unique common best proximity point which is $\xi^* = 1$. That is,

$$d(\xi^*, H\xi^*) = d(1, H(1)) = d(1, 2) = d(\xi^*, G\xi^*) = d(1, G(1)) = d(1, 2) = d(F, K) = 1.$$

3.2 Best Proximity Point for Several Mappings

Theorem 3. For of nonempty closed subsets F and K of a complete metric space (E, d) be whereas F_0 is nonempty. For which the system of non-self-mappings H_i : $F \rightarrow K$ and i = 1, 2, ..., n where:

 $1.H_i(F_0) \subset K_0$ for each i = 1, 2, ... n and (F, K) structure the P-property,

2.K is approximately compact with respect to F,

3.occurring $\xi_i, \xi_{i+1}, \xi_{i+2} \in F$ whereas

$$d(\xi_{i+1}, H_i\xi_i) = d(\xi_{i+2}, H_{i+1}\xi_{i+1}) = d(F, K)$$

for each i = 1, 2, ...n,

4. There $\beta \ge \max_{0 \le h \le 3} \{\alpha_h, 2\alpha_4\}$ whereas H_i and H_{i+1} are conjoint proximal β -quasi contraction for each i=1,2,...n.

Moreover, either one χ is continuous or $\beta > \max\{\alpha_2, \alpha_4\}$.

Then the mappings H_1 , H_2 , ..., H_n have a unique common best proximity point $\xi \in F$ whereas $d(\xi, H_1 \xi) = d(\xi, H_2 \xi) = \dots = d(\xi, H_n \xi) = d(F, K)$.

Proof . If we start with i = 1 then all conditions in theorem 2 are hold. So, there exists $\theta_1 \in F_0$ such that θ_1 is a unique common best proximity point between H_1 and H_2 .i.e

$$d(\theta_1, H_1\theta_1) = d(\theta_1, H_2\theta_1) = d(F, K). \tag{19}$$

Similarly, if we but i = 2 then there exists $\theta_2 \in F_0$ such that θ_2 is a unique common best proximity point between H_2 and H_3 , i.e

$$d(\theta_2, H_2\theta_2) = d(\theta_2, H_3\theta_2) = d(F, K). \tag{20}$$

Now, we want to prove that $\theta_1 = \theta_2$. From (19), (20) and using P-property, we get

$$d(\theta_1, \theta_2) = d(H_1\theta_1, H_2\theta_2) \tag{21}$$

So, from (19)-(21), triangle inequality, condition (4) in theorem 3 and the definition of α -conjoint proximal β -quasi contraction mappings for H_1 and H_2 , we have

$$\begin{split} d(\theta_{1},\theta_{2}) &= d(H_{1}\theta_{1},H_{2}\theta_{2}) \\ &\leq \chi(M_{H_{1},H_{2}}(\theta_{1},\theta_{2})) \\ &= \chi(\max\{\alpha_{0}d(\theta_{1},\theta_{2}),\alpha_{1}(d(\theta_{1},H_{1}\theta_{1})-d(F,K))), \\ \alpha_{2}(d(\theta_{2},H_{2}\theta_{2})-d(F,K)),\alpha_{3}(d(\theta_{2},H_{1}\theta_{1})-d(F,K)), \\ \alpha_{4}(d(\theta_{1},H_{2}\theta_{2})-d(F,K))\} \\ &\leq \chi(\max\{\alpha_{0}d(\theta_{1},\theta_{2}),\alpha_{3}d(\theta_{1},\theta_{2}),\alpha_{4}d(\theta_{1},\theta_{2})\}) \\ &\leq \chi(d(\theta_{1},\theta_{2})\max\{\alpha_{0},\alpha_{3},\alpha_{4}\}) \\ &\leq \chi(\beta d(\theta_{1},\theta_{2})) = \chi_{\beta}(d(\theta_{1},\theta_{2})) \leq d(\theta_{1},\theta_{2}). \end{split}$$

which gives a contradiction. Then $\theta_1 = \theta_2 = \theta$. i.e

$$d(\theta, H_1\theta) = d(\theta, H_2\theta) = d(\theta, H_3\theta) = d(F, K).$$

So, occurs a unique common best proximity point θ between H_1, H_2 and H_3 .

By repeating this manner for i=3. We will find θ_3 such that:

$$d(\theta_3, H_3\theta_3) = d(\theta_3, H_4\theta_3) = d(H, K).$$

and $\theta_3 = \theta_2 = \theta$.

Hence,

$$d(\theta, H_1\theta) = d(\theta, H_2\theta) = d(\theta, H_3\theta) = d(\theta, H_4\theta) = d(F, K).$$

Then occurs a unique common best proximity point θ between H_1, H_2, H_3 and H_4 .

Hence, for finite number n. We reach to, occurs a unique common best proximity point θ between $H_1, H_2, H_3, ..., H_n$.

4 Repercussions

Many of the repercussions of section 3 examined in this section.

We suggest the following results in the situation of two functions.

Definition 6. Let F and K be two nonempty subsets of a metric space (E,d). Two non-self-mappings $H,G:F\to K$ are said to be conjoint proximal β -quasi contraction mappings iff there exist $\chi\in\Xi_{\beta}$ such that:

$$d(H\xi, G\eta) \le \chi(M_{H,G}^*(\xi, \eta)), \quad \forall \xi, \eta \in F, \tag{22}$$

where

$$\begin{split} M_{H,G}^*(\xi,\eta) &= \max\{d(\xi,\eta), (d(\xi,H\xi) - d(F,K)), \\ & (d(\eta,G\eta) - d(F,K)), (\frac{(d(\eta,H\xi) + d(\xi,G\eta))}{2} - d(F,K))\}. \end{split}$$

whenever $\beta \in (0, +\infty)$.

In the next corollary, we investigate the presence of a common best proximity point in the case of *conjoint proximal* β -quasi-contraction mappings in our main theorem 2 and $\alpha_i = 1$ for each i = 0, 1, 2, 3, 4 as:

Corollary 1. For non empty closed subsets F, K of a complete metric space (E,d) and F_0 is nonempty. For non-self mappings $H, G: F \to K$ whereas:

1.Let (F,K) have P-property and $H(F_0) \subset K_0, G(F_0) \subset K_0$,

2.K is approximately compact with respect to F,

3. Occurring $\xi_1, \xi_2, \xi_3 \in F$ whereas

$$d(\xi_2, H\xi_1) = d(\xi_3, G\xi_2) = d(F, K).$$

4. Occurs $\chi \in \Xi_2$ whereas

$$d(H\xi, G\eta) \le \chi(M_{H,G}^*(\xi, \eta)), \quad \forall \xi, \eta \in F.$$
(23)

Then H, G *a unique best proximity point* $\xi \in F$ *such that* $d(\xi, H\xi) = d(\xi, G\xi) = d(F, K)$.

Proof . Since

$$\begin{split} M_{H,G}^*(\xi,\eta) &= \max\{d(\xi,\eta), (d(\xi,H\xi) - d(F,K)), \\ & (d(\eta,G\eta) - d(F,K)), (\frac{(d(\eta,H\xi) + d(\xi,G\eta))}{2} - d(F,K))\} \\ & \leq \max\{d(\xi,\eta), (d(\xi,H\xi) - d(F,K)), \\ & (d(\eta,G\eta) - d(F,K)), (d(\eta,H\xi) - d(F,K)), \\ & d(\xi,H\eta) - d(F,K)\} \\ &= M_{H,G}(\xi,\eta). \end{split}$$

Also, the comparison function $\chi \in \Xi_2$ where $\beta \ge 2 > max\{\alpha_2, \alpha_4\} = 1$. From theorem 2, H and G a unique common proximity point in F.

When we put $\alpha_i = 1$ in theorem 2 for each i = 0, 1, 2, 3, 4 and replace χ by some $q \in [0, 1)$ by some way we found that:

Corollary 2. For a nonempty closed subsets F, K of a complete metric space (E,d) whereas F_0 is nonempty. And H, G: $F \to K$ where:

 $1.H(F_0) \subset K_0, G(F_0) \subset K_0$ and (F,K) holds the P-property,

2.K is approximately compact with respect to F,

3.occurring $\xi_1, \xi_2, \xi_3 \in F$ whereas

$$d(\xi_2, H\xi_1) = d(\xi_3, G\xi_2) = d(F, K).$$

4.occurs q ∈ [0,1) whereas

$$d(H\xi, G\eta) \le qM_{H,G}^-(\xi, \eta) \quad \forall \xi, \eta \in F,$$

where

$$\begin{split} M^-_{H,G}(\xi,\eta) &= \max\{d(\xi,\eta), (d(\xi,H\xi) - d(F,K)), \\ & (d(\eta,G\eta) - d(F,K)), (d(\eta,H\xi) - d(F,K)), (d(\xi,G\eta) - d(F,K))\}. \end{split}$$

Then H, G have a unique best proximity point $\xi \in F$ whereas $d(\xi, H\xi) = d(\xi, G\xi) = d(F, K)$.

Proof . Let $\chi = qt$ which is continuous. From theorem 2, then H, G have a unique best proximity point $\xi \in F$ whereas $d(\xi, H\xi) = d(\xi, G\xi) = d(F, K)$.

Let's look at the common best proximity point for two self mappings for α -conjoint β -quasi contraction as follows:

Definition 7. For a nonempty subset F of a metric space (E,d) the two self-mappings

 $H,G: F \to F$ are called α -generalized conjoint β -quasi contraction if occurring $\chi \in \Xi_{\beta}$ and $\alpha_i \geq 0$ for i = 0, 1, 2, 3, 4, such that:

$$d(H\xi, G\eta) \le \chi(\mu_{H,G}(\xi, \eta)), \quad \forall \xi, \eta \in F, \tag{24}$$

where

$$\mu_{H,G}(\xi,\eta) = \max\{\alpha_0 d(\xi,\eta), \alpha_1 d(\xi,H\xi),$$

$$\alpha_2 d(\eta,G\eta), \alpha_3 d(\eta,H\xi), \alpha_4 d(\xi,G\eta)\}.$$

whenever $\beta \in (0, +\infty)$.

Corollary 3. For a α -generalized conjoint β -quasi contraction between H and G on a complete metric space (E,d). Moreover, for any one of:

 $-\chi$ is continuous;

 $-\beta > max\{\alpha_2, \alpha_4\}$

Then H and G have a unique common fixed point in E.

Proof . If we put F = K in the definition of α -conjoint β -quasi contraction mappings then $\mu_{H,G}(\xi,\eta) = M_{H,G}(\xi,\eta)$ and d(F,K) = 0. So, since all conditions of theorem 2 are satisfied, then H,G have a unique common fixed point in E.

Now we will discuss a common fixed point for two self mappings for generalized conjoint β -quasi contraction as:

Definition 8. Two self-mappings $H,G: F \to F$ over a nonempty subset F of a metric space (E,d) are called generalized conjoint β -quasi contraction if it occurs $\chi \in \Xi_{\beta}$ whereas

$$d(H\xi, G\eta) \le \chi(\mu_{H,G}^*(\xi, \eta)), \quad \forall \xi, \eta \in F,$$

where

$$\begin{split} \mu_{H,G}^*(\xi,\eta) = \max\{d(\xi,\eta), d(\xi,H\xi),\\ d(\eta,G\eta), d(\eta,H\xi), d(\xi,G\eta)\}. \end{split}$$

whenever $\beta \in (0, +\infty)$.

Corollary 4. Assume that, the two mappings H and G are generalized conjoint β -quasi contraction on a complete metric space (E,d) and χ is continuous. So, H and G have a unique common fixed point in E.

Proof . Since F = K = E and any set is approximately compact with itself, this is an obvious consequence of our fundamental theorem 2 where $\mu_{H,G}^*(\xi,\eta) = M_{H,G}(\xi,\eta)$ in theorem 2. Furthermore, on the self-mapping situation, the idea of generalized conjoint β -quasi contraction is a β -quasi contraction one. Then H,G have a unique common fixed point in E.

If for H = G in the last definition we recall generalized conjoint β -quasi contraction by generalized β -quasi contraction then we will find the next corollary:

Corollary 5. Let (E,d) be a complete metric space. Suppose that H is a generalized β -quasi contraction and χ is continuous. Then H has a unique fixed point in E.

Proof. If we put H = G in corollary 4. Then, we get that H has a unique fixed point in E.

5 Application

Around this part, we discuss an application of Theorem 2 in Volterra type integral equations. Consider the following integrals

$$r(m) = \int_0^m \Lambda_1(m, s, r(s)) ds + f(m), \tag{25}$$

$$\sigma(m) = \int_0^m \Lambda_2(m, s, \sigma(s)) ds + g(m), \tag{26}$$

for all $m \in [0, a]$. Let $\mathfrak{C}[0, a]$ be the set of all continuous functions defined on [0, a]. For $r \in \mathfrak{C}[0, a]$ with the norm

$$||r||_{\infty} = \max_{m \in [0,1]} |r(m)|$$

with metric

$$d(r,\sigma) = \|(r-\sigma)\|_{\infty} = \max_{m \in [0,1]} |r(m) - \sigma(m)|$$

for all $r, \sigma \in \mathfrak{C}[0, a]$. With these setting $(\mathfrak{C}[0, 1], ||.||_{\infty})$ becomes Banach space. Now we prove the following theorem to ensure the existence of solution of the system of integral equations (25), (26).

Now for $F = \mathfrak{C}[0,a], K = \mathfrak{C}[0,b]$ and $d(F,K) = \inf\{d(x,k) \mid s.t. \mid x \in \mathfrak{C}[0,a] \mid and \mid k \in \mathfrak{C}[0,b]\}$. Hence,

$$F_0 = \{x \in \mathfrak{C}[0,a] \quad \textit{s.t.} \quad \textit{there} \quad \textit{exists} \quad k \in \mathfrak{C}[0,b] \quad \textit{s.t.} \quad d(x,k) = d(\mathfrak{C}[0,a],\mathfrak{C}[0,b])\}$$

$$K_0 = \{k \in \mathfrak{C}[0,b] \quad s.t. \quad there \quad exists \quad x \in \mathfrak{C}[0,a] \quad s.t. \quad d(x,k) = d(\mathfrak{C}[0,a],\mathfrak{C}[0,b])\}$$

Theorem 4. Consider $\Lambda_1, \Lambda_2 : [0,a] \times [0,a] \times \mathbb{R} \to \mathbb{R}$, $f,g : [0,a] \to \mathbb{R}$ are continuous and $H,G : \mathfrak{C}[0,a] \to \mathfrak{C}[0,b]$ as

$$Hr(m) = \int_0^m \Lambda_1(m, s, r(s)) ds + f(m),$$
 (27)

$$G\sigma(m) = \int_0^m \Lambda_2(m, s, \sigma(s)) ds + g(m), \tag{28}$$

1. $\mathfrak{C}[0,a]$ and $\mathfrak{C}[0,b]$ satisfies P-property in addition $H(F_0) \subset K_0, G(F_0) \subset K_0$,

2. $\mathfrak{C}[0,b]$ is approximately compact with respect to $\mathfrak{C}[0,a]$,

3. Occurring $\xi_1, \xi_2, \xi_3 \in \mathfrak{C}[0, a]$ such that

$$d(\xi_2, H\xi_1) = d(\xi_3, G\xi_2) = d(\mathfrak{C}[0, a], \mathfrak{C}[0, b]),$$

4. Occurs $\beta \ge \max_{0 \le h \le 3} \{\alpha_h, 2\alpha_4\}$ whereas H and G are α -conjoint proximal β -quasi contraction mappings.

In Addition, either χ is continuous, or $\beta > max\{\alpha_2, \alpha_4\}$ Also,If we have

$$|\Lambda_1(m, s, r(s)) - \Lambda_2(m, s, \sigma(s))| + |f(m) - g(m)| \le \frac{\beta}{m} (|M(H, G)(r(m), \sigma(m))|)$$
(29)

for some $m \in [0,a]$, and $r, \sigma \in \mathfrak{C}[0,a]$ then the system of integral equations (25) and (26) has a solution (a unique common best proximity point $\xi \in \mathfrak{C}[0,a]$).

Proof . Choosing x^* and k^* to be among the best approximations of $G\sigma$ and Hr, we have

$$\begin{split} d(Hr,G\sigma) &= \max_{t \in [0,1]} |(Hr(m) - G\sigma(m)) \\ &= \max_{m \in [0,1]} (|\Lambda_1(m,s,r(s)) - \Lambda_2(m,s,\sigma(s))| ds + |f(m) - g(m)|) \\ &\leq \frac{\beta}{m} (\int_0^m \max_{m \in [0,1]} |M_(H,G)(r(s),\sigma(s))| ds) \\ &= \frac{\beta}{m} \int_0^m \|M_(H,G)(r,\sigma)\|_{\infty} ds \\ &= \frac{\beta}{m} \|M_(H,G)(r,\sigma)\|_{\infty} \int_0^m ds \\ &= \frac{\beta}{m} \|M_(H,G)(r,\sigma)\|_{\infty} m \\ &= \beta \|M_(H,G)(r,\sigma)\|_{\infty} \end{split}$$

So, from theorem 2. Hence occurs $\theta \in \mathfrak{C}[0,a]$ whereas

$$\begin{split} d(H\theta(m), \theta(m)) &= d(G\theta(m), \theta(m)) \\ &= d(\mathfrak{C}[0, a], \mathfrak{C}[0, b]) \\ &= \inf_{x \in \mathfrak{C}[0, a]} d(x, k) \end{split}$$

whereas $\theta(m)$ is a solution of equations (25) and (26).

On the other hand, There are several applications in nonlinear Volterra integral equation. For example, application on Abel-type nonlinear Volterra integral equation in Heat Radiation in a Semi-Infinite Solid, which is given by

$$u(r) = \frac{1}{\sqrt{\pi}} \int_0^r \frac{f(s) - u^n(s)}{\sqrt{r - s}} ds$$

where u(x) gives the temperature at the surface for all time.

6 Main text

A non-self mapping $H: F \to K$, where F and K are subsets of a metric space E, does not have in general a fixed point. As a result, many people try to locate an element f that is closest to Hf in some way which is called *best proximity* point. Ayari achieved the best proximity point findings for a non-self mapping $H: F \to K$ known as special generalized proximal β -quasi contraction in 2019. The field continues to expand, with ongoing research exploring concepts such as conjoint proximal β -quasi contraction, α -generalized conjoint β -quasi contraction, and their applications to finite numbers of non-self mappings on metric spaces. This paper has led to a deeper understanding of fixed point theory and its extensions, providing powerful tools for analyzing diverse mathematical structures and their properties as follows:

6.1 Common best proximity point for two non-self mappings.

First, we defined the concept of α conjoint proximal β -quasi contraction. Also, we proved a unique common best proximity point between two mappings using this concept. Moreover, we enhanced our result by inserting an example.

6.2 Common best proximity point for several non-self mappings.

Second, we proved a unique common best proximity point results between several mappings.

6.3 Repercussions

Third, we inserted some new definitions conjoint proximal β -quasi contraction mappings, α -generalized conjoint β -quasi contraction, generalized conjoint β -quasi contraction and generalized β -quasi contraction. Also, we used these new concepts to derive some repercussions.

6.4 Application

Fourth, we gave an application in integral equations.

7 List of abbreviations

 $d(F,K), F_0, K_0, \beta$ -Quasi contraction, α conjoint proximal β -quasi contraction, conjoint proximal β -quasi contraction mappings, α -generalized conjoint β -quasi contraction and generalized β -quasi contraction.

Availability of data and material

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Conflict of interest

The author declares that he has no competing interests.

Funding

There is no funding source for the research.

Authors' contributions

The author would like to thank editorial office for their cooperation" to "The authors would like to thank editorial office for their cooperation

Acknowledgement

The author read and approved the final manuscript "to "The authors read and approved the final manuscript

References

- [1] K. Fan. Extensions of two fixed point theorems of fe browder. Mathematische zeitschrift, 112(3):234-240, 1969.
- [2] S. Reich. Fixed points in locally covex spaces. Mathematische Zeitschrift, 125(1):17–31, 1972.
- [3] V. M. Sehgal and S. P. K. Singh. A generalization to multifunctions of fan's best approximation theorem. *Proceedings of the American Mathematical Society*, 102(3):534–537, 1988.
- [4] V. M. Sehgal and S. P. K. Singh. A theorem on best approximations. *Numerical Functional Analysis and Optimization*, 10(1-2):181–184, 1989.
- [5] W. A. Kirk, S. Reich, and P. Veeramani. Proximinal retracts and best proximity pair theorems. *Numerical Functional Analysis and Optimization*, 24(7&8):851–862, 2003.
- [6] S. Sadiq Basha. Extensions of banach's contraction principle. *Numerical Functional Analysis and Optimization*, 31(5):569–576, 2010
- [7] M. Jleli, E. Karapinar, and B. Samet. Best proximity points for generalized α-ψ-proximal contractive type mappings. *Journal of Applied Mathematics*, 2013(1):534127, 2013.
- [8] A. Almeida, E. Karapinar, and K. Sadarangani. A note on best proximity point theorems under weak p-property. In *Abstract and Applied Analysis*, volume 2014, page 716825. Wiley Online Library, 2014.
- [9] M. L. Ayari, M. Berzig, and I. Kedim. Coincidence and common fixed point results for β -quasi contractive mappings on metric spaces endowed with binary relation. *Mathematical Sciences*, 10(3):105–114, 2016.
- [10] V. S. Raj. A best proximity point theorem for weakly contractive non-self-mappings. Nonlinear Analysis: Theory, Methods & Applications, 74(14):4804–4808, 2011.
- [11] M. L. Ayari, M. M. M. Jaradat, and Mustafa Z. A best proximity point theorem for special generalized proximal β-quasi contractive mappings. *Fixed Point Theory and Applications*, 2019(1):17, 2019.