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Abstract: Fixed point theory is a fundamental concept in mathematics, which ensures the existence and uniqueness of fixed points
for self-mappings in complete metric spaces. The Banach contraction principle, explicitly stated in Banach’s 1922 thesis , laid the
groundwork for this field. However, for non-self mappings H : F → K, where F and K are subsets of a metric space E, fixed points may
not exist. This led to the development of best proximity point theory, which seeks to find elements f in F where d( f ,H f ) = d(F,K).
This study introduces new concepts in the field of best proximity point theory, extending the existing framework with the formulation
of conjoint proximal β -quasi contraction, α-generalized conjoint proximal β -quasi contraction, and generalized conjoint β -quasi
contraction. These innovative constructs are utilized to investigate the existence of common best proximity points on metric spaces
for both double and multiple non-self mappings. The research also presents a concrete example involving two non-self mappings,
thereby illustrating the practical application of these theoretical concepts. Furthermore, the study explores various implications and
consequences arising from these new formulations.

Keywords: Best proximity point, non-self mapping, P-property, approximately compact and special generalized proximal beta-quasi
contraction

2020 AMS Subject Classifications: 81Q10, 81Q15, 35J10.

1 Introduction

The evolution of this field has been marked by significant contributions from various mathematicians. Fan’s 1969 best
approximation theorem [1] acted as a catalyst, stimulating extensive subsequent research. S. Reich’s 1972 [2] work
extended Fan’s theorem to set-valued inward functions. Between 1988 and 1989, Sehgal and colleagues [ [3]- [4]]
investigated best proximity points for non-self contractions, furthering the field’s scope.

Kirk and colleagues (2003) [5] investigated proximinality and best proximity point theorems in hyperconvex metric
spaces within Hilbert spaces, offering optimal approximate solutions for mappings without fixed points. Sadiq Basha [6]
established important existence conditions for proximal contractions of both first and second kinds. Jleli and
collaborators [7] introduced a new category of non-self contractive mappings and examined the existence and uniqueness
of best proximity points for these mappings.
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Recent advancements include Almeida et al.’s 2014 [8] application of P-property to locate best proximity points,
and M. Ayari et al.’s findings on best proximity points for special generalized proximal beta-quasi contraction [9]. The
field continues to expand, with ongoing research exploring concepts such as conjoint proximal β -quasi contraction, α-
generalized conjoint β -quasi contraction, and their applications to finite numbers of non-self mappings on metric spaces.

This paper has led to a deeper understanding of fixed point theory and its extensions, providing powerful tools for
analyzing diverse mathematical structures and their properties.

2 Preliminaries

This passage provides important definitions and notations. Let me summarize the key points:

Notation 1For F and K nonempty subsets of a metric space (E,d):

d(F,K) := inf{d( f ,k) : f ∈ F,k ∈ K},

F0 := { f ∈ F : there exists k ∈ K such that d( f ,k) = d(F,K)},

K0 := {k ∈ K : there exists f ∈ F such that d( f ,k) = d(F,K)}.

Definition 1. [6] For H : F → K , an element f ∗ is a best proximity point of H if d( f ∗,H f ∗) = d(F,K).

Definition 2. [9] For χ : [0,+∞)→ [0,+∞) such that

1.χ is non-decreasing,
2.The limn→∞ χn

β
(t) = 0 such that t > 0 where χn

β
the n-th iterate of χβ and χβ (t) = χ(β t),

3.s ∈ (0,+∞) as
∞

∑
n=1

χn
β
(s)< ∞ exists.

For some β ∈ (0,+∞) and χ is called β -comparison function and denoted by Ξβ .

Example 1. [9] For χ : [0,+∞)→ [0,+∞) where χ(t) = at, a ∈ (0,β−1) and β > 0 then χ ∈ Ξβ . Remark that, if a > 1
then χ(t)> t and so Σ ∞

n=1χn(t) = ∞

Lemma 1. [9] For χ ∈ Ξβ . We have

1.χβ is non decreasing,
2.χβ (t)< t for all t > 0,

3.
∞

∑
n=1

χn
β
(t)< ∞ for all t > 0.

Definition 3. [10] For nonempty subsets F and K of a metric space (E,d). The nonempty subsets F and K of a metric
space (E,d) will have P-property if

d(ξ1,η1) = d(ξ2,η2) = d(F,K) =⇒ d(ξ1,ξ2) = d(η1,η2)

such that ξ1, ξ2 ∈ F and η1, η2 ∈ K.

Definition 4. [11] Approximately compact with respect to a nonempty subset F of a metric space (E,d) for a subset K of
a metric space (E,d) iff

lim
n→+∞

d(ξ ,ηn) = d(ξ ,K).
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3 Main Consequences

3.1 Best Proximity Point for Two Mappings

Definition 5. Consider F and K nonempty subsets of a metric space (E,d). If

d(Hξ ,Gη)≤ χ(MH,G(ξ ,η)), ∀ξ ,η ∈ F, (1)

and
MH,G(ξ ,η) = max{α0d(ξ ,η),α1(d(ξ ,Hξ )–d(F,K)),

α2(d(η ,Sη)–d(F,K)),α3(d(η ,Hξ )–d(F,K)),

α4(d(ξ ,Gη)–d(F,K))}.

whenever χ ∈ Ξβ and positive numbers αi, i = 0,1,2,3,4, β ∈ (0,+∞). So, H,G : F → K are called α-conjoint proximal
β -quasi contraction mappings.

Let us give an example on definition 5

Example 2. Let E = R with d(ξ ,η) = |ξ − η | and F = [0,1] and K = [0,4]. Since K is compact, then K = [0,4] is
approximately compact with respect to F = [0,1]. Moreover, For H,G : F → K define by H(ξ ) = ξ

2 and G(ξ ) = ξ

2 +2.
Then d(F,K) = 1 and F0 = 1, K0 = 2. Thus, H(F0) = H({1}) = {2}= K0 and G(F0) = G({1}) = {2}= K0. H is conjoint
proximal β -quasi contraction with χ(ζ ) = 1

2 ζ ,β = 2,α0 = 2 and αi = 0 for i = 1,2,3,4.
Now, since

L.H.S = d(Hξ ,Gη) = |ξ
2
− η

2
−2| (2)

Also,
MH,G(ξ ,η) = max{α0d(ξ ,η),α1(d(ξ ,Hξ )–d(F,K)),

α2(d(η ,Sη)–d(F,K)),α3(d(η ,Hξ )–d(F,K)),

α4(d(ξ ,Gη)–d(F,K))}
= max{2|ξ −η |,0,0,0,0}= 2|ξ −η |

Moreover,

R.H.S = χ(MH,G(ξ ,η)) = χ(2|ξ −η |) = 2|ξ −η |
2

= |ξ −η | (3)

Then, from equations (2) and (3), we get

L.H.S = d(Hξ ,Gη) = |ξ
2
− η

2
−2|= 1

2
|ξ −η −4| ≤ |ξ −η −4| ≤ |ξ −η |= χ(MH,G(ξ ,η)) = R.H.S.

Theorem 2. For mappings H and G on nonempty closed subsets F and K of a complete metric space (E,d) where F0 is
nonempty. Let’s break down the key components of this theorem:

1.The pair (F,K) satisfies P-property and H(F0)⊂ K0,G(F0)⊂ K0.
2.K is approximately compact with respect to F.
3.Occurring ξ1,ξ2,ξ3 ∈ F such that

d(ξ2,Hξ1) = d(ξ3,Gξ2) = d(F,K).

4.There occurs β ≥ max0≤r≤3{αr,2α4} whereas H and G are α-conjoint proximal β -quasi contraction mappings.

In Addition, either χ is continuous, or β > max{α2,α4}
Then under these conditions, either d(ξ ,Hξ ) = d(ξ ,Gξ ) = d(F,K) or H and G have a unique common best proximity

point ξ ∈ F .
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Proof . There exists ξ1 ∈ F0 such that H(ξ1) ∈ K0 because H(F0)⊆ K0. As a result of condition 3, we obtain ξ2 ∈ F0 such
that

d(ξ2,Hξ1) = d(F,K) (4)

From condition 3 and G(F0)⊆ K0, we deduce that there exists ξ3 ∈ F0 such that

d(ξ3,Gξ2) = d(F,K) (5)

We derive from equations (4) and (5) that:

d(ξ2,Hξ1) = d(ξ3,Gξ2) = d(F,K).

We consider a sequence {ξn} ⊆ F0 by repeating this procedure where

d(ξn+2,Hξn+1) = d(ξn+3,Gξn+2) = d(F,K), n ∈ {0}∪N. (6)

By using P-property condition, we get

d(ξn+2,ξn+3) = d(Hξn+1,Gξn+2), n ∈ {0}∪N. (7)

We’ll now demonstrate that {ξn} is a Cauchy sequence.
Since H and G are α-conjoint proximinal β -quasi contraction, then

d(ξn+2,ξn+3) = d(Hξn+1,Gξn+2)≤ χ(MH,G(ξn+1,ξn+2)) (8)

And
MH,G(ξn+1,ξn+2) = max{α0d(ξn+1,ξn+2),α1(d(ξn+1,Hξn+1)–d(F,K)),

α2(d(ξn+2,Gξn+2)–d(F,K)),α3(d(ξn+2,Hξn+1)–d(F,K)),

α4(d(ξn+1,Gξn+2)–d(F,K))}
= max{α0d(ξn+1,ξn+2),α1(d(ξn+1,Hξn+1)–d(F,K)),

α2(d(ξn+2,Gξn+2)–d(F,K)),α4(d(ξn+1,Gξn+2)–d(F,K))}
≤ max{α0d(ξn+1,ξn+2),α1d(ξn+1,ξn+2),α2d(ξn+2,ξn+3),

α4(d(ξn+1,ξn+2)+d(ξn+2,ξn+3))}
≤ βmax{d(ξn+1,ξn+2),d(ξn+2,ξn+3)}

By utilizing equations (6), (7), (8) as well as triangle inequality. As a result,

MH,G(ξn+1,ξn+2)≤ βmax{d(ξn+1,ξn+2),d(ξn+2,ξn+3)} (9)

whereas β ≥ max0≤r≤3{αr,2α4}. From equations (8) and (9), we deduce

d(ξn+2,ξn+3)≤ χ(βmax{d(ξn+1,ξn+2),d(ξn+2,ξn+3)}) = χβ (max{d(ξn+1,ξn+2),d(ξn+2,ξn+3)})

If for some n, we have d(ξn+1,ξn+2) ≤ d(ξn+2,ξn+3) and from lemma 1. It follows that
d(ξn+2,ξn+3)≤ χβ (d(ξn+2,ξn+3))< d(ξn+2,ξn+3) which gives a contradiction.

Then for all n ∈ {0}∪N, we have d(ξn+2,ξn+3)< d(ξn+1,ξn+2) and it follows that

d(ξn+2,ξn+3)≤ χβ (d(ξn+1,ξn+2)) n ∈ {0}∪N (10)

Then, by establishing an inductive relationship for the distances between successive terms of a sequence ξn:

d(ξn+2,ξn+3)≤ χ
n
β
(d(ξ2,ξ1)) n ∈ {0}∪N (11)
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Let ε > 0 be fixed. Since Σ
+∞

n=1χn
β
(d(ξ2,ξ1)) converges, occurs n0 ∈Z+ whereas Σ

+∞

n≥n0
χn

β
(d(ξ2,ξ1))< ε . For m > n >

n0 and equation (11), we obtain
d(ξn,ξm)≤ Σ

m−1
k=n d(ξk,ξk+1)

≤ Σ
m−1
k=n χ

k
β
(d(ξ2,ξ1)).

Since Σ
+∞

n=1χn
β
(t) converges for all t ≥ 0; as a result

Σ
m−1
k=n χ

k
β
(d(ξ2,ξ1))→ 0 as n,m →+∞.

It then proves that {ξn} is Cauchy using F is closed in a complete metric (E,d), so the sequence {ξn} converges to
some element ξ ∈ F .

Moreover,
d(ξ ,K)≤ d(ξ ,Hξn+1)

≤ d(ξ ,ξn+2)+d(ξn+2,Hξn+1)

= d(ξ ,ξn+2)+d(F,K)

≤ d(ξ ,ξn+2)+d(ξ ,K).

If n → ∞, so d(ξ ,Hξn+1) converges to d(ξ ,K). According to condition (2), then there exists a sub sequence {ξn(k)}
of {ξn} for which {Hξn(k)} converges to some η ∈ K. Similarly, we may deduce that {ξn(k)} is a sub sequence of {ξn}
such that {Gξn(k)} converges to η∗ ∈ K.

So,
d(F,K)≤ d(ξ ,η)

≤ d(ξ ,ξnk+1)+d(ξnk+1 ,Hξnk)+d(Hξnk ,η)

= d(ξ ,ξnk+1)+d(F,K)+d(Hξnk ,η).

While n → ∞, so d(ξ ,η) = d(F,K) and ξ ∈ F0.
Since G(F0) ⊂ K0, there exists u ∈ F where d(u,Gξ ) = d(F,K). Therefore, we find d(u,Gξ ) = d(ξn+2,Hξn+1) =

d(F,K). According to P-property, we conclude that d(u,ξn+2) = d(Gξ ,Hξn+1).
Since H,G are α-conjoint proximal β -quasi contraction mappings, we find

d(u,ξn+2) = d(Hξn+1,Gξ )

≤ χ(MH,G(ξn+1,ξ )) ∀n ∈ {0}∪N,
(12)

where
MH,G(ξn+1,ξ ) = max{α0d(ξn+1,ξ ),α1(d(ξn+1,Hξn+1)–d(F,K)),

α2(d(ξ ,Gξ )–d(F,K)),α3(d(ξ ,Hξn+1)–d(F,K)),

α4(d(ξn+1,Gξ )–d(F,K))}.

(13)

Further, from (6),
MH,G(ξn+1,ξ ) = max{α0d(ξn+1,ξ ),α1d(ξn+1,ξn+2),

α2(d(ξ ,Gξ )–d(F,K)),α3d(ξ ,ξn+2),

α4(d(ξn+1,ξ )+d(ξ ,Gξ )–d(F,K))}.

(14)

From triangle inequality and equation (6), we get

d(ξ ,Gξ )≤ d(ξ ,ξn+2)+d(ξn+2,Hξn+1)+d(Hξn+1,Gξ )

= d(ξ ,ξn+2)+d(F,K)+d(Hξn+1,Gξ ) ∀n ∈ {0}∪N.
(15)
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From (15) and (12), then

d(ξ ,Gξ )−d(ξ ,ξn+2)−d(F,K)≤ χ(MH,G(ξn+1,ξ )), ∀n ∈ {0}∪N. (16)

The proof then considers f = d(ξ ,Gξ )–d(F,K), and let n →+∞ in (14), we find

lim
n→+∞

MH,G(ξn+1,ξ )≤ max{α2,α4} f (17)

Say f ≥ 0, χ continuous and non decreasing. Also, n →+∞ in (16), we get

f ≤ χ(max{α2,α4} f )≤ χ(β f ) = χβ ( f )< f ,

when β > max{α2,α4}a contradiction occurs. We further argue f = 0. Suppose that f > 0.
From (17) then, there exist ε > 0 and N > 0 such that, for all n > N, we have

MH,G(ξn+1,ξ )< (max{α2,α4}+ ε) f . Since χ is non decreasing, from (17), resulting

d(ξ ,Gξ )−d(ξ ,ξn+2)−d(F,K)≤ χ(MH,G(ξn+1,ξ ))

≤ χ((max{α2,α4}+ ε) f )

= χβ (
max{α2,α4}+ ε

β
f )

<
max{α2,α4}+ ε

β
f < f

(18)

For n →+∞ in (18), we have

f <
max{α2,α4}+ ε

β
f < f

This result causes a contradiction. Wherefore, f must be zero or d(ξ ,Gξ )–d(F,K) = 0, As a response d(ξ ,Gξ ) = d(F,K),
proving that ξ is the best proximity point of G.

Similarly, we can get that ξ is the best proximity point of H or d(ξ ,Gξ ) = d(ξ ,Hξ ) = d(F,G). In another word, H
and G have a common best proximity point ξ ∈ F . Whereas d(ξ ,Hξ ) = d(ξ ,Gξ ) = d(F,K).

This rigorous proof establishes the existence of a best proximity point for the mapping G under the given conditions.
The approach could likely be adapted to prove a similar result for H, leading to the conclusion of a common best proximity
point for both H and G.

To prove the uniqueness, let ξ and θ two separate best proximity points such that d(ξ ,Hξ ) = d(ξ ,Gξ ) = d(θ ,Hθ) =

d(θ ,Gθ) = d(F,K). From P-property condition, we found d(ξ ,θ) = d(Hξ ,Gθ).
Further, since H and G are α-conjoint proximal β -quasi contraction mappings, thus we conclude that

d(ξ ,θ) = d(Hξ ,Gθ)≤ χ(MH,G(ξ ,θ)),

Where
MH,G(ξ ,θ) = max{α0d(ξ ,θ),α3(d(θ ,Hξ )–d(F,K)),α4(d(ξ ,Gθ)–d(F,K))}.

We drive from triangular inequalities in MH,G(ξ ,θ) and ξ and θ are best proximity points for H and G that:

MH,G(ξ ,θ)≤ max{α0,α3,α4}d(ξ ,θ).

Let’s say r = d(ξ ,θ). Since χ is non decreasing, we observe

r ≤ χ(max{α0,α3,α4}r)≤ χ(β r) = χβ (r)< r,

That make a discrepancy. So, ξ = θ . Then H and G have a unique common best proximity point ξ ∈ F such that
d(ξ ,Hξ ) = d(ξ ,Gξ ) = d(F,K).
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Remark. If we put in the contraction G=H in the last theorem, we get the results in Mohamed Jleli and Ayari [ [7], [11]]as
a spacial case.

Example 3. Let E = R with d(ξ ,η) = |ξ − η | and F = [0,1] and K = [0,4]. Since K is compact, then K = [0,4] is
approximately compact with respect to F = [0,1]. Moreover, For H,G : F → K define by H(ξ ) = ξ

2 and G(ξ ) = ξ

2 +2.
Then d(F,K) = 1 and F0 = 1, K0 = 2. Thus, H(F0) = H({1}) = {2}= K0 and G(F0) = G({1}) = {2}= K0. H is conjoint
proximal β -quasi contraction with χ(ζ ) = 1

2 ζ ,β = 2,α0 = 2 and αi = 0 for i = 1,2,3,4.
Since

d(Hξ ,Gη) = |ξ
2
− η

2
−2|

Also,
MH,G(ξ ,η) = max{α0d(ξ ,η),α1(d(ξ ,Hξ )–d(F,K)),

α2(d(η ,Sη)–d(F,K)),α3(d(η ,Hξ )–d(F,K)),

α4(d(ξ ,Gη)–d(F,K))}
= max{2|ξ −η |,0,0,0,0}= 2|ξ −η |

And

χ(MH,G(ξ ,η)) = χ(2|ξ −η |) = 2|ξ −η |
2

= |ξ −η |

So,

d(Hξ ,Gη) = |ξ
2
− η

2
−2|= 1

2
|ξ −η −4| ≤ |ξ −η |= MH,G(ξ ,η) =

1
2

max{2d(ξ ,η),0,0,0,0}

Since χ(ζ ) is continuous mapping and β = 2 ≥ max{α2,α4} = 0. Also, by Theorem 2, we deduce that H and G have a
unique common best proximity point which is ξ ∗ = 1. That is,
d(ξ ∗,Hξ ∗) = d(1,H(1)) = d(1,2) = d(ξ ∗,Gξ ∗) = d(1,G(1)) = d(1,2) = d(F,K) = 1.

3.2 Best Proximity Point for Several Mappings

Theorem 3. For of nonempty closed subsets F and K of a complete metric space (E, d) be whereas F0 is nonempty. For
which the system of non-self-mappings Hi: F→K and i = 1,2, ...,n where:

1.Hi(F0)⊂ K0 for each i = 1,2, ...n and (F,K) structure the P-property,
2.K is approximately compact with respect to F,
3.occurring ξi,ξi+1,ξi+2 ∈ F whereas

d(ξi+1,Hiξi) = d(ξi+2,Hi+1ξi+1) = d(F,K)

for each i = 1,2, ...n,
4.There β ≥ max0≤h≤3{αh,2α4} whereas Hi and Hi+1 are conjoint proximal β -quasi contraction for each i = 1,2, ...n.

Moreover, either one χ is continuous or β > max{α2,α4}.
Then the mappings H1, H2, ..., Hn have a unique common best proximity point ξ ∈F whereas d(ξ ,H1ξ )= d(ξ ,H2ξ )=

...= d(ξ ,Hnξ ) = d(F,K).

Proof . If we start with i = 1 then all conditions in theorem 2 are hold. So, there exists θ1 ∈ F0 such that θ1 is a unique
common best proximity point between H1 and H2.i.e

d(θ1,H1θ1) = d(θ1,H2θ1) = d(F,K). (19)
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Similarly, if we but i = 2 then there exists θ2 ∈ F0 such that θ2is a unique common best proximity point between H2

and H3. i.e
d(θ2,H2θ2) = d(θ2,H3θ2) = d(F,K). (20)

Now, we want to prove that θ1 = θ2. From (19), (20) and using P-property, we get

d(θ1,θ2) = d(H1θ1,H2θ2) (21)

So, from (19)-(21), triangle inequality, condition (4) in theorem 3 and the definition of α-conjoint proximal β -quasi
contraction mappings for H1 and H2, we have

d(θ1,θ2) = d(H1θ1,H2θ2)

≤ χ(MH1,H2(θ1,θ2))

= χ(max{α0d(θ1,θ2),α1(d(θ1,H1θ1)–d(F,K))),

α2(d(θ2,H2θ2)–d(F,K)),α3(d(θ2,H1θ1)–d(F,K)),

α4(d(θ1,H2θ2)–d(F,K))}
≤ χ(max{α0d(θ1,θ2),α3d(θ1,θ2),α4d(θ1,θ2)})
≤ χ(d(θ1,θ2)max{α0,α3,α4})
≤ χ(βd(θ1,θ2)) = χβ (d(θ1,θ2))≤ d(θ1,θ2).

which gives a contradiction. Then θ1 = θ2 = θ . i.e

d(θ ,H1θ) = d(θ ,H2θ) = d(θ ,H3θ) = d(F,K).

So, occurs a unique common best proximity point θ between H1,H2 and H3.
By repeating this manner for i=3. We will find θ3 such that:

d(θ3,H3θ3) = d(θ3,H4θ3) = d(H,K).

and θ3=θ2=θ .
Hence,

d(θ ,H1θ) = d(θ ,H2θ) = d(θ ,H3θ) = d(θ ,H4θ) = d(F,K).

Then occurs a unique common best proximity point θ between H1,H2,H3 and H4.
Hence, for finite number n. We reach to, occurs a unique common best proximity point θ between H1,H2,H3, ...,Hn .

4 Repercussions

Many of the repercussions of section 3 examined in this section.
We suggest the following results in the situation of two functions.

Definition 6. Let F and K be two nonempty subsets of a metric space (E,d). Two non-self-mappings H,G : F → K are
said to be conjoint proximal β -quasi contraction mappings iff there exist χ ∈ Ξβ such that:

d(Hξ ,Gη)≤ χ(M∗
H,G(ξ ,η)), ∀ξ ,η ∈ F, (22)

where
M∗

H,G(ξ ,η) = max{d(ξ ,η),(d(ξ ,Hξ )–d(F,K)),

(d(η ,Gη)–d(F,K)),(
(d(η ,Hξ )+d(ξ ,Gη))

2
–d(F,K))}.

whenever β ∈ (0,+∞).
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In the next corollary, we investigate the presence of a common best proximity point in the case of conjoint proximal
β -quasi-contraction mappings in our main theorem 2 and αi = 1 for each i = 0,1,2,3,4 as:

Corollary 1. For non empty closed subsets F,K of a complete metric space (E,d) and F0 is nonempty. For non-self
mappings H,G : F → K whereas:

1.Let (F,K) have P-property and H(F0)⊂ K0,G(F0)⊂ K0,
2.K is approximately compact with respect to F,
3.Occurring ξ1,ξ2,ξ3 ∈ F whereas

d(ξ2,Hξ1) = d(ξ3,Gξ2) = d(F,K).

4.Occurs χ ∈ Ξ2 whereas
d(Hξ ,Gη)≤ χ(M∗

H,G(ξ ,η)), ∀ξ ,η ∈ F. (23)

Then H,G a unique best proximity point ξ ∈ F such that d(ξ ,Hξ ) = d(ξ ,Gξ ) = d(F,K).

Proof . Since
M∗

H,G(ξ ,η) = max{d(ξ ,η),(d(ξ ,Hξ )–d(F,K)),

(d(η ,Gη)–d(F,K)),(
(d(η ,Hξ )+d(ξ ,Gη))

2
–d(F,K))}

≤ max{d(ξ ,η),(d(ξ ,Hξ )–d(F,K)),

(d(η ,Gη)–d(F,K)),(d(η ,Hξ )–d(F,K)),

d(ξ ,Hη)–d(F,K)}
= MH,G(ξ ,η).

Also, the comparison function χ∈Ξ2 where β ≥ 2 > max{α2,α4}= 1. From theorem 2, H and G a unique common
proximity point in F .

When we put αi = 1 in theorem 2 for each i = 0,1,2,3,4 and replace χ by some q ∈ [0,1) by some way we found
that:

Corollary 2. For a nonempty closed subsets F,K of a complete metric space (E,d) whereas F0 is nonempty. And H,G :
F → K where:

1.H(F0)⊂ K0,G(F0)⊂ K0 and (F,K) holds the P-property,
2.K is approximately compact with respect to F,
3.occurring ξ1,ξ2,ξ3 ∈ F whereas

d(ξ2,Hξ1) = d(ξ3,Gξ2) = d(F,K).

4.occurs q ∈ [0,1) whereas
d(Hξ ,Gη)≤ qM−

H,G(ξ ,η) ∀ξ ,η ∈ F,

where
M−

H,G(ξ ,η) = max{d(ξ ,η),(d(ξ ,Hξ )–d(F,K)),

(d(η ,Gη)–d(F,K)),(d(η ,Hξ )–d(F,K)),(d(ξ ,Gη)–d(F,K))}.

Then H,G have a unique best proximity point ξ ∈ F whereas d(ξ ,Hξ ) = d(ξ ,Gξ ) = d(F,K).

Proof . Let χ = qt which is continuous. From theorem 2, then H, G have a unique best proximity point ξ ∈ F whereas
d(ξ ,Hξ ) = d(ξ ,Gξ ) = d(F,K).

Let’s look at the common best proximity point for two self mappings for α-conjoint β -quasi contraction as follows:
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Definition 7. For a nonempty subset F of a metric space (E,d) the two self-mappings
H,G : F → F are called α-generalized conjoint β -quasi contraction if occurring χ ∈ Ξβ and αi ≥ 0 for i = 0,1,2,3,4,
such that:

d(Hξ ,Gη)≤ χ(µH,G(ξ ,η)), ∀ξ ,η ∈ F, (24)

where
µH,G(ξ ,η) = max{α0d(ξ ,η),α1d(ξ ,Hξ ),

α2d(η ,Gη),α3d(η ,Hξ ),α4d(ξ ,Gη)}.

whenever β ∈ (0,+∞).

Corollary 3. For a α-generalized conjoint β -quasi contraction between H and G on a complete metric space (E,d).
Moreover, for any one of:

–χ is continuous;
–β > max{α2,α4}

Then H and G have a unique common fixed point in E.

Proof . If we put F = K in the definition of α-conjoint β -quasi contraction mappings then µH,G(ξ ,η) = MH,G(ξ ,η) and
d(F,K) = 0. So, since all conditions of theorem 2 are satisfied, then H,G have a unique common fixed point in E.

Now we will discuss a common fixed point for two self mappings for generalized conjoint β -quasi contraction as:

Definition 8. Two self-mappings H,G : F → F over a nonempty subset F of a metric space (E,d) are called generalized
conjoint β -quasi contraction if it occurs χ ∈ Ξβ whereas

d(Hξ ,Gη)≤ χ(µ∗
H,G(ξ ,η)), ∀ξ ,η ∈ F,

where
µ
∗
H,G(ξ ,η) = max{d(ξ ,η),d(ξ ,Hξ ),

d(η ,Gη),d(η ,Hξ ),d(ξ ,Gη)}.

whenever β ∈ (0,+∞).

Corollary 4. Assume that, the two mappings H and G are generalized conjoint β -quasi contraction on a complete metric
space (E,d) and χ is continuous. So, H and G have a unique common fixed point in E.

Proof . Since F = K = E and any set is approximately compact with itself, this is an obvious consequence of our
fundamental theorem 2 where µ∗

H,G(ξ ,η) = MH,G(ξ ,η) in theorem 2. Furthermore, on the self-mapping situation, the
idea of generalized conjoint β -quasi contraction is a β -quasi contraction one. Then H,G have a unique common fixed
point in E.

If for H =G in the last definition we recall generalized conjoint β -quasi contraction by generalized β -quasi contraction
then we will find the next corollary:

Corollary 5. Let (E,d) be a complete metric space. Suppose that H is a generalized β -quasi contraction and χ is
continuous. Then H has a unique fixed point in E.

Proof . If we put H = G in corollary 4. Then, we get that H has a unique fixed point in E.
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5 Application

Around this part, we discuss an application of Theorem 2 in Volterra type integral equations. Consider the following
integrals

r(m) =
∫ m

0
Λ1(m,s,r(s))ds+ f (m), (25)

σ(m) =
∫ m

0
Λ2(m,s,σ(s))ds+g(m), (26)

for all m ∈ [0,a]. Let C[0,a] be the set of all continuous functions defined on [0,a]. For r ∈ C[0,a] with the norm

∥r∥∞ = max
m∈[0,1]

|r(m)|

with metric

d(r,σ) = ∥(r−σ)∥∞ = max
m∈[0,1]

|r(m)−σ(m)|

for all r,σ ∈ C[0,a]. With these setting (C[0,1],∥.∥∞) becomes Banach space. Now we prove the following theorem to
ensure the existence of solution of the system of integral equations (25), (26).

Now for F = C[0,a],K = C[0,b] and d(F,K) = inf{d(x,k) s.t. x ∈ C[0,a] and k ∈ C[0,b]}.
Hence,

F0 = {x ∈ C[0,a] s.t. there exists k ∈ C[0,b] s.t. d(x,k) = d(C[0,a],C[0,b])}

K0 = {k ∈ C[0,b] s.t. there exists x ∈ C[0,a] s.t. d(x,k) = d(C[0,a],C[0,b])}

Theorem 4. Consider Λ1,Λ2 : [0,a]× [0,a]×R→ R, f ,g : [0,a]→ R are continuous and
H,G : C[0,a]→ C[0,b] as

Hr(m) =
∫ m

0
Λ1(m,s,r(s))ds+ f (m), (27)

Gσ(m) =
∫ m

0
Λ2(m,s,σ(s))ds+g(m), (28)

1.C[0,a] and C[0,b] satisfies P-property in addition H(F0)⊂ K0,G(F0)⊂ K0,
2.C[0,b] is approximately compact with respect to C[0,a],
3.Occurring ξ1,ξ2,ξ3 ∈ C[0,a] such that

d(ξ2,Hξ1) = d(ξ3,Gξ2) = d(C[0,a],C[0,b]),

4.Occurs β ≥ max0≤h≤3{αh,2α4} whereas H and G are α-conjoint proximal β -quasi contraction mappings.

In Addition, either χ is continuous, or β > max{α2,α4}
Also,If we have

|Λ1(m,s,r(s))−Λ2(m,s,σ(s))|+ | f (m)−g(m)| ≤ β

m
(|M(H,G)(r(m),σ(m))|) (29)

for some m ∈ [0,a], and r,σ ∈ C[0,a] then the system of integral equations (25) and (26) has a solution (a unique common
best proximity point ξ ∈ C[0,a] ).
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Proof . Choosing x∗ and k∗ to be among the best approximations of Gσ and Hr, we have

d(Hr,Gσ) = max
t∈[0,1]

|(Hr(m)−Gσ(m))

= max
m∈[0,1]

(|Λ1(m,s,r(s))−Λ2(m,s,σ(s))|ds+ | f (m)−g(m)|)

≤ β

m
(
∫ m

0
max

m∈[0,1]
|M(H,G)(r(s),σ(s))|ds)

=
β

m

∫ m

0
∥M(H,G)(r,σ)∥∞ds

=
β

m
∥M(H,G)(r,σ)∥∞

∫ m

0
ds

=
β

m
∥M(H,G)(r,σ)∥∞m

= β∥M(H,G)(r,σ)∥∞

So, from theorem 2. Hence occurs θ ∈ C[0,a] whereas

d(Hθ(m),θ(m)) = d(Gθ(m),θ(m))

= d(C[0,a],C[0,b])

= inf
x∈C[0,a]k∈C[0,b]

d(x,k)

whereas θ(m) is a solution of equations (25) and (26).

On the other hand, There are several applications in nonlinear Volterra integral equation. For example, application on
Abel-type nonlinear Volterra integral equation in Heat Radiation in a Semi-Infinite Solid, which is given by

u(r) =
1√
π

∫ r

0

f (s)−un(s)√
r− s

ds

where u(x) gives the temperature at the surface for all time.

6 Main text

A non-self mapping H : F → K, where F and K are subsets of a metric space E, does not have in general a fixed point.
As a result, many people try to locate an element f that is closest to H f in some way which is called best proximity point.
Ayari achieved the best proximity point findings for a non-self mapping H : F → K known as special generalized proximal
β -quasi contraction in 2019. The field continues to expand, with ongoing research exploring concepts such as conjoint
proximal β -quasi contraction, α-generalized conjoint β -quasi contraction, and their applications to finite numbers of
non-self mappings on metric spaces. This paper has led to a deeper understanding of fixed point theory and its extensions,
providing powerful tools for analyzing diverse mathematical structures and their properties as follows:

6.1 Common best proximity point for two non-self mappings.

First, we defined the concept of α conjoint proximal β -quasi contraction. Also, we proved a unique common best
proximity point between two mappings using this concept. Moreover, we enhanced our result by inserting an example.

6.2 Common best proximity point for several non-self mappings.

Second, we proved a unique common best proximity point results between several mappings.
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6.3 Repercussions

Third, we inserted some new definitions conjoint proximal β -quasi contraction mappings, α-generalized conjoint β -
quasi contraction, generalized conjoint β -quasi contraction and generalized β -quasi contraction. Also, we used these
new concepts to derive some repercussions.

6.4 Application

Fourth, we gave an application in integral equations.

7 List of abbreviations

d(F,K),F0, K0,β -Quasi contraction, α conjoint proximal β -quasi contraction, conjoint proximal β -quasi contraction
mappings,α-generalized conjoint β -quasi contraction,generalized conjoint β -quasi contraction and generalized β -quasi
contraction.
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