

Egyptian Journal of Veterinary Sciences

https://ejvs.journals.ekb.eg/

Experimental Trail for Controlling Ochratoxicosis in Poultry Using Nano Titanium Dioxide

Safaa M. Elmesalamy¹, Nermin F. El Zohairy¹, Sara A. Abdelwahab¹, Sahar S. Abdelhamied², Reham A.A. Mahmoud^{3*}, Rasha M.H.Sayed-Elahl⁴ and Mogda K. Mansour³

¹Department of Biochemistry, Toxicology and Feed Deficiency, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Zagazig branch, Egypt.

²Department of Clinical Pathology, Animal Health Research Institute (AHRI), Agriculture Research Center, Zagazig Branch, Zagazig 44516, Egypt.

³Department of Biochemistry, Toxicology and Feed Deficiency, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), dokki branch, Egypt.

⁴Department of Mycology and Mycotoxins, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Dokki, Giza, Egypt.

Abstract

THE mycotoxin ochratoxin A (OTA) poses the risks of nephrotoxicity, hepatotoxicity, teratogenicity and immunotoxicity in animals. Nanoparticles from different minerals are often incorporated into chicken feed to serve as an alternative to antibiotics, promote growth, development, and a robust immune system. This research investigated the effects of 30 ppb of dietary OTA on broiler chickens' growth, blood indicators, biochemical measures, and oxidative stress, and the ability of nano-titanium dioxide (TiO2) to counteract its effect. Fifty one-day-old Cobb broiler chicks were divided into five groups each group containing 10 chicks: Gp1: control group, Gp2: fed diet containing 30 ppb of OTA Gp3: fed diet containing 30 ppb OTA plus 20% of nano-titanium dioxide (TiO2), Gp4: fed diet containing 30 ppb OTA plus 40% of TiO2, and Gp5: fed diet containing 30 ppb OTA plus 80% TiO2. Our results showed significant decrease in body weight gain, Hb concentration, PCV%, WBCs, heterophiles and lymphocytic count. Levels of pro-inflammatory cytokines, malondialdehyde, catalase, and nitric oxide, liver and kidney serum enzyme activity, reduced glutathione and total antioxidant capacity of OTA intoxicated broiler.increased significantly. Chickens in non-treated groups that received ochratoxin only had noticeable levels of ochratoxin residues in the liver and muscle tissues. However, TiO2 NPs addition to diet improved all the previous parameters. In conclusion, nano-titanium dioxide (especially with a concentration of 40 %) minimized the harmful effects of OTA in broilers and improved its elimination from liver and muscle

Keywords: Nano titanium dioxide, poultry, Electrophoresis, hematology, ochratoxin-A residue.

Introduction

Ochratoxins are a class of mycotoxins produced by various Penicillium or Aspergillus molds. These include several members of the Aspergillus ochraceus group, along with *Penicillium verrucosum* types I and II [1].Ochratoxinsincludecompounds A,

B, and C. Ochratoxin-A (OTA) is the most harmful of the three. These compounds are present in food or feedstuffs because it could pollute susceptive agricultural goods [2]. Poultry, among animals raised for food, is highly vulnerable to OTA contamination. Studies have demonstrated that maize, a key ingredient in poultry feed, can be tainted with OTA,

*Corresponding authors: Reham A.A. Mahmoud, E-mail: rehamahmadmahmoud@gmail.com Tel.: +20 01094833768 (Received 31 August 2025, accepted 20 November 2025)

DOI: 10.21608/ejvs.2025.419299.3092

particularly during the processes of handling and storage [3]. Feeding OTA, at levels between 130 µg and 3.9 mg in poultry feed, leads to a reduced feed conversion ratio, slower growth, impaired kidney function, and eventually, death[4-5]. Furthermore, providing OTA to birds negatively impacts their development. This is likely because it leads to a lower body mass and poor feed conversion ratio[6]. It strongly impacts the avian immune system, ultimately leading to a reduction in white blood cells [7]. The LD50 in chickens ranges from 2–4 mg/kg BW [8]; however, it ranges from 3.6 ppm to 16.5 ppm/kg BW for 3-week-old Japanese quails [9].

Nanotechnology focuses on nanoscale materials and their varied applications. Nanoparticles (NPs), typically atomic clusters spanning 1-100 nm, exhibit novel and enhanced characteristics, dependent on their size, arrangement, and shape when contrasted with larger particles of the same bulk materials [10]. Nanoparticles' high surface area-to-volume ratio makes them highly efficient in chemical and biological reactions. To clarify, these particles measure between 1 and 100 nm. At this size, materials exhibit altered, often unexpected, characteristics in terms of physics, chemistry, and biology. This size range offers greater possibilities compared to larger materials, allowing for less material usage [11].

These nanoparticles exhibit increased bioactivity because of their large surface area relative to their volume. The greater surface area compared to their size is responsible for the particles' impressive effectiveness in chemical reactions and biological processes. Nanotechnology methods appear to be a promising, dependable, and economical means to lessen the health impacts of mycotoxins. Research employs three core approaches: preventing mold growth, capturing mycotoxins, and minimizing toxic effects through nanoparticles[12]. In general, adsorptive compounds can diminish the impact of mycotoxins [13]. The first development of nanotechnological applications for the removal or detection of mycotoxins has been carried out in 2009 [14].

Titanium oxide nanoparticles (TiO2NPs) offer cell protection because they readily absorb ultraviolet radiation, thereby lessening undesirable skin reactions[15]. It has been reported that TiO2 NPs are characterized by their high inhibition capacity and heat-resistant against both pathological bacterial strains and fungi [16], so they play an important role in microbial inhibition. TiO2 is a substance that is safe for people and the environment. Although TiO2 is chemically stable, its' chemical activity increases dramatically and significantly when exposed to a light source such as ultraviolet radiation. This phenomenon is called photoactivity [17].

The present study was done to evaluate the toxic effects of ochratoxin alone on body performance, hematological-biochemical and oxidative stress in broiler chickens and modulation this toxic effect using different concentrations (20%, 40%, and 80%) of nano titanium dioxide (0.06 mg/kg)

Material and Methods

Chemicals and treatments

Titanium dioxide nanoparticle preparation

The green synthesis of titanium nanoparticles was performed using mint leaf extract as a natural reducing and capping agent. Fresh mint leaves were first washed thoroughly with deionized water to remove impurities, followed by cutting them into small pieces, and 20 g of leaves were boiled in 200 mL of distilled water at 80°C for 30 minutes to obtain the extract. After cooling to room temperature, the extract was filtered through Whatman No. 1 filter paper and stored at 4°C. The synthesis was initiated by adding the mint extract dropwise to titanium tetrachloride (TiCl₄) solution under continuous stirring at room temperature, maintaining a pH of 7. The color change from pale yellow to dark brown indicated the formation of titanium nanoparticles. The reaction mixture was stirred continuously for 5 hours to ensure complete and stabilization. reduction The resulting nanoparticles were separated by centrifugation at 12,000 rpm for 20 minutes, washed repeatedly with deionized water and ethanol to remove any unreacted materials and organic residues, and finally dried in a vacuum oven at 70°C for 24 hours to obtain titanium nanoparticle powder [18-19-20].

Characterization of the prepared TiO2NPs was performed using Zetasizer, X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The average size of nanoparticles measured by Zetasizer was 56.13 nm. XRD confirmed the anatase crystalline structure of synthesized Titanium dioxide nanoparticles. SEM analysis showed that the morphology of synthesized nanoparticles was spherical and results of AFM indicated that the nanoparticles are smooth [21-22].

Preparation of TiO₂ Treatments

Pure titanium dioxide (TiO₂) nanopowder (100% concentration) was used for the preparation of the intended concentration for groups 3 (20%), 4(40%) and 5(80%). The powder was dissolved in water.

Ochratoxin A:

Ochratoxin A (OTA) was provided by mycology department; Animal Health Research Institute. It was provided in the concentration of 30 ppb.

Ochratoxicated feed preparation:

Ochratoxin-A (OTA)-contaminated feed ingredients were prepared following the method

described by Sansing et al. (23), through artificial contamination of sterilized yellow corn with Aspergillus ochraceus. The OTA-contaminated corn was thoroughly mixed with broiler feed to achieve a final concentration of 30 μ g/kg of diet. The concentration of the mycotoxin was determined using immune affinity chromatography as outlined by Hansen (24) and Truckess et al. (25).

Vaccines

Vaccination protocol All birds were vaccinated with Newcastle disease virus (NDV) (HitchnerB1 and La-Sota at age of 7 and 18 days, respectively), and with infectious bursal disease (IBD) vaccine at age of 14 days. NDV vaccines were purchased from Intervet Boxmeer Company, Holland. Gumboro vaccine was purchased from Rhone-Merieau Company, France.

Experimental animal:

Fifty (unsexed) one-day-old Cobb broiler chicks were obtained from the Faculty of Veterinary Medicine, Zagazig University (laboratory Animals Housing Unit). The animals were clinically healthy, kept under hygienic conditions, shaving as bedding. They were maintained on a balanced diet. The animals were fed commercial ration purchased from Feed Mix Company. The animals were accommodated to the laboratory conditions for one week before the beginning of the experiment.

On day 8, the chicks were weighed and then divided into 5 groups each containing 10 chicks. The experimental feeding was designed as follows: (Gp1) fed a healthy diet and served as the control group. (Gp2)fed diet with 30 ppb diet ochratoxin according to Awaad *et al.* [26] only for 28 days.(Gp3) fed diet with 30 ppb diet ochratoxin + 20% nano titanium dioxide for 28 days. (Gp4) fed diet with 30 ppb diet ochratoxin + 40%nano titanium dioxide for 28 days. (Gp5) fed diet with 30 ppb diet ochratoxin + 80% nano titanium dioxide for 28 days. Ochratoxin was added to feed while nano titanium dioxide was administrated orally to the chicken.

Body weight:

The animals were weighted individually at the beginning of the experiment to obtain the average initial body weight and then body weight was recorded every week for calculation of the average body weight development in each group.

Sampling:

On day 35 of the experiment, two blood samples were collected by wing vein from each chicken. The first sample was collected in a tube containing EDTA as an anticoagulant for hematological profile analysis, meanwhile the second tube was without an anticoagulant for obtaining serum. Then, chicks were sacrificed by neck dislocation, and liver, and muscle tissue samples were collected. Concerning tissues,

both the liver and muscle were excised and prepared for ochratoxin residue. The liver tissue was divided into three sections, one for antioxidant assessment, and the other for ochratoxin residue. Tissue samples were kept at -20°C till the examination.

Serum preparation:

The collected blood samples were allowed to coagulate at 37C° for 30 minutes and then centrifuged at 3000 rpm for 15 minutes. The separated serum was aspirated by automatic pipette into clean well dried Witherman tubes and stored at -20 C° till used for hormonal and biochemical analysis.

Hematological studies:

The erythrocytic count (RBCs) hemoglobin concentration (Hb %) and packed cell volume (PCV) were determined. The erythrocytic indices {mean corpuscular hemoglobin (MCH), mean corpuscular volume (MCV) and mean corpuscular hemoglobin concentration (MCHC)} were calculated. Moreover, the total and differential leukocytic counts were conducted [27].

Biochemical analysis:

Serum total protein and its electrophoretic pattern were determined by Spectrum kit CAT. NO 310 001 and chemical preparation of polyacrylamide gel electrophoresis using the continuous buffer system of Kaplan and Szalbo [28] and Davis [29] respectively, and the calculated based on SynGene S. No. 17292*14518 sme*mpcs program using Scie Plas TV100 Mini Vertical Gel Unit UK with Power Supply Consort EV714, Belgium.

Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities were determined by spectrum kit CAT. NO 260 001 and 265 001 respectively. Levels of creatinine and urea in serum were determined by using spectrum kit CAT. NO 235 004 and 319 005 respectively. Additionally, nitric oxide (NO) and total antioxidant capacity (TAC) were estimated by using Bio-diagnostic kit CAT. No. NO 25 33 and TA 2513 respectively. Liver tissue of malonaldehyde (MDA), reduced glutathione (GSH), and catalase (CAT) were estimated by using Bio-diagnostic kit CAT.NO MD 25 29, GR 25 11 and CA 25 17 respectively.

Moreover, serum Tumor necrotic factor- α (TNF- α) and Interleukin 6 (IL-6) were determined by commercially available ELISA kits based on manufacturers' instructions (R and D Systems; Minnesota; Minneapolis; USA).

Measurement of total ochratoxin residues

Liver and muscle tissues were subjected to direct examination using high-performance liquid chromatography. to determine total ochratoxin residues, according to Zhang, *et al.* [30].

Statistical analysis

The obtained data were analyzed using statistical package for social science (SPSS,17 Software, 2004) for obtaining mean and standard error, the data were analyzed using one way ANOVA to determine the statistical significance of difference among groups. Means considered significance at p < 0.05 %

Results

The results in Table 1 show that both the final weight and body weight gain were significantly decreased in OTA intoxicated broiler compared with all groups. However, treatment of OTA-intoxicated group with TiO2 NPs 40% concentration resulted in a significant increase in final weight and body weight gain compared to all groups.

In the current work, Ochratoxin resulted in a non-significant decrease in RBCs count with a significant decrease in Hb concentration, PCV %, total WBCs, heterophils and lymphocytic count the ochratoxicated broiler chicken compared to control group. Moreover, treatment with nano-titanium 40% induced significant increase in Hb concentration, PCV % and lymphocytic count besides an insignificant increase in total WBCs and heterophils counts compared to the ochratoxicated group as shown in Table 2.

Regarding the biochemical studies, the obtained results demonstrated in Table 3 revealed that serum AST, ALT, ALK, urea, and creatinine concentrations were significantly elevated in OTA-intoxicated broilers when compared with the control group. Meanwhile, significant decreases of all previous parameters were reported in all treated groups with the TiO2 NPs when compared with ochratoxicated broilers. The obtained results revealed that treated group (OTA+ TiO2 NPs with a concentration of 40 %) showed a significant decrease of previous parameters compared with other concentrations of 20%, and 80%.

The obtained data established in Table 5 revealed a significant increase in serum TNF-α, IL-6, MDA, CAT, and NO with a marked decrease in GSH, and TAC were observed in OTA exposed Broilers in comparison with treated groups (OTA + TiO2 NPs) and control group. However, significant decreases of serum TNF-α, IL-6, and NO were recorded in the treated group (OTA+TiO2 NPs 40%) when compared with other treated groups.

Table 6 illustrates ochratoxin residue in the liver and muscle of non-treated groups that received ochratoxin only and had noticeable levels of ochratoxin residues in the liver and muscle tissues. However, treatment with different concentrations of nano-titanium resulted in significant decrease in ochratoxin residues especially the group treated with 40% nano titanium dioxide which exhibited marked

improved ochratoxin elimination in the liver and muscle tissues.

Table (5a), showed OTA significantly reduced total albumin (p < 0.05) versus control. nanoTiO2at 20% and 40% restored albumin to control-like values, while 80% showed partial recovery but remained lower than control. OTA also significantly reduced α-globulin; nanoTiO₂ at 20% and 40% improved levels but remained below control, with 80% showing moderate improvement. β-globulin was unaffected by OTA, and all nanoTiO2groupsmaintained control-like values. γ-globulin decreased significantly with OTA; 20% and 40% nanoTiO2 restored values to control levels, while 80% improved but remained lower. Total globulin, A/G ratio, and total protein were all significantly reduced by OTA, with all nanoTiO2 treatments improving values; 40% was closest to control.

Table (5b), illustrated that OTA markedly reduced pre-albumin all nano TiO2 groups improved it, though 80% remained lower than control. Albumin levels decreased with OTA but were fully restored by all nanoTiO2 doses. α_{1} - and α_{2} -globulins were significantly reduced(p < 0.05) by OTA; nanoTiO2improved both, with 40% and 80% approaching control. β_{1} - and β_{2} -globulins decreased with OTA; 20% and 40% nanoTiO2restored β_{1} to intermediate levels, while 40% and 80% nearly normalized β_{2} . OTA lowered γ_{1} -globulin, but all nanoTiO2 groups increased it; 40% and 80% matched control. No significant changes occurred in γ_{2} -globulin among any groups.

Liver Ochratoxin Residue (µg/kg) OTA group showed the highest toxin accumulation, indicating significant ochratoxin deposition in the liver.

G 3 caused a significant reduction (p < 0.05) compared to OTA alone.G4 (8.53 ± 0.2333) showed the greatest reduction, with toxin residues dropping to less than half of the OTA group.G 5 showed partial reduction, but still significantly higher than the 40% group.

Muscle Ochratoxin Residue ($\mu g/kg$): OTA group had the highest residues in muscle. G 3 showed a significant decrease compared to OTA.G4 achieved the best detoxification effect, with minimal ochratoxin residues detected.G 5 decreased residues compared to OTA but was less effective than 40%.

Discussion

The present study evaluated the ameliorative effects of nano titanium dioxide (nano-TiO2 at dietary inclusion levels of 20%, 40%, and 80% on ochratoxicosis-induced biochemical changes in chicken serum. Ochratoxicosis, primarily caused by ingestion of ochratoxin A (OTA), is a significant mycotoxicosis in poultry that disrupts liver and kidney functions and induces oxidative stress, resulting in impaired performance and health [31].

OTA fed birds (G2) showed various clinical signs and behavioral alterations as anorexia, depression, increased water intake, diarrhea and ruffled feathers where severity of signs in G2 increased gradually throughout the experimental period. No mortalities were recorded throughout the study. In treated-groups with TiO2 NPs the signs were mild and no mortality was recorded.

Ochratoxin caused a considerable decrease in both the final weight and weight gained compared to every other group. Nevertheless, treating the OTA-poisoned group with TiO2 NPs at a 40% concentration led to a considerable rise in final weight and weight gained compared to all groups. The decrease in weight gain during ochratoxicosis might be because of the unfavorable effects of ochratoxin on the intestinal tract, which reduces feed absorption, subsequently leading to alterations in weight gain[32]. The decrease in weight gain caused by ochratoxicosis matched earlier findings in studies that used ochratoxin in the diet of broiler chickens [33].

The main economic issues arising when chicks consumed diets polluted by OTA included slower growth, reduced appetite, and ineffective feed utilization[4-5-32-34-35-36]. Duringa study of Elaroussiet al.[5], birds consuming contaminated food (0.4 and 0.8mg OTA/kg) showed a reduction in feed intake and body mass that was related to the OTA dose and their feed conversion also became worse as the dose increased.

Regarding the heamatological results, nonsignificant decrease in RBCs count with significant decrease in Hb concentration, PCV %, total WBCs, heterophils and lymphocytic count were recorded in the ochratoxicated broiler chicken. Analyzing blood parameters in animals exposed to a threat can help diagnose mycotoxicosis. Since these measures are more responsive than things like performance, this finding would suggest the poisoning before other signs appear [37].

However, a marked decrease in the overall count of red and white blood cells in broiler chickens given a diet tainted with OTA (1 mg OTA/ kg) was noted bySawale*et al.*[38]. Similar results have been found in other studies [34 –39]. Also,Elaroussi*et al.*[5] demonstrated a decrease in red and white blood cell counts in broiler chickens after they were given two diets that were tainted with 0.4 and 0.8 mg OTA per kilogram.

Lowered red blood cell counts and hemoglobin levels can occur because of a decrease in iron in the blood during ochratoxicosis [40]. A decline in the overall number of white blood cells circulating, occurring in ochratoxicosis, stems from reductions in lymphocytes and monocytes[41]. Across a spectrum of OTA exposure levels beginning at 0.5 ppm [40] and up to 4.0 parts/10⁶[41], a form of anemia was

documented, showing a considerable drop in packed cell volume (PCV%) and hemoglobin (Hb) concentration. This was thought to be caused by either a lack of iron or a problem within the bloodproducing system. A reduction in the white blood cell count was observed, mainly due to fewer lymphocytes, with monocytes and heterophils also contributing, but to a lesser degree [34-41]. A low lymphocyte count can be a valuable and helpful sign of ochratoxin poisoning, potentially stemming from its direct impact on the germinal centers within lymphoid tissues. This also suggests a change in the immune system's operation. OTA's harmful impact on white blood cell counts was also observed in young male turkeys. They were given diets containing OTA at levels of 4 and 8 mg/g of food, starting right after they hatched and continuing for three weeks [41], and in Japanese quail received OTA via tube into their esophagus at a dosage of 50 mg per bird daily, for 60 days[43].

Our results revealed that serum AST, ALT, ALK, urea, and creatinine concentrations were significantly elevated in OTA-intoxicated broilers when compared with the normal control group. Since OTA metabolism primarily occurs in the liver, and it's eliminated via the kidneys, poisoning from it caused harm to the liver cells [44] and nephrotoxiceven when exposed to small amounts of OTA, which causes changes in the structure and function of the kidneys and liver[45]. The results showed a marked rise in serum AST, ALT, and Alk levels, along with urea and creatinine values, in broilers given OTA (0.0 mg / kg of diet) compared to normal group. These elevated values were highly critical serum biomarkers in determining hepatocyte's function and damage in OTA supplementation [46]. Severe harm to the liver cells resulted in an increased release of liver enzymes [47].

Liver damage usually stems from free radicals. These radicals, produced during the processing of harmful substances, start the toxic effects [45]. In the current work, the obtained result revealed an increase of serum TNF-α, IL-6, MDA, No, MDA and CAT values in OTA Broilers. Oxidative stress is strongly linked to inflammation. When oxidative stress occurs, cells release large amounts of ROS, which trigger the NF-κB inflammatory signaling pathway and also increase the expression of pro-inflammatory factors [49].

Inflammation is a serious indicator of liver damage triggered by harmful physical or chemical substances. This inflammation plays a crucial part in healing the liver [50].TNF- α is the initial inflammatory factor released during the inflammatory response. This can trigger the release of other cytokines, impact NF- κ B (a primary regulator of inflammation), increase free radical production, and worsen liver injury[51]. During liver injury, TNF- α and IL-6 become active and release.

This action results in neutrophils accumulating in liver cells. Consequently, cytokine expression increases [52].Research has shown that mycotoxins, including OTA, might amplify the production of TNF- α in rats [53]. As shown in the table (5) G2 (OTA only fed) showed a significant increase in MDA and a decrease in GSH as all groups throughout the study.

MDA is a persistent byproduct of lipid peroxidation (LP), which is a chain reaction triggered by free radicals [54]. By adding OTA to broilers ration, MDA levels might be increased [55]. Because it causes the creation of free radicals (ROS). Using TiO2 NPs in the diet and its compatibility with living organisms led to boosted No, CAT, and MDA activity, with no oxidative harm observed [56]. In the current study, an increase in MDA (as an oxidative stress marker) level was observed in ochratoxicosis group when compared with the controlgroup. This result convention with [57-58-59] suggested that, over two weeks of OTA administration (0.5 mg/kg body weight) to rats, there was DNA damage in lymphocytes, kidneys, and liver. Additionally, a decrease in GSH levels was accompanied by an increase in SOD activity.

Also, serum CAT, MDA, and No activity significantly increased in OTA treated broilers group as compared to the control group. These results are nearly similar to Soyöz, *et al.*,[60] and Özçelik, *et al.*,[61]who reported that CAT increased in the blood of rats given OTA (0.289 mg kg-1 for four weeks). CAT is most prevalent in liver cells and cooperates with SOD[62].

The obtained results illustrated that OTA decreased the concentration of serum TAC, and GSH. There is a balance between ROS production and ROS degradation with total antioxidants in the cells. Elevated levels of either ROS or antioxidants can lead to an irregular condition of oxidative stress [63]. The buildup of free radicals in the kidney or elsewhere leads to tissue damage. This is caused by the oxidative interaction with crucial intracellular components, like GSH (which has thiol groups), and lipid peroxidation of cell membranes. This latter process may significantly contribute to the cell's self-destruction (apoptosis)[64].

The obtained result revealed that treated OTC groups with TiO2NPS significance decrease in AST, ALT, ALK, Creatinine and Urea compared with the OTC broiler group similar to Hosseiniet.al.,[65] who recorded that, decreased values of AST, ALP, ALT, creatinine, and BUN in Propylthiouracil Se-NPs treated groups versus in rats. The protective effect of TiO2-NPs on the liver and kidneys was linked to higher serum levels of GSH and TAC in all Se-NPs treated groups, relative to the OTA group.

OTA's harmful effects could stem from its release of reactive oxygen species (ROS), leading to

oxidative stress in different organs. The production of ROS and lipid peroxidation in cell membranes can disrupt membrane fluidity. This disruption can also elevate membrane permeability or alter membrane potential, subsequently triggering enzymes to leak out of cells[66]. Elevated cell damage and increased cell membrane permeability tied to excessive release of liver cell contents and bile duct blockage will raise ALT, AST levels, and also Alk in blood [67-68].

Currently, the application of nanotechnology model to acute toxicity during OTA-intoxication is under-explored. Thus, an integrated analysis of oxidative stress (OS) biomarkers and biochemical tests was conducted in this study to clarify OTA toxicity.

TiO2 NPs have shown antioxidant or antiinflammatory effects [15]. At the nanoscale, nanoparticles (NPs) act as mycotoxin-absorbing materials that can bind and prevent mycotoxins from being absorbed in the gut [66]. Various nanoparticles (NPs) are currently used as feed additives to bind or reduce the damaging effects of mycotoxins through adsorption in animals.

Several NPs demonstrated a strong ability to eliminate OTA mycotoxin [70]. The protective hepatorenal influence of TiO2-NPs was associated with the increased serum values of GSH and TAC in all TiO2-NPs treated groups with the control group. In the present work, the supplementation of TiO2-NPs improved the damage induced by OTA as noted via increased GSH, TAC, and reduced MDA values compared with the OTA group which is expressed as a result of macrophage activity revealed a significant increase in OTA group only while all birdsTiO2 NPs received showed a significant decrease than other both control groups. These wonderful effects of TiO2 either low or high, not only ameliorated the toxic effect of OTA on macrophage activity but also modulated microphage activity. The increase expressed NO post TiO2NPs therapy is attributed to the redox-active NPs which tend to modulate innate and adaptive immunity, and this ability is extensively observed within blood cells and immune-related organs, like the liver [71].Furthermore, TiO2-NPs have been shown to safeguard the liver by stabilizing liver function indicators and lessening antioxidant enzyme activity, including CAT, within the treated group

The results showed that TiO2NPs significantly decrease TNF- α and IL-6 values. This result is agreed with Duan *et al.*[72]. TiO2-NPs might have anti-inflammatory effects by modulating the production of pro- and anti-inflammatory cytokines. This effect could be partly due to their ability to lessen the activation of NF- κ B and p38 mitogenactivated protein kinases (p38 MAPKs) [73]. Also, Sojka et al., [74] observed a reduction in IL-10 activity in rats exposed to TiO2NPs; this could be

linked to a decline in the lymphocyte population. The possible recovery following the discontinuation of TiO2NP exposure could be due to a partial restoration of lymphocyte activity after a period of complete cessation.

Consistently, our findings suggested that TiO2 NPS inhibited the release of the cytokines TNF- α and IL-6, decreased the level of MDA, but increased the concentrations of the antioxidants GSH.

The present study evaluated the ameliorative effects of nano titanium dioxide (nano-TiO2) at dietary inclusion levels of 20%, 40%, and 80% on ochratoxicosis-induced biochemical changes in chicken serum. Ochratoxicosis, primarily caused by ingestion of ochratoxin A (OTA), is a significant mycotoxicosis in poultry that disrupts liver and kidney functions and induces oxidative stress, resulting in impaired performance and health [28]. serum hypoalbuminemia in OTA intoxication table(5a, b,) reflects a multifactorial interplay between hepatic insufficiency, renal albumin loss [75]., inflammatory suppression of synthesis [76] and altered vascular permeability [77]. Measurement of serum albumin levels in OTA exposure thus provides valuable insight into the extent of organ dysfunction and systemic inflammatory status, and it may serve as a useful biomarker in clinical and toxicological evaluations Moreover, the reduction of albumin level may be due to reduced formation of protein in the liver or loss of protein formation from the alimentary tract [78].

The increase in serum beta-globulin levels in OTA toxicity reflects a composite effect of chronic inflammation, acute phase protein synthesis C3 and C4, transferrin, and beta-2 microglobulin [77], impaired renal protein clearance [75] and sustained immune activation IgA and IgM [79]. These alterations in serum protein profile may serve as useful biomarkers for assessing the extent of OTAinduced organ damage and systemic immune response. The decline in serum concentrations associated with OTA intoxication is attributable to a complex interplay of suppressed immunoglobulin synthesis, impaired production, and enhanced renal losses, compounded by systemic inflammatory changes. These alterations reflect OTA's multifaceted toxicity profile and globulin underscore the utility of serum measurements as indicators of immune competence, hepatic function, and renal integrity in both experimental and clinical assessments of OTA exposure.

Elevated pro-inflammatory cytokines such as interleukin-6 and tumor necrosis factor-alpha during OTA toxicity may alter protein metabolism and tissue distribution, leading to dynamic shifts in serum protein composition [77].

OTA exposure in this investigation led to marked decreases in serum total protein, albumin concentrations, and globulins with concurrent elevations in beta globulin fractions. These alterations reflect impaired hepatic protein synthesis due to OTA-induced hepatotoxicity and heightened immunoglobulin production secondary to chronic inflammation [31]. Total proteins decrease may be due to the fact that OTA is a protein synthesis inhibitor that has an effect on mitochondrial oxidative enzyme activity [80], or might be due to the imbalance between the rate of protein synthesis and the rate of its degradation in liver[81].

The observed hypoalbuminemia and reduced albumin/globulin (A/G) ratio are consistent with OTA's inhibition of mRNA translation and its capacity to elicit oxidative stress and tissue damage [82] the increase in serum beta-globulin levels in OTA toxicity reflects a composite effect of chronic inflammation, acute phase protein synthesis C3 and C4, transferrin, and beta-2 microglobulin[77], impaired renal protein clearance [75]and sustained immune activation IgA and IgM [80]. These alterations in serum protein profile may serve as useful biomarkers for assessing the extent of OTA-induced organ damage and systemic immune response.

Dietary supplementation of nano-TiO₂ exhibited a dose-dependent protective effect against OTA-induced protein fraction abnormalities. This suggests that nano-TiO₂ at this dose mitigated oxidative damage and modulated immune responses, likely through its high adsorption capacity and antioxidant properties [83]. Reduced oxidative and inflammatory stress allows hepatocytes to restore normal albumin synthesis, improving serum total protein and albumin levels. TiO₂ NPs may minimize protein loss through urine and stabilize globulin fractions. TiO₂ NPs can adsorb toxins and reduce their bioavailability, thus diminishing systemic toxicity [84].

TiO₂ NPs, due to their high surface area and redox activity, can effectively scavenge free radicals, thus protecting cellular components from oxidative damage. Abdel-Wahhab *et al.* [85] demonstrated that dietary supplementation with TiO₂ NPs significantly reduced oxidative stress markers and improved antioxidant enzyme activity in OTA-. Additionally, TiO₂ NPs possess significant anti-inflammatory properties), which further impair hepatic and immune functions [86].

Ochratoxin A (OTA) builds up in poultry meat, presenting a risk to people who eat it. This is because OTA remains in the body for a long time and is tough to break down with heat or chemicals [87] and Its existence in large amounts presents health hazards to exposed individuals, ranging from allergic responses up to death [88-89].

The main reason to monitor this mycotoxin in feed is because of worries about transmitting OTA to poultry and its later spread in their edible parts. In this regard, Pozzo *et al.*[36] performed an experiment in which thirty-six day-old male broiler chicks were given a diet supplemented with 0.1 mg OTA/ kg. Following this, the levels of OTA were assessed in blood serum, liver, kidney, breast, and thigh samples. The mycotoxin was found in the serum, liver, and kidney, with concentrations of 1.2, 0.4 ng/mL, 1.9, $0.2\mu g/kg$, and $3.6,0.9\mu g/kg$. It wasnot found in breast and thigh.Similarly, in the study by Birò et al., [90] in broiler chicks fed with feed containing 0.5 mg/kg OTA, the distribution was: liver > kidney > plasma > muscle

Our results revealed that treatment with different concentrations of nano-titanium resulted in significant decrease in ochratoxin residuesespecially the group treated with 40% nano titanium dioxide which exhibited marked improved ochratoxin elimination in the liver and muscle tissues.

Nanotechnology provides three primary ways to fight mycotoxins: directly stopping the fungus, absorbing mycotoxins, and lessening their poisonous impacts. Carbon-based nanomaterials, like graphene, strongly bind to mycotoxins [91].

Adsorption is extremely important for removing mycotoxins. Research indicates that nanoparticles (NPs) also participate in mycotoxin can detoxification process via an adsorption [92]. Nanoparticles, at a tiny scale, act as mycotoxinabsorbing compounds. They attach to mycotoxins, preventing their absorption gut[69]. Several nanoparticles (NPs) are now utilized as dietary supplements. They work to capture or reduce the detrimental impact of mycotoxins by adsorption in livestock. Certain NPs exhibited significant mycotoxin removal effectiveness in dealing with OTA [70] because of their particular qualities, like their small size, a high surface area relative to volume, surface charge, and high catalytic activity, they can adsorb more effectively. This, in turn, gives them a greater ability to bind mycotoxins, leading to improved absorption [93]. Therefore, the adsorption method can be used to remove mycotoxins from poultry feed [61].

Some scientists proposed that metallic oxide nanoparticles diminish mycotoxins due to an

electrostatic pull. They suggested the negatively charged analytes (COO-) and positively charged metal attract, as the electron exchange between the substances was sped up by Ti4+ from TiO2. The high absorption capability of the used nanoparticles enables the formation of coordinate and electrostatic bonds by titanium cations with the OTA's β -dicarbonyl system [69].

Conclusion

While few studies have examined nanomaterials' direct impact on mycotoxins, existing studies mostly focus on nanomaterials' influence on fungi, potentially preventing toxin production. This research demonstrated that ochratoxicosis in broilers resulted in poor weight gain and, significant decrease in Hb concentration, PCV%, WBCs, heterophiles and lymphocytic count. On the other hand, there was significant increase in pro-inflammatory cytokines, malondialdehyde, catalase, and nitric oxide, liver and kidney serum enzyme activity, reduced glutathione and total antioxidant capacity of OTA intoxicated broiler. Moreover, 40% TiO2 NPs effectively minimized the harmful effects of OTA in broiler chickens and improved ochratoxin elimination in the liver and muscle tissues. Nanotechnology approaches appear promising, dependable, and affordable for lessening mycotoxins' health effects. Therefore, applying this technique for treating in feed is suggested to minimize mycotoxin.

Acknowledgments

Many thanks to A.M. Abdelghany, Professor of Applied Spectroscopy, Dean of Physics Research Institute, National Research Centre, Giza, Egypt

Funding statement

This study didn't receive any funding support

Declaration of Conflict of Interest

The authors declare that there is no conflict of interest.

Ethical of approval

The experimental protocol was approved by the Animal Health Research Institute (AHRI) in conformity with the Agriculture Research Center (ARC) and IACUC Committee (ARC, AHRI, IACUC, 146/24) in Egypt.

TABLE 1. The effect of nano-titanium dioxide treatment on growth performance in ochratoxicated broilers chickens.

Group	Unit (Kg)						
Group	Initial weight	Final weight	Body weight gain				
Control (G1)	45 ± 1.29	$1792.5^{b} \pm 21.74$	1747.5 ^b ± 21.74				
OTA(G2)	44 ± 1.32	$1110^{e} \pm 24.832$	$1065.5^e \pm 23.73$				
OTA +TiO2 20%(G3)	43 ± 1.29	$1575 ^{c} \pm 32.27$	$1532^{c} \pm 32.041$				
OTA + TiO2 40%(G4)	45 ± 1.87	$1952^a\!\!\pm 29.54$	$1907.5^a \pm 29.60$				
OTA + TiO2 80%(G5)	43.75 ± 0.629	$1482.5^d \pm 27.80$	$1439^d \pm 27.15$				

Data are presented as (Mean \pm SE). n= 3. Mean values with different superscript letters in the same column are significantly different at (p < 0.05).

TABLE 2. The effect of nano-titanium dioxide treatment on blood picture in ochratoxicated broilers chicken.

			Group		
Parameter	Control (G1)	OTA (G2)	OTA + TiO2 20%(G3)	OTA + TiO2 40%(G4)	OTA + TiO2 80%(G5)
RBCsX10^6/cmm	3.33 ± 0.31	2.69 ± 0.18	3.05 ± 0.29	3.15 ± 0.34	2.84 ± 0.23
Hbg/dl	10.30 ± 0.42^{a}	$8.04 \pm 0.37^{\ b}$	8.85 ± 0.38 b	9.56 ± 0.24^{a}	8.32 ± 0.33^{b}
PCV %	$32.20\pm0.98~^a$	25.22 ± 0.71 °	28.88 ± 0.82 bc	30.55 ± 0.82 ab	27.44 ± 0.79 °
MCVFl	96.70 ± 2.05	93.75 ± 2.14	94.69 ± 1.72	96.98 ± 2.03	96.62 ± 1.94
MCHPg	30.93 ± 1.10	29.89 ± 1.14	29.02 ± 1.08	30.35 ± 1.17	29.30 ± 1.26
MCHCg/dl	31.99 ± 1.24	31.88 ± 1.09	30.64 ± 1.28	31.29 ± 1.37	30.32 ± 1.52
WBCsX10 ^{^3} /cmm	22.84 ± 1.02^{a}	$18.44 \pm 1.11^{\text{ b}}$	19.31 ± 1.06^{b}	20.76 ± 0.96 ab	19.42 ± 1.03^{b}
Lymphocytes	12.81 ± 0.61^{a}	10.09 ± 0.73 c	10.62 ± 0.69 bc	11.57 ± 0.64 ab	10.78 ± 0.58 bc
Heterophils	7.85 ± 0.44^{a}	6.40 ± 0.31^{b}	6.68 ± 0.43^{ab}	7.08 ± 0.42^{ab}	$6.64 \pm 0.54 \text{ ab}$
Monocytes	1.59 ± 0.22	1.45 ± 0.19	1.48 ± 0.20	1.55 ± 0.23	$1.49\ \pm0.18$
Eosinophils	$0.36 \hspace{0.2cm} \pm 0.05$	0.31 ± 0.07	$0.33\ \pm0.06$	0.35 ± 0.05	$0.32\ \pm0.06$
Basophils	0.23 ± 0.03	0.19 ± 0.02	$0.20\ \pm0.03$	$0.21\ \pm0.02$	$0.19\ \pm0.01$

Data are presented as (Mean \pm SE). n= 5. Mean values with different superscript letters in the same row are significantly different at (p < 0.05).

TABLE 3. The effect of nano-titanium dioxide treatment on serum liver marker enzymes (AST, ALT, and ALK) activities and kidney function tests (urea and creatinine) concentrations in ochratoxicated broilers.

	Group							
Parameter	Control (G1)	OTA (G2)	OTA + TiO2 20%(G3)	OTA + TiO2 40%(G4)	OTA + TiO2 80%(G5)%			
ALT u/l	10.5e±0.58	18.500a±0.47	15.166c±0.58	11.033d±0.028	17.24b±0.006			
AST u/l	$85c\pm0.5773$	124a±0.5773	$91b\pm0.5773$	86c±0.5773	90b±0.5773			
ALK u/l	$395e\pm0.5773$	$482a\pm0.577$	471c±0.577	421d±0.5773	460b±0.3333			
Urea mg/dl	$21b\pm0.05773$	$45a\pm0.05773$	$22.1b\pm0.05773$	21.6b±0.05774	22.2b±0.05774			
Creatinine mg/dl	$0.38d\pm0.006$	$1.4a\pm0.00577$	$0.9b\pm0.00577$	$0.8bc\pm0.00577$	$0.75c \pm 0.00577$			

Data are presented as (Mean \pm SE). n= 3. Mean values with different superscript letters in the same row are significantly different at (p < 0.05).

TABLE 4. The effect of nano-titanium dioxide treatment on serum pro-inflammatory cytokines and oxidative stress/antioxidant markers in ochratoxicated broilers.

	Group							
Parameter	Control (G1)	OTA (G2)	OTA + TiO2 20%(G3)	OTA + TiO2 40%(G4)	OTA + TiO2 80%(G5)%			
TNF-α (Pg/ml)	53.2°±0.5774	173.71 ^a ±0.4371	$90.49^{b} \pm 0.5586$	67.6 ^d ±0.7788	82.88°±0.5745			
IL-6 (Pg/ml)	$100.8^{e} \pm 0.9073$	$257.57^{a}\pm0.5773$	113.5°±0.5959	$106^{d} \pm 0.5773$	$128.4^{b}\pm0.5773$			
NO(u/l)	$26.707^{c} \pm 0.51522$	$33.380^a \pm 0.5773$	$27.913^{bc} \pm 0.585$	$26.37^{\circ} \pm 0.5234$	$28.64^{b} \pm 0.5234$			
TAC (Mm/l)	$3.5333^a \pm 0.2027$	$1.27^{c}\pm0.02906$	$1.8^{b} \pm 0.05774$	$1.73^{b} \pm 0.00577$	$1.716^{b} \pm 0.00577$			
CAT (U/I)	$12^{d} \pm 0.5773$	$23^{a}\pm0.5773$	$16^{b} \pm 0.5773$	$14^{c}\pm0.5773$	$13^{cd} \pm 0.5773$			
GSH nmol/ml	16.42°±0.5179	12.35°±0.9265	$14.3^{b} \pm 0.9073$	$13.2^{bc} \pm 0.5773$	$15.00^{ab} \pm 0.5773$			
MDA (nmol/ml)	$1.6^{d}\pm0.05774$	$3.7^a \pm 0.05774$	$2.2^{bc} \pm 0.05774$	$2.3^{b}\pm0.06351$	$2.1^{c}\pm0.05774$			

Data are presented as (Mean \pm SE). n= 3 . Mean values with different superscript letters in the same roware significantly different at (p < 0.05).

TABLE 5a,b. Effect of nano-titanium dioxide treatment on serum T. protein and its mean and subfractions electrophoresis in ochratoxicated broilers chicken.

TABLE 5a

Group	t-albumin	T- Alpha	t -Beta	t -Gamma	T globulinl	a/g	T. protein
Control (G1)	1.33a	1.18a	0.68a	1.22a	3.08a	0.43a	4.41a
	±0.03	± 0.04	± 0.03	± 0.04	±0.09	± 0.01	±0.11
OTA (G2)	0.87c	0.78c	0.75a	0.93c	2.46d	0.35b	3.32d
	±0.02	±0.02	± 0.01	±0.06	±0.05	± 0.01	±0.07
OTA + TiO2	1.31a	0.92b	0.73a	1.16ab	2.80bc	0.47a	4.11b
20%(G3)	±0.03	±0.03	± 0.01	± 0.04	±0.06	± 0.02	± 0.03
OTA + TiO2	1.33a	0.98b	0.72a	1.17ab	2.87b	0.46a	4.19ab
40%(G4)	± 0.01	±0.03	± 0.04	± 0.05	± 0.05	± 0.01	±0.04
OTA + TiO2	1.18b	0.94b	0.64a	1.06abc	2.64dc	0.45a	3.82c
80%(G5)	± 0.07	±0.03	± 0.07	± 0.03	± 0.06	± 0.02	±0.12

Data are presented as (Mean \pm SE). n= 3. Mean values with different superscript letters in the same column are significantly different at (p < 0.05).

TABLE 5b

TINDLE 30								
Group	Pre ab	Albumin	Alpha1	Alpha2	Beta1	Beta2	Gamma1	Gamma2
Control (G1)	0.19b	1.14a	0.41a	0.77a	0.33c	0.35a	1.09a	0.13a
	± 0.01	±0.03	± 0.03	± 0.03	± 0.02	± 0.01	± 0.03	± 0.01
OTA (G2)	0.14d	0.72b	0.22c	0.56b	0.58a	0.17c	0.83c	0.10b
	± 0.01	±0.02	± 0.01	± 0.02	± 0.01	± 0.02	± 0.05	± 0.01
OTA + TiO2	0.22a	1.09a	0.31b	0.60b	0.46b	0.27ab	1.02a	0.14a
20%(G3)	± 0.00	±0.03	± 0.02	± 0.04	± 0.01	± 0.00	± 0.04	± 0.01
OTA + TiO2	0.18bc	1.15a	0.34b	0.64b	0.39bc	0.32a	1.03ab	0.14a
40%(G4)	± 0.01	± 0.01	± 0.01	± 0.03	± 0.01	± 0.05	± 0.05	± 0.01
OTA + TiO2	0.17c	1.02a	0.32b	0.62b	0.40bc	0.24bc	0.93bc	0.13a
80%(G5	± 0.00	± 0.07	± 0.02	± 0.01	± 0.05	± 0.02	± 0.03	± 0.00

Data are presented as (Mean \pm SE). n= 3 . Mean values with different superscript letters in the same column are significantly different at (p < 0.05).

TABLE 6. The effect of nanotitanium dioxide onochratoxin residue in liver and muscle during ochratoxicosis in broiler chicken.

Parameter	Group Unit(PPb)				
	Control	OTA	OTA + TiO2	OTA + TiO2	OTA + TiO2
	(G1)	(G2)	20%(G3)	40%(G4)	80%(G5)%
Liver	ND	20.23°±0.4255	15.33°±0.2905	$8.533^{d} \pm 0.2333$	$17.16^{b} \pm 0.4055$
Muscle	ND	$13.666^{a} \pm 0.4163$	$6.520^{b} \pm 0.355$	$2.433^{d} \pm 0.240$	$8.11^{c}\pm0.4705$

Data are presented as (Mean \pm SE). n= 3 . Mean values with different superscript letters in the same columnare significantly different at (p < 0.05).

References

- Reverberi, M., Alessandra, R., Slaven, Z., Anna, A. F. and Corrado, F. Natural functions of mycotoxins and control of their biosynthesis in fungi. *Appl. Microbiol. Biotechnol.*, 87, 899–911, (2010).
- Wu, Q., Dohnal, V., Huang, L., Kuča, K., Wang, X., Chen, G., and Yuan, Z. Metabolic pathways of ochratoxin A. Current Drug Metabolism, 12(1), 1–10. (2011). https://doi.org/10.2174/138920011794520026
- Akinmusire, O.O., El-Yuguda, A.D., Musa, J.A., Oyedele, O.A., Sulyok, M., Somorin, Y.M., Ezekiel, C.N. and Krska, R. Mycotoxins in poultry feed and feed ingredients in Nigeria. *Mycotoxin Res.*, 35, 149– 155 (2019).
- Stoev, S.D., Stefanov, M., Denev, S., Radic, B., Domijan, A.M. and Peraica, M. Experimental mycotoxicosis in chickens induced by ochratoxin A and penicillic acid and intervention with natural plant extracts. *Veterinary Research Community*, 28(8), 727– 746 (2004).

- 5. Elaroussi, M.A., Mohamed, F.R., El Barkouky, E.M., Atta, A.M., Abdou, A.M. and Hatab, M.H. Experimental ochratoxicosis in broiler chickens. *Avian Pathology*, **35**(4), 263–269 (2006).
- Khatoon, A., Khan, M.Z., Khan, A. and Javed, I. Toxico pathological and serum biochemical alterations induced by ochratoxin A in broiler chicks and their amelioration by locally available bentonite clay. Pakistan Journal of Agricultural Sciences, 53(4), 977– 984 (2016).
- 7. Jahan, F. and Rahman, K. Ali, S. Effect of herbal mixture as angiotensin converting enzyme inhibitor in angiotensin-II dependent hypertension. *Pakistan Veterinary Journal*, **39**(1), 25–30 (2019).
- Peckham, J.C., Doupnik, B. and Jones, O.H. Acute toxicity of ochratoxins A and B in chicks. *Applied Microbiology*, 21(3), 492–494 (1971).
- Sreenivasaiah, P.V. Scientific Poultry Production (3rd ed.). India: International Book Distributing Company (2006).

- Saliem, A.H., Ibrahim, O.M. and Salih, S.I. Biosynthesis of silver nanoparticles using *Cinnamon zeylanicum* plants bark extract. *Kufa Journal For Veterinary Medical Sciences*, 7(1), 51-63(2016).
- 11. Sindhura, S.K, Selvam, P.P, Prasad, T.N.V. and Hussain, O.M. Synthesis, characterization and evaluation of effect of phytogenic zinc nanoparticles on soil exo-enzymes. *Appl. Nano Sci.* **4**, 819-827 (2014).
- Horkey, P., Skalickova, S., Baholet, D. and Skladanka, J., Nanoparticles as a solution for eliminating the risk of mycotoxins. *Nanomaterials*, 8(9), 727 (2018).
- Binder, E.M. Managing the risk of mycotoxins in modern feed production. *Animal Feed Science and Technology*, 133(1), 149-166 (2007).
- 14. Kaushik, A., Solanki, P.R., Ansari, A.A., Ahmad, S. and Malhotra, B.D. A nanostructured cerium oxide film-based immunosensor for mycotoxin detection. Nanotechnology, 20(5), 55105-55105 (2009).
- Peira, E., Turci, F., Corazzari, I., Chirio, D., Battaglia, L., Fubini, B. and Gallarate, M. The influence of surface charge and photo-reactivity on skin-permeation enhancer property of nano-TiO2 in ex vivo pig skin model under indoor light. *International Journal of Pharmaceutics*, 467(1), 90-99 (2014).
- 16. Qasem, A. Synthesis of zinc oxide and cobalt oxide nanoparticles in surfactant/antibiotics shell and investigating their anti-bacterial activities. M.Sc. Thesis, An-Najah National University, Nablus, Palestine, (2013).
- Al-Saji, L. and Al-Nazzal, A. The effect of nano-zinc oxide and nano-titanium dioxide on inhabitation of ochratoxin A. *Iraqi Journal of Science*, 62(11), 4406-4415 (2021).
- 18. Olcay, R.H., Reyes, I.A., Palacios, E.G., García, L., Ramírez, P.A., Guzmán, L. and Flores, M.U. Synthesis and characterization of TiO2 nanoparticles by green chemistry, using *Aloe vera*. *In TMS Annual Meeting & Exhibition* (pp. 685-692). Cham: Springer Nature Switzerland. (2024).
- Mulay, M.R., Patwardhan, S.V. and Martsinovich, N. Review of bio-inspired green synthesis of titanium dioxide for photocatalytic applications. *Catalysts*, 14(11), 742(2024).
- Essien, E.A., Kavaz, D., Ituen, E.B. and Umoren, S.A. Synthesis, characterization and anticorrosion property of olive leaves extract-titanium nanoparticles composite. *Journal of Adhesion Science and Technology*, 32(16), 1773-1794(2018).
- Abd ElKader, W., AboGabal, R., Abdelghany, A. and Oraby, A. Enhanced efficiency of samarium-doped TiO 2 nanoparticles for targeted imaging: Characterization and in vivo evaluation. *Nanomed. J.*, 10(4), 279-292, (2023).
- Hameed, S.T., Qahtan, T.F., Abdelghany, A.M. and Oraby, A.H. Temperature-dependent dielectric and AC conductivity of zinc oxide nanoparticle-enhanced CMC/PEO matrices: Insights for functional applications. Surfaces and Interfaces, 59, 105892 (2025).

- Sansing, G.A., Davis, N.D. and Diener, U.L. Effect of time and temperature onochratoxin A production by Aspergillusochraceus. *Canadian Journal Microbiology*, 19, 1259-1263 (1973).
- Hansen, T.J. Affinity column cleanup and direct fluorescence measurement of aflatoxin M1 in raw milk. *Journal of Food Protection*, 53, 75-77 (1990).
- 25. Truckess, M.W., Stack, M.E., Nesheim, M.E., Page, S., Albert, S.W., Hansen, R.H. and Donahve, K.F. Immunoaffinity column coupled with solution fluorometry or liquid chromatography postcolumn derivatization for determination of aflatoxin in corn, peanut and butter: collaborative study. *Journal of the Association of Official Analytical Chemists (AOAC)*, 74, 81-88 (1991).
- 26. Awaad M.H.H., Atta, A.M., Abd El-Ghany, W.A., Elmenawey, M., Ahmed, K., Hassan, A.A., Nada, A.A. and Abdelaleem, G.A. Effect of a specific combination of mannan-oligosaccharides and β-glucans extracted from yeast cell wall on the health status and growth performance of ochratoxicated broiler chickens. *Journal of American Science*, 7(3), (2011).
- Jain, W. Schalms Veterinary Hematology. 4th Ed. Lee and Fibiger, Philadelphia U.S.A. (1986).
- Koller, A. Total serum protein. Kaplan A et al. Clin Chem. The C.V. Mosby Co. St Louis. Toronto. Princeton; 1316-1324 and 418.(1984)
- 29. Davis, B.J. Disk electrophoresis method and application to serum proteins. *J. Am. New York Acad. Sci.*, **121**, 404-428 (1964).
- Zhang, X., Jiang, W., Li, P., Zhang, Q. and Ding, X. Determination of ochratoxin A in food using high-performance liquid chromatography. *Food Chemistry*, 130(4), 1075–1080 (2012).
- Kumar, S., Singh, J. and Verma, A. Chronic inflammation and immunoglobulin modulation: A review. *Journal of Immunology Research*, 1234567. (2020)
- 32. Raju, M. and Devegowda, G. Influence of glucomannan on performance and organ morphology, serum biochemistry and hematology in broilers exposed to ochratoxin. *British Poultry Sci.*, **41**, 640 650 (2000).
- 33. Garcia, A.R., Avila, E., Rosiles, R. and Petrone, V.M., Evaluation of two mycotoxin binders to reduce toxicity of broiler diets containing ochratoxin A and T-2 toxin contaminated grain. Avian Dis., 47, 691-699 (2003).
- 34. Mohiuddin, S.M., Warasi, S.M.A. and Reddy, M.V., Hematological and biochemical changes in experimental ochratoxicosis in broiler chickens. *Indian Veterinary Journal*, **70**, 613–617 (1993).
- Santin, E., Paulillo, A.C., Nakagui, L.S.O., Alessi, A. C., Polverio, W.J.C. and Maiorka, A. Evaluation of cell wall yeast as adsorbent of ochratoxin in broiler diets. *International Journal of Poultry Science*, 2, 465–468 (2003).
- Pozzo, L., Cavallarin, L., Antoniazzi, S., Guerre, P., Biasibetti, E., Capucchio, M.T. and Schiavone, A. Feeding a diet contaminated with ochratoxin A for

- broiler chickens at the maximum level recommended by the EU for poultry feeds (0.1 Mg/Kg). 2. effects on meat quality, oxidative stress, residues and histological traits. *J. Anim. Physiol. Anim. Nutr.*, **97**, 23–31 (2013).
- Oğuz, H., Keçeci, T., Birdane, Y.O., Önder, F., and Kurtoglu, V. Effect of clinoptilolite on serum biochemical and haematological characters of broiler chickens during aflatoxicosis. *Res. Vet. Sci.*, 69, 89–93 (2000).
- 38. Sawale, G.K., Gosh, R.C., Ravikanth, K., Maini, S. and Rekhe, D.S. Experimental mycotoxicosis in layer induced by ochratoxin A and its amelioration with herbomineral toxin binder 'Toxiro al'. *International Journal of Poultry Science*, **8**, 798–803 (2009).
- 39. Ayed, I.A.M., Defalla, R., Yagi, A.I. and Adams, S.E.I., Effect of Ochra toxin A on Lohman-type chicks. *Veterinary and Human Toxicology,* **33**, 557–560 (1991).
- Agawane, S.B. and Lonkar, P.S. Effect of probiotic containing *Saccharomyces boulardii* on experimental ochratoxicosis in broilers: Hematobiochemical studies. *Journal of Veterinary Science*, 5, 359-367 (2004).
- 41. Chang, C.F., Doerr, J.A. and Hamilton, P.B. Experimental ochratoxicosis in turkey poults. *Poultry Science*, **60**, 114 119(1981).
- 42. Huff, W.E., Kubena, L.F. and Harvey, R.B. Progression of ochratoxicosis in broiler chickens. *Poultry Science*, **67**, 1139-1146 (1988).
- Farshid, A.A. and Rajan, A. Assessment of the cellmediated immune response of Japanese quails in experimental ochratoxicosis. *Indian Veterinary Journal*, 73, 1117 1121 (1996).
- 44. Mavrommatis, A., Giamouri, E., Tavrizelou, S., Zacharioudaki, M., Danezis, G., Simitzis, P.E., Zoidis, E., Tsiplakou, E., Pappas, A.C., Georgiou, C.A. and Feggeros, K. Impact of mycotoxins on animals' oxidative status. *Antioxidants*, 10, 214 (2021).
- Khan, A.K., Venancio, E.J, Hirooka, E.Y., Rigobello, F., Ishikawa, A., Nagashima, L.A., Alexandre, O. and Itano, E.N. Avianochratoxicosis: A review. *Afr. J. Microbiol. Res.*, 8(35), 3216-3219 (2014).
- 46. Prati, G.M., Cicognini, F.M., Filippo Rossi, F., Bertuzzi, T., Pietri, A., Casali, M., Stasi, M., Stasi, B. and Fornari, F., Ochratoxin A and Liver Damage: A Case-Control Study. EC Gastroenterology and Digestive System, 1(3), 66-75 (2016).
- 47. Dreisbach, A.W. and Lertora, J. The effect of chronic renal failure on drug metabolism and transport. *Expert Opin Drug Metabolism.Toxicol.*, 4(8),1065-1074. (2008).
- 48. Kumar, C.S., Balamurugan, B., Murugeswaran, S., Natarajan, P., Sharavanan, S.P., Petchimuthu, S. and Murugan, S.T.S., Hepatoprotective activity of leaves and roots extracts of *Moringa oleifera* Lam, *International Journal of Medicobiological Research*, 1(2), 90-93 (2010).
- Glauert, H.P., Role of NF-kappaB in hepatocarcinogenesis and its potential inhibition by dietary antioxidants. *Curr. Cancer Drug Targets*, 12, 1160–1172 (2012).

- 50. Hou, S., Jiao, Y., Yuan, Q., Zhai, J., Tian, T., Sun, K., Chen, Z., Wu, Z.and Zhang, J., S100A4 protects mice from high-fatdietinduced obesity and inflammation. *Lab. Investig.*, **98**, 1025–1038(2018).
- Schwabe, R.F. and Brenner, D.A., Mechanisms of liver injury. I. TNF-alpha-induced liver injury: Role of IKK, JNK, and ROS pathways. *Am. J. Physiol. Gastrointest. Liver Physiol.*, 290, G583 G589 (2006).
- 52. Olteanu, D., Filip, A., Mureşan, A., Nagy, A., Tabaran, F., Moldovan, R., Decea, N., Catoi, C. and Clichici, S. The effects of chitosan and low dose dexamethasone on extrahepatic cholestasis after bile duct ligation in Wistar rats. *Acta Physiol. Hung.*, 99, 61–73(2012).
- 53. Xu, W., Wang, M., Cui, G., Li, L., Jiao, D., Yao, B., Xu, K., Chen, Y., Long, M., Yang, S., He, J., Astaxanthin protects OTA induced lung injury in mice through the Nrf2/NF-kappaBPathway. *Toxins*, 11, 540(2019).
- 54. Osman, M., Ahmed, M., Sanaa, M. and Shahinda, E. Biochemical studies on the hepatoprotective effects of pomegranate and guava ethanol extracts. *New York Sci. J.*, 4(3), 27-39 (2011).
- 55. Li, K., Cao, Z., Guo, Y., Tong, C., Yang, S., Long, M., Li, P. and He, J. Selenium yeast alleviates ochratoxin A induced apoptosis and oxidative stress via modulation of the PI3K/AKT and Nrf2/Keap 1 signaling pathways in the kidneys of chickens. *Oxidat. Med. Cell. Longev.*, 12,143 (2020).
- 56. Behera, T., Swain, P., Rangacharulu, P.V. and Samanta, M. Nano-Fe as feed additive improves thehematological and immunological parameters of sh, Labeorohita H. Appl. Nanosci., 4(6), 687694 (2014).
- 57. Domijan, A.M., Rudes, K. and Peraica, M. The effect of ochratoxin A on the concentration of protein carbonyls in rats. *Arh. Hig. Rada. Toksikol.*, **56**(4), 311-315 (2005).
- 58. Aydin, S., Palabiyik, Ş.S., Erkekoglu, P., Sahin, G., Başaran, N. and Giray, B.K. The carotenoid lycopene protects rats against DNA damage induced by ochratoxin A. *Toxicon*, 73, 96–103 (2013).
- Palabiyik, S.S., Erkekoglu, P., Zeybek, N.D., Kizilgun, M., Baydar, D.E., Sahin, G. and Giray, B.K. Protective effect of lycopene against ochratoxin A induced renal oxidative stress and apoptosis in rats. *Exp. Toxicol. Pathol.* 65(6), 853–861(2013).
- Soyöz, M., Özçelik, N., Kılınç, I. and Altuntaş, I. The effects of ochratoxin A on lipid peroxidation and antioxidant enzymes: a protective role of melatonin. Cell Biol. Toxicol., 20(4), 213-219(2004).
- Özçelik, N., Soyöz, M., Kılınç, İ. Effects of ochratoxin a on oxidative damage in rat kidney: protective role of melatonin. J. Appl. Toxicol., 24(3), 211–215 (2004).
- 62. Baudrimont, I., Ahouandjivo, R., Creppy, E.E. Prevention of lipid peroxidation induced by ochratoxin A in Vero cells in culture by several agents. *Chem. Biol. Interact.*, **104**(1), 29–40 (1997).
- 63. Akinrinmade, J.F. and Akinrinde, A.S. Effect of oral administration of methanolic extract of *Ocimum gratissimum* on intestinal Ischemia-reperfusion injury in rats, *Eur. J. Med. Plants*, **3**, 591-602 (2013).

- 64. López, O., Hernández-Jerez, A.F., Rodrigo, L., Gil, F., Pena, G., Serrano, J.L., Parrón-Carreño, T., Villanueva, E. and Pla, A. Changes in antioxidant enzymes in humans with long-term exposure to pesticides. *Toxicol. Lett.*, 171(3), 146-153 (2007).
- 65. Hosseini, M., Behehsti, F., Marefati, N. and Anaeigoudari, A. Nano-selenium relieved hepatic and renal oxidative damage in hypothyroid rats. *Physiological Reports.* **11**, e15682 (2023).
- Nehru, B. and Anand, P., Oxidative damage following chronic aluminum exposure in adult and pup rat brains, *Journal of Trace Elements Medicine and Biology*, 19, 203–208 (2005).
- 67. Poupon, R. Liver alkaline phosphatase: A missing link between choleresis and biliary inflammation. *Hepatology*, **61**, 2080–2090 (2015).
- 68. Liu, H., Zha, X., Ding, C., Hu, L., Li, M., Yu, Y., Zhou, W., Wang, T., Zhu, L., Bao, H. and Cheng, X. AST/ALT Ratio and Peripheral Artery Disease in a Chinese hypertensive population: A cross-sectional study. *Angiology*, 72, 916–922 (2021).
- 69. Udomkun, P. and Njukwe, E., Chapter 16-"Nanotechnological methods for aflatoxin control," in Mahendra Rai and Kamel A. Abd-Elsalam(Eds.), Nanomycotoxicology - Treating Mycotoxins in the Nano Way(pp. 385-396) Academic Press(2020).
- Ramadan, M.M., Mohamed, M.A., Almoammar, H. and Abd-Elsalam, K.A., Chapter 5 "Magnetic nanomaterials for purification, detection, and control of mycotoxins," in Mahendra Rai and Kamel A. Abd-Elsalam(Eds.) Nanomycotoxicology Treating Mycotoxins in the Nano Way (pp. 87-114) acadmicpress (2020).
- Miroshnikov, S.A., Yausheva, E.V., Sizova, E.A., Kosyan, D.B. and Donnik, I.M. Research of opportunities for using iron nanoparticles and amino acids in poultry nutrition. *International Journal of Geomate*, 13 (40), 124-131(2017).
- Duan, Y., Liu, J., Ma, L., Li, N., Liu, H., Wang, J., Zheng, L., Liu, C., Wang, X., Zhao, X., Yan, J., Wang, S., Wang, H., Zhang, X. and Hong, F. Toxicological characteristics of nanoparticulate anatase titanium dioxide in mice. *Biomaterials*, 31, 894–899 (2010).
- 73. Szelényi, J. Cytokines and the central nervous system. *Brain Res. Bull.*, **54**, 329-338 (2001).
- 74. Sojka, D.K., Bruniquel, D., Schwartz, R.H. and Singh, N.J. IL-2 secretion by CD4+ T cells in vivo is rapid transient, and influenced by TCR-specific competition. *J. Immunol.*, 172(10), 6136-6143 (2004).
- **75.** Malir, F., Ostry, V., Pfohl-Leszkowicz, A. and Malir, J. Ochratoxin A: 50 years of research. *Toxins*, **8**(7), 191. (2016).
- Gruys, E., Toussaint, M.J.M., Niewold, T.A. and Koopmans, S. J. Acute phase reaction and acute phase proteins. *Journal of Zhejiang University: Science B*, 6(11), 1045–1056. https://doi.org/10.1631/jzus.2005.B1045(2005).

- 77. Stoev, S.D. Food safety and increasing hazard of mycotoxin occurrence in foods and feeds. *Critical Reviews in Food Science and Nutrition*, **55**(5), 631–641 (2015).
- Karakilcik, A.Z., Gürbüz, M. and Erman, H. Effects of ochratoxin A on serum protein levels in broiler chickens. *Turkish Journal of Veterinary and Animal Sciences*, 28(3), 759–763 (2004).
- Boudra, H., Barnouin, J., Dragacci, S. and Morgavi, D.
 P. Aflatoxin M1 and ochratoxin A in raw bulk milk from French dairy herds. *Journal of Dairy Science*, 90(7), 3197–3201(2007).
- 80. Vettorazzi, A., Ruiz, M.J., and Luzardo, O.P. Ochratoxin A-induced protein synthesis inhibition and oxidative enzyme activity impairment in rat liver mitochondria. *Toxicology Letters*, **220**(1), 64–70 (2013).
- 81. Arvind, K. Effects of ochratoxin A on protein metabolism and liver function. *International Journal of Toxicology*, **33**(5), 347–354(2014).
- 82. Marquardt, R.R. and Fröhlich, A.A. Toxicology of ochratoxin A. *Reviews of Environmental Contamination and Toxicology*, **127**, 69–107(1992).
- 83. Abdel-Wahhab, M.A., El-Denshary, E.S., El-Nekeety, A.A., Abdel-Wahhab, K.G., Hamzawy, M.A., Elyamany, M.F., Hassan, N.S., Mannaa, F.A., Shaiea, M.N.Q., Gado, R.A. and Zawrah, M.F. Efficacy of organo-modified nano montmorillonite to protect against the cumulative health risk of aflatoxin B₁ and ochratoxin A in rats. *Soft Nanoscience Letters*, **5**(2), 21–35 (2015). DOI: 10.4236/snl.2015.52004
- 84. Sun, W., Du, Y., Chen, J., Kou, J., and Yu, B. Interaction between titanium dioxide nanoparticles and human serum albumin revealed by fluorescence spectroscopy in the absence of photoactivation. *Journal of Luminescence*, **129**, 778–783. (2009). https://doi.org/10.1016/j.jlumin.2009.02.010
- 85. Abdel-Wahhab, M.A, Aljawish, A, El-Nekeety, A.A, Abdel-Aziem, S.H. and Hassan, N.S. Chitosan nanoparticles plus quercetin suppress the oxidative stress, modulate DNA fragmentation and gene expression in the kidney of rats fed ochratoxin Acontaminated diet. Food and Chemical Toxicology, 99, 209–221(2017).
- Kumar, R., Mishra, A. K., Dubey, N. and Tripathi, Y.
 B. Toxicological effects of ochratoxin A in animals. *Indian Journal of Veterinary Pathology*, 27(2), 95–100 (2003).
- 87. Liew, W.P.P. and Mohd-Redzwan, S. Mycotoxin: It's impact on Gut Health and Microbiota. *Front. Cell. Infect. Microbiol.*, **8** (60), 1-17 (2018).
- Haque, M.A., Wang, Y., Shen, Z, Li, X., Saleemi, M.K. and He, C. Mycotoxin contamination and controlstrategy in human, domestic animal and poultry: A review. *Microbial Pathogenesis*, 142, 104095 (2020).
- 89. CONTAM Panel (European Food Safety Authority Panel on Contaminants in the Food Chain), Schrenk D, Bodin L, Chipman JK, del Mazo J, Grasl-Kraupp B, Hogstrand C, Hoogenboom L, Leblanc J-C, Nebbia

- CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vlemickx C, Wallace H, Alexander J, Dall'Asta C, Mally A, Metzler M, Binaglia M, Horvath Z, Steinkellner H and Bignami M. Scientific Opinion on the risk assessment of ochratoxin A in food. *EFSA Journal*, **18**(5), 6113, 150 (2020).
- Biró, K., Solti, L., Barna-Vetró, I., Bagó, G., Glávits, R., Szabó, E. and Fink-Gremmels, J. Tissue distribution of ochratoxin a as determined by HPLC and ELISA and histopathological effects in chickens. *Avian Pathol.*, 31, 141–148 (2002).
- 91. Horky, P., Skalickova, S., Baholet, D. and Skladanka, J. Nanoparticles as a solution for eliminating the risk of

- mycotoxins. *Nanomaterials*, **8**(9), 727 (2018). https://doi.org/10.3390/nano8090727
- 92. Gacem, M.A., Gacem, H., Telli, A. and Khelil A.O.E.H. Mycotoxins: decontamination and nanocontrol methods," in Mahendra Rai and Kamel A. Abd-Elsalam(Eds.), Nanomycotoxicology - Treating Mycotoxins in the Nano Way (pp. 189-216) Academic Press(2020).
- 93. Adegbeye, M.J., Elghandour, M.M., Barbabosa-Pliego, A., Monroy, J.C., Mellado, M., Salem, A.Z. and Reddy, P.R.K. Nanoparticles in equine nutrition: Mechanism of action and application as feed additives. *Journal of Equine Veterinary Science*, **78**, 29-37 (2019).

محاوله للتحكم فى الاوكراتوكسيكوزيس فى الدواجن باستخدام نانو ثانى اوكسيد التيتانيوم صفاء محمد المسلمى 1 ، نرمين فاروق الزهيرى 1 ، سارة عبد الله عبد الوهاب 1 ، سحر سمير عبد الحميد 2 ريهام احمد ابو الفتوح 2 ، رشا محمود حمزة 4 و مجدة منصور 2

أ:قسم الكيمياء والسموم والنقص الغذائي، معهد بحوث الصحة الحيوانية، مركز البحوث الزراعية، فرع الزقازيق.
 أ: قسم الكيمياء والسموم والنقص الغذائي، معهد بحوث الصحة الحيوانية، مركز البحوث الزراعية، فرع الدقي.
 ق: قسم الباثولوجيا الاكلينيكية، معهد بحوث الصحة الحيوانية، مركز البحوث الزراعية، فرع الزقازيق.

· قسم الفطريات، معهد بحوث الصحة الحيوانية، مركز البحوث الزراعية، فرع الدقى

الملخص

تشكل السموم الفطرية الأوكرا توكسين (OTA) A مخاطر على السمية الكلوية، والسمية الكبدية، والتشوهات الخلقية، والسمية المناعية في الحيوانات. وغالبًا ما يتم دمج الجسيمات النانوية من معادن مختلفة في علف الدجاج كبديل للمضادات الحيوية، لتعزيز النمو، والتطور، ونظام المناعة القوي. وقد بحثت هذه الدراسة في تأثير 30 جزءًا في البليون من OTA الغذائي على نمو دجاج التسمين، ومؤشرات الدم، والقياسات البيوكيميائية، والإجهاد التأكسدي، وقدرة أكسيد النانو-تيتانيوم (TiO2) على مواجهة تأثيره. تم تقسيم عدد خمسين كتكوت من سلالة كوب البالغة من العمر يومًا واحدًا إلى خمس مجموعات كل مجموعة احتوت على 10 كتاكيت: المجموعة 1: مجموعة التحكم، المجموعة 2: تلقت طعامًا يحتوى على 30 جزءًا في البليون منOTA ، المجموعة 3: تلقت طعامًا يحتوى على 30 جزءًا في البليون من OTA بالإضافة إلى 20% أكسيد النانو-تيتانيوم ، المجموعة 4: تلقت طعامًا يحتوى على 30 جزءًا في البليون من OTA بالإضافة إلى (HiO2 40%، والمجموعة 5: تلقت طعامًا يحتوي على 30 جزءًا في البليون من OTA بالإضافة إلى80% .TiO2. أظهرت نتائجنا انخفاضًا كبيرًا في معدل الزيادة في وزن الجسم، وتركيز الهيمو غلوبين، ونسبة خلايا الدم الحمراء، وخلايا الدم البيضاء، وعدد الخلايا المعتدلة واللمفاوية. كما ارتفعت مستويات السيتوكينات المؤيدة للالتهاب، ومالونديالدهيد، والكاتالاز، وأكسيد النيتريك، ووظائف الكبد والكلى، والغلوتاثيون المختزل، والقدرة المضادة للأكسدة الكلية بشكل ملحوظ في الدواجن التي تم اعطائها .OTA. بينما كانت مستويات متبقيات الأوكراتوكسين ملحوظة في الكبد والعضلات للدجاج في المجموعات غير المعالجة التي تلقت الأوكراتوكسين فقط. ومع ذلك، فإن إضافة جزيئات ثاني أكسيد التيتانيوم النانوية إلى النظام الغذائي حسنت جميع المعابير السابقة. في الختام، أدى ثاني أكسيد التيتانيوم النانوي (خصوصًا بتركيز 40٪) إلى تقليل الآثار الضارة لـ OTA في الدجاج اللاحم وحسن التخلص منها من الكبد والعضلات.

الكلمات الدالة: متبقيات الأوكر اتوكسين-أ، نانو ثاني أكسيد التيتانيوم، الدواجن، التحليل الكهربائي، علم الدم.