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ABSTRACT:

This study's main objective focuses on enhancing the precision of breast cancer identification. There are two primary stages in
this study's framework. First stage: compare the performance of two different convolution neural networks (CNNs) architectures
with data splitting size representing 20% of the testing and validation set and 80% of the training data. The convolutional neural
networks used in this study are VGG-19 (Visual Geometry Group 19) and ResNet50 (Residual Network 50), both of which
employ the Adam optimizer and multilayer perceptron networks to identify the superior architecture. The subsequent phase
implements Convolutional Block Attention Modules (CBAM) using optimized structural configurations to refine feature
representations and enhance computational effectiveness. Performance assessment encompasses multiple evaluation indicators,
namely classification accuracy, precision rates, recall values, F1-measure, and receiver operating characteristic curve area (ROC-
AUC). Through the integration of attention-based techniques and the application of pre-trained model knowledge, the framework
demonstrates exceptional results using the DDSM database. The results indicated that pretrained model VGG-19 yielded the best
accuracy and precision scores with data splitting ratio (80% train, 10% validation, and 10% test) where, the accuracy for testing
achieve 97.75%, and precision achieve 100%. After integrating CBAM, the result improved to 99.99% for accuracy and 100%
precision outperforming state-of-the-art methods.
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1. INTRODUCTION:

Breast cancer is considered one of the most common malignancies affecting women globally [1]. For better treatment
results, early detection is essential. Mammography continues to be the most reliable and accurate screening modality for BC
screening programs [2],[3]. It is also considered the most reliable, dependable screening method, and remains the gold standard
for community BC screening [4]. Nowadays, MRI and ultrasound are still utilized when combined with mammography,
particularly when the density of breast tissue is high, but it can’t be replaced. To help radiotherapists, computer-assisted
identification and diagnosis (CAD) has been created to improve the accuracy prediction of screening mammography [5].

Deep learning (DL) has been highlighted by many studies as being crucial to the delivery of higher-quality and more secure
healthcare [6],[7]. On the other hand, High-dimensional data, such as pictures and videos, may now be analyzed by machines
thanks to DL algorithms that were inspired by the structure of human brain [8], [9]. This study aims to enhance BC's classification
models' accuracy by integrating (CBAM) with the best CNN architecture. A standard framework is often followed by the entire
article: The second section presents relevant literature and previous studies. The third section provides a comprehensive
explanation of the suggested methodological approach, encompassing deep learning techniques and classification methods
employed in the framework. The fourth section examines the experimental findings, presenting comparative analyses of accuracy
metrics, along with descriptions of the utilized dataset, computational requirements, and data partitioning strategies. Additionally,
it outlines the evaluation criteria applied to assess model effectiveness. The fifth section offers concluding remarks.
The main goal is to improve classification accuracy for mammogram images by leveraging both transfer learning and attention
mechanisms. The specific contributions of this research are:

1. Comparative Evaluation: compare and analyze the performance of two different CNN architectures (VGG-19 and

ResNet50-V2) on the BC classification task to identify the most suitable backbone model.
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2. Attention Integration: Incorporate CBAM into the best performance CNN architectures to improve the models' ability
to focus on important features, then enhancing overall classification accuracy and robustness of the system.

2. Related Work:

Breast cancer represents a leading cause of women's deaths worldwide. Mammography remains a widely utilized
imaging method for early detection and classification of breast cancer. Contemporary deep learning convolutional networks have
shown considerable promise in automated mammographic diagnosis. Nevertheless, conventional CNN architectures frequently
struggle to prioritize image regions containing critical information, potentially limiting diagnostic accuracy. Attention
mechanisms such as CBAM were introduced to improve feature extraction through selective emphasis on important spatial and
channel dimensions. Related literature is summarized in Table 1.

The study by Wang and colleagues [10] implemented RcdNet, integrating depthwise separable convolutions and CBAM modules,
achieving outstanding results in breast ultrasound analysis: 93.51% classification accuracy, 0.9168 precision value, 0.9495
sensitivity rate, and 0.9290 F1-measure. Generated attention visualizations effectively identified diagnostically relevant lesion
regions.

Zeng et al. [11] created a DL model using CBAM ResNet-18 to forecast the expressions of the HER2, ER, and PR receptors from
mammograms without the need for manual mass segmentation. The model performed better than the baseline ResNet-18 and
VGG-19 variations after being trained using five-fold cross-validation and assessed on an external dataset. It showed excellent
potential as an auxiliary diagnostic tool, especially for ER prediction, with AUCs of 0.708, 0.785, and 0.706 for HER2, accuracies
of 0.651, 0.845, and 0.678, and F1-scores of 0.528, 0.905, and 0.773 for PR.

Boro et al. [12] created the CBAM-RIUnet model, which improves breast tumor segmentation in ultrasound images by combining
residual inception depth-wise separable convolutions with (CBAM). The model outperformed state-of-the-art techniques by
successfully suppressing irrelevant features and concentrating on the region of interest, as demonstrated by its Dice score of
89.38%, accuracy of 97.59%, precision of 91.34%, and loU of 88.71% when evaluated under enhanced breast ultrasound (EBUS)
and test-time augmentation (TTA) scenarios.

Alkhalefah et al. [13] suggested a model named MOB-CBAM for BC detection and molecular subtype categorization from
mammograms by combining a dual-channel CBAM with the MobileNet-V3 backbone. Using the CMMD database, the model
attained 98% classification accuracy for detailed categorization tasks, while achieving 99% across all metrics (accuracy, precision,
recall, and F1-measure) with an MCC of 98% for broader classification schemes. The system successfully identified molecular
subtypes including Luminal A, Luminal B, HER-2 Positive, and Triple Negative variants. Validation procedures conducted on
MIAS and CBIS-DDSM repositories yielded accuracy rates of 97% and 98% correspondingly.

Aggarwal and colleagues [14] introduced an enhanced DeepLabV3+ framework designed for segmenting breast abnormalities in
sonographic imagery, incorporating CBAM components within the encoding and decoding phases to improve attention toward
relevant characteristics. Using the BUS dataset, the model achieved superior results compared to the baseline DeepLabV3+,
reporting precision 0.974, recall 0.933, specificity 0.997, Dice coefficient 0.951, and loU 0.933, effectively addressing challenges
in segmenting small tumors caused by speckle noise, shape variations, and tumor-like regions.

Alashban. [15] proposed a two-stage CAD system combining a modified VGG19 for classifying DBT images and a YOLOv5
model enhanced with CBAM (YOLOvV5-CBAM) for lesion detection. The modified VGG19 integrated eight additional layers
(four batch normalization and four pooling layers) to improve classification, while CBAM modules were inserted into YOLOV5
after each feature fusion. Using data from 22,032 DBT examinations across 5,060 patients, the system outperformed prior
architectures in both classification accuracy and training loss. YOLOV5-CBAM effectively identified and classified lesions as
either benign or malignant. The testing accuracy was 93%, training accuracy was 95%, and validating accuracy was 94% when
using Batch size 512 with Adam optimizer.

Sengodan. [16] proposed a CBAM-EfficientNetV2 model integrating Convolutional Block Attention Modules with
EfficientNetV2 to enhance feature extraction and emphasize clinically significant tissue regions in breast cancer histopathology
images. Utilizing transfer learning and CLAHE preprocessing, the BreakHis database, containing images at 40X, 100X, 200X,
and 400X magnification levels, served as the evaluation dataset. The model demonstrated exceptional results, attaining 99.01%
accuracy and 98.31% F1-measure at 400X magnification, exceeding existing benchmark approaches while preserving processing
speed suitable for practical clinical deployment.

Mehmood et al. [17] proposed the CB-Res-RBCMT framework for the diagnosis of breast ultrasonography carcinoma, which
blends customized residual CNNs with novel Vision Transformer elements. The RBCMT framework integrates foundational
convolutional units, CNN-Transformer hybrid blocks, and sophisticated modules for extracting regional and boundary
characteristics to identify differences in contrast and structural patterns. Feature diversity is improved by a channel-boosting
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strategy that combines transfer learning-based residual CNN maps with original RBCMT channels. After that, the best pixels are
found using a spatial attention block. On the harmonized robust BUSI dataset, the model outperformed existing CNN and ViT
methods, attaining performance metrics of 95.57% for F1-measure, 95.63% classification accuracy, 96.42% recall rate, and
94.79% precision value.

Table 1. Show summary of related work.

Author year Method Dataset Accuracy
Wang et al. [10] 2025 RcdNet (Deep separable | Breast 93.51%
conv +CBAM ultrasound
2025 CBAM ResNet-18 0.651 (HER2),
Zeng et al. [11] Mammography 0.845 (ER),
(internal * 1 0.678 (PR)
external)
Boro et al. [12] 2025 CBAM-RIUnet EBUS + TTA 97.59%
Alkhalefah et al. | 2024 dual-channel CBAM) CMMD, MIAS, | ~99%
[13] CBIS-DDSM
2024 DeepLabV3+ +CBAM BUS dataset
Aggarwal et al.
[14]
Alashban [15] 2025 YOLOV5-CBAM N 22,032 DBT | 93%
Modiified VGG19 exams
Sengodan [16] 2024 CBAM-EfficientNetV2 BreakHis (multi- | 99.01%
mag)
Mehmood etal. | 202 CB-Res-RBCMT Harmonized 95.63%
[17] stringent BUSI

3. Methodology:

This study presents a robust framework for BC classification from mammogram images using DL techniques. The
proposed method utilizes a publicly available mammography dataset to develop and evaluate the classification models. The
framework is designed in two primary phases, as shown in Fig.1.

I First stage: Comparison between Pre-trained CNNs

In the first stage, the best architecture for BC classification is identified by comparing the performance of two different pre-trained
CNNs. The selected models are: VGG-19, and ResNet50. The hyper parameters of Both models are enhanced by using transfer
learning to get the best performance of each model and best performance model using a balanced subset of the DDSM dataset
with a data splitting ratio representing 20% of the testing and validation set and 80% of the training data. The goal of this stage is
leveraging the strengths of each CNN and identify the backbone model that yields the best performance in binary classifying
mammographic images.

Transfer
_ learning pre- Analyze and Incorporate
Pre-processing trained CNN compare the CBAM into the Result
Dataset (Normalization, Models $ performance of $ best ¢ Analysis
(DDSM) Resizing, (VGG19, and the used pre- performance
Augmentation) ResNe;SO] trained CNN CNN
architectures architectures

Figure 1. The prime mechanism of the proposed method.
Il.  Second stage: Integration of CBAM with the best performance CNNs.

After evaluating CNN models individually and getting the best performance model, the second stage focuses on enhancing feature
extraction capabilities by integrating the CBAM with the best performance model architecture. CBAM introduces attention
mechanisms that enable the networks to focus more effectively on the most informative regions of the mammogram images by
applying both channel and spatial attention. This enhancement aims to improve classification accuracy by guiding the CNNs to
prioritize relevant features, reducing the risk of overlooking critical image details. A fair comparison is ensured by training and
evaluating the modified designs under the same data splitting conditions. Through this two-stage methodology, the study

3



systematically investigates the impact of attention mechanisms on breast cancer classification performance using DL models.
3.1 The applied CNNs of proposed model.
3.1.1 VGG-19 Architecture:

This deep convolutional network was developed by Oxford University in 2014 for the ImageNet Recognition
Challenge [18]. The architecture contains 19 trainable layers comprising 16 convolutional stages utilizing small 3x3
kernels, 2x2 max-pooling operations, and 3 dense layers, enabling extraction of sophisticated hierarchical
representations while maintaining computational practicality [19]. Pre-trained using the extensive ImageNet database,
the model demonstrated exceptional image classification capabilities.

Although VGG19 is well-known for its depth and simplicity, its high number of parameters make it computationally
demanding, which has led to the creation of lighter architectures like MobileNet and EfficientNet [20]. However,
VGG19 remains a standard backbone model for many transfer learning tasks, feature extraction processes, and
medical image analysis due to its robustness and ease of implementation in frameworks like Keras and PyTorch.
3.1.2 ResNet50 Architecture:
ResNet50, a deep convolutional network introduced by He and colleagues within the Residual Networks series in
2015, comprises 50 trainable layers designed specifically to address vanishing gradient problems [21]. The
architecture's key innovation involves implementing skip connections (residual pathways), where a layer's output
combines with inputs from layers positioned further in the network. This mechanism enables efficient gradient
propagation through numerous layers, reducing training complexity for deeper models while enabling the learning of
residual functions. The core residual unit within ResNet50 is expressed mathematically as:
y=F (x, Wi}) +x @

Where:

e X represents input,

e W, are the learnable weights,
e Fintroduce residual function (series of convolutions, batch normalization, and ReLU),
e Vs the output after adding the skip connection.

ResNet50 is structured into convolutional layers, identity blocks, and bottleneck residual blocks to reduce computation
while maintaining depth. It uses 1, 3x3, and 1x1 convolutions within these blocks. Because of its excellent accuracy
and efficiency, ResNet50 has become known as the most important architecture in detecting objects, image
classification, and transfer learning [22]. It is widely available in deep learning libraries such as Keras, PyTorch, and
TensorFlow.

3.2 The applied Convolutional Block Attention Modules (CBAM).

Without adding too many network parameters, it is a lightweight, easy-to-use, and efficient feed forward CNN attention
strategy that enhances CNN classification performance [23]. The mechanism enables the model to prioritize key image regions
through dual attention strategies: channel-based and spatial-based attention. Figure 2 illustrates how spatial attention highlights
critical image zones containing relevant features, while the channel attention instructs the network which feature mappings are
more significant. CBAM model is easy to add to existing CNN architectures leading to better accuracy in image detection, and
classification [24].
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Figure 2. (a) the overall structure of CBAM module includes b and c; (b) channel attention modules; (c) spatial attention
module [24].
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4. Results Analysis and Discussion:
4.1 Data description
A widely used publicly accessible dataset on the Mendeley website is used to test the suggested approach [25]. On the

Mendeley website, every image in this dataset was available in PNG format, with a pixel size of 227 x 227. Image augmentation
techniques are employed to expand the dataset size, while contrast-limited adaptive histogram equalization (CLAHE) is applied
to enhance image contrast. The suggested approach was used in this study just on DDSM datasets. Before augmentation, 2188
mass images were taken from 1319 cases; after augmentation, there were 13128 mass images total, organized into two separate
folders.

The benign folder comprised 5970 images and the malignant folder comprised 7158 images. This database isn’t balanced. So, in
this study, a randomly balanced subset of the DDSM dataset was selected, containing 4000 mass images divided into 2000 benign
mass images and 2000 malignant mass images in a balanced manner as illustrated in Table 2. A sample of mammography mass
images is shown in Fig.3.

Benign Mass

Malignant Mass

25 25

50 50
75 75
100 100
125 125
150 150
175 175

200 200

(o] 50 100 150 200 o 50 100 150 200
Figure 3. Benign and malignant mass Tumor from DDSM dataset.
Table 2. Number of mammography mass images used.

Benign Images Malignant Images Total
2000 2000 4000

4.1.1 Data splitting
The dataset is split into training, validating, and testing sets at random; the training set is 80%, the validation set is 10%,
and the testing set is 10%. Table 3 illustrates the number of mammography mass images used.

Table 3. Number of mammography mass images used.
Splitting Ratio Trained images Validated images Tested images Total
First Scenario (80:10:10) 3200 400 400 4000

4.2 System specifications

All experiments were conducted on Google Collaboratory utilizing an online T4 GPU environment with Python 3, supported by
a Core i7 processor and 64 GB RAM configuration. Training employed the Adam optimization algorithm with the following
hyperparameters: batch size of eight samples, training duration of twenty epochs, and a learning rate set at 0.0001 to regulate
convergence speed.

4.3 Data Preprocessing

The training images are normalized, resized, and enhanced as part of the preprocessing step. To improve model
generalizability and enable a smoother training process, normalization involves transforming pixel values to fall within a
predefined range between 0 and 1. After that, In order to match the images with the standard input size of all applied pre-trained
models, they are reduced to 224 x 224 x 3 pixels. Data augmentation techniques are systematically implemented to enhance
dataset variability and strengthen the model's generalization capabilities and overall effectiveness. The augmentation pipeline
employs an image generation function configured with the following parameters: 20-degree rotation limit, 10% width and height
shifting boundaries, 10% zoom variation, and 10% shear transformation range.

4.4 Performance Evaluation Measures:

Performance assessment metrics were derived from the confusion matrix components: true positives (TP), false positives (FP),
true negatives (TN), and false negatives (FN):
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TP+TN

Accuracy = ——— 2
TP+FP+TN+FN
recision-recall
F1—score = 2 - T—=2n 22 (3)
precision+recall
.. TP
Pre cision = 4
r PT P+FP
Recall = (5)
TP+FN

Additionally, the area under the receiver operating characteristic (ROC) curve and AUC were computed.
4.5 Experimental Results and Discussion
This part presents the classification framework's results utilizingan 80:10:10 data partitioning scheme. The implemented

pre-trained architectures (VGG-19 and ResNet50-V2) were refined through transfer learning by incorporating additional layers:
a flattening component, a fully connected layer employing ReLU activation, a 0.2 dropout regularization, and softmax
classification layers with varying output dimensions appended to the base models. Thus, the models trained and tested by the
applied data then improves its classification accuracy performance models by using CBAM module.
4.5.1 Experimental Results for data-splitting [80:10:10]

Applying the proposed classification system using this data-splitting and discussing the experimental results.

l. The experimental result of first stage.

The experimental result of the individual CNN is shown in Table [4,5] which illustrates the classification performance of the two
suggested CCNs. In addition, Fig. [4,5] shows the two DL models' accuracy and loss during the training and validating
steps over twenty epochs. Finally, Fig. [6,7]. outlines the confusion matrices acquired during experiment, where

Classes "0" and "1" denote "benign™ and "malignant,” respectively.
Table 4. The performance metrics for validation and testing data set on VGG-19 pre-trained models

Pre-t{?(l}néillrgodel Accuracy (%) | Precision (%) | Recall (%) | F1- Score ( %) Roc-AUC ( %)
validation 98.75 99.49 98 98.74 99.96
testing 97.75 100 98 97.69 99.96

Table 4 presents the evaluation of the standalone pre-trained VGG-19 architecture before attention module integration. VValidation
metrics yielded 98.75% accuracy, 99.49% precision, 98% sensitivity, 98.74% F1-measure, and 99.93% AUC value. Test set
performance demonstrated 97.75% accuracy, perfect precision at 100%, 98% recall rate, 97.69% F1-score, and 99.96% area under
the curve. While these outcomes are robust, the gap between precision and sensitivity indicates the model exhibited high
confidence in positive classifications yet failed to detect certain true positive cases.

Pr}e{-g?\}r;tesdol_r\l;)zd el Accuracy (%) | Precision (%) | Recall (%) | F1- Score (%) Roc-AUC ( %)
validation 93 98.86 87 92.55 99.59
testing 92.25 100 84.50 91.59 99.90

Table 5. The performance metrics for validation and testing data set on ResNet50-V2 pre-trained models

The pre-trained ResNet50-V2 model was additionally evaluated without attention modules, as presented in Table 5. This model
achieved 93% accuracy, 98.86% precision, 87% recall, 92.55% F1-score, and 99.59% ROC-AUC on the validation dataset. For
the testing dataset, the model attained 92.25% accuracy, 100% precision, 84.50% recall, 91.59% F1-score, and an exceptional
ROC-AUC of 99.90%. These results indicate that the ResNet50-V2 model demonstrated strong performance, though a disparity
existed between precision and recall, suggesting that the model emphasized minimizing false positives while occasionally missing
certain actual cancer cases.
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Figure 4. (Train-Validation) accuracy and loss through VGG-19 pretrained model.

Figure 4 illustrates how well the VGG-19 model performed during training and validation throughout 20 epochs. The
validation loss falls from around 0.36 to 0.06 and the training loss falls from roughly 0.50 to 0.14 along the loss curves. Good
generalization is indicated by a smaller validation loss relative to training loss. According to the accuracy curves, the validation
accuracy increases from 88% to around 98%, while the training accuracy increases from roughly 81% to 94%. Throughout the
training phase, the validation accuracy remains marginally greater than the training accuracy.
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Figure 5. (Train-Validation) accuracy and loss through ResNet50-V2 pretrained model.

Figure 5 displays the ResNet model's performance during 20 epochs. The training loss gradually decreases from about
.50 to .14, but the validation loss consistently falls below the training loss, indicating high generalization ability, as seen by the
loss curves. While validation accuracy rises from around 90% to peaks near 97%, training accuracy improves from about 81% to
over 95% in the accuracy curves. The majority of epochs continue to see validation accuracy marginally surpass trainingaccuracy.
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_ 150 - 150
125 - 125

- 100 - 100
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Figure 6. Confusion matrix of VGG-19 model Figure 7. Confusion matrix of ResNet50-V2 model
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As illustrated in Figure 6, the confusion matrix for the VGG-19 model demonstrates that all 200 samples from class 0
were accurately classified, with no mistakes. For class 1, the model correctly predicted 191 samples but misclassified 9 samples
as class 0. which means the model is very accurate, especially for class 0, and makes only a few errors for class 1.

Figure 7 presents the ResNet50-V2 confusion matrix, revealing 198 accurate predictions for class 0 with 2 misclassifications,
while class 1 achieved 174 correct classifications with 26 instances incorrectly labeled as class 0. These results indicate inferior
performance relative to the VGG-19 architecture.

1. The experimental result of second stage

After evaluating the performance of each CNN individually, the CBAM module is applied with VGG-19 to enhance
extracted feature and increase the performance of the system. The result is shown in Table 6, in addition fig.8.

Table 6. The performance metrics after applying CBAM module for validation and testing dataset on VGG-19 pre-trained
models

Pre-trained VGG-19
model after using Accuracy (%) | Precision ( %) | Recall (%) | F1- Score ( %) Roc-AUC ( %)

CBAM block
validation 99.75 99.75 99.75 99.74 99.99
testing 99.99 100 100 100 100

As demonstrated in Table 6, incorporating the CBAM attention mechanism into the pre-trained VGG-19 architecture enhanced
its capability to extract meaningful features from mammaographic data. During validation, the integrated model attained 99.75%
across accuracy, precision, and recall metrics, with an F1-measure of 99.74% and AUC score of 99.99%. Test set evaluation
yielded exceptional results, achieving perfect scores (100%) for all performance indicators: accuracy, precision, recall, F1-score,
and ROC-AUC. These outcomes confirm that the VGG-19-CBAM combination successfully identifies critical mammographic
characteristics, enabling highly precise breast cancer detection.
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Figure 8. (Train-Validation) accuracy and loss through applying CBAM with VGG-19 pretrained model.
as illustrated in figure 8. In the initial epochs, both the training and validation accuracy curves increase quickly until leveling out
around 1.0 and showing minimal difference from one another. The loss curve demonstrates that, with the validation loss changing
slightly, both training and validation loss decrease off dramatically in the early epochs and thereafter remain close to zero. These
findings indicate the effective generalization capability of the VGG-19 model with CBAM module, which attained minimal loss
and elevated accuracy for both training and validation datasets.

CONCLUSION.

This research presents a sophisticated deep learning approach for mammogram-based breast cancer diagnosis
employing two established convolutional neural networks (VGG-19 and ResNet50), subsequently enhanced through CBAM
integration with the superior performing model. The methodology comprises two distinct stages. The initial phase evaluates
both CNN architectures using an 80% training allocation and 20% for validation and testing combined, identifying the optimal
network. The subsequent phase incorporates CBAM into the selected architecture to refine feature extraction and elevate
classification performance.
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Experimental findings revealed that VGG-19 enhanced with CBAM surpassed both individual CNN implementations
and comparable studies from existing literature. The integrated VGG-19-CBAM configuration attained 99.99% classification
accuracy with perfect precision (100%) on test data, alongside complete AUC coverage (100%). These outcomes emphasize
how attention modules strengthen the network's capability to identify crucial mammographic regions, thereby improving
diagnostic precision.

Additionally, the findings validate that combining pre-trained models with attention modules successfully addresses
difficulties posed by unbalanced classes and intricate mammaographic patterns. CBAM integration enhanced the network’s
responsiveness to essential characteristics while maintaining consistent performance throughout various evaluation metrics
including accuracy, precision, sensitivity, F1-measure, and ROC-AUC scores.

Subsequent research will emphasize model validation using expanded heterogeneous databases like INbreast and CBIS-
DDSM for assessing transferability, implementing interpretability methods (such as Grad-CAM or SHAP) to enable visual
explanations supporting clinical decisions, adapting the framework for multiple category classification encompassing various
breast abnormalities and tissue irregularities, and integrating the system into real-time computer-aided diagnosis platforms to
support radiological early detection practices.
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