j. Egypt.net.med. Assoc 84, no 1. 57 - 76 (2024)

CHARACTERIZATION OF ANTIMICROBIAL RESISTANT ESCHERICHIA COLI ISOLATED FROM MASTITIC COWS AND BUFFALOES

By

Hadeer M. Shokr¹, Sahar R. Mohamed¹, Marouf Sherif ^{2*}

¹Bacteriology department, Animal Health Research Institute, Dokki, Giza, 12618, Egypt; ²Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.

*Corresponding author

ABSTRACT

Mastitis is one of the most costly production diseases in the dairy industry that is caused by a wide array of microorganisms. *E. coli* is a common cause of bovine mastitis even in well-managed herds and therefore, *E. coli* was targeted in this study. Out of 200 milk samples from cows and buffaloes, 76 resulted in isolation of *E. coli* (38%). Of the recovered isolates, 71 were obtained from 160 mastitic cows' milk samples and 5 were from 40 mastitic buffaloes' at Giza governorate of Egypt. *E. coli* isolates were isolated, identified biochemically and confirmed at the molecular level. According to serotyping, the detected *E. coli* serotypes of *E. coli* from cows' milk were O148, O125, O166, O158, O146, O126, O27, O26, O111, O1, O18, O119, O86a, O114, O78, O169, O25, O168, and O157 while serotypes detected from buffaloes' milk were O55, O125, O86a and O124 from buffalo mastitic milk. Antimicrobial susceptibility test was carried out on the isolates using the disk diffusion method to investigate the potential multi drug resistance (MDR) among the isolates. All isolates were resistant to one or more antibiotics. The recovered *E. coli* strains were also screened by polymerase chain reaction to detect certain antibiotic resistance genes (namely; *bla Tem, bla CTX-M, qnr, and Kan genes*) as well as virulence genes (*stx2* And *eae*A).

Kev words:

Mastitis, E. coli, Serotypes, MDR, PCR, Antimicrobial Resistance Genes, Virulence Genes.

INTRODUCTION

Bovine mastitis is one of the most prevalent, expensive, and devastating infectious diseases in the dairy industry, this is attributed to severe drop in milk Production, increased veterinary expenses due to excessive use of medications, increased culling rate and decreased reproductive efficiency in high producing animals (**Dhakal** *et al.*, 2002; **Friedman** *et al.*, 2004; **Singh** *et al.*, 2004). This poses a potential risk to public health if inadequately treated milk is consumed.

E. coli is a major environmental pathogen causing bovine mastitis (Timofte et al., 2014). E. coli causes inflammation of the mammary gland in dairy animals around parturition and during lactation with striking local and sometimes systemic clinical symptoms (El-Khodery et al., 2008; Quesnell et al., 2012). The sources of E. coli infection include bedding materials, soil, manure and other organic matter in the environment of cows (Hogan and Smith, 2003). E.coli is classified into pathogenic and nonpathogenic types. Pathogenic E.coli can be classified into different types based on the pathogenic mechanism and virulence factors into enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), Shiga toxin-producing E. coli (STEC or VTEC), and enterohemorrhagic E. coli (EHEC) (Fitzhenry et al., 2002; Blum and **leitner**, 2013). Shiga-like toxin producing E. coli (STEC) strains play important role in mastitis (Güler et al., 2007; Kobori et al., 2004). E. coli recovered from mastitis cases belonged to different serogroups and varied greatly in O groups and may not be attributed to epizootic strains (Moussa et al., 2006; Amira et al., 2013). The most common E. coli serotypes isolated from mastitic cows and buffaloes produced verotoxin, which is consistent with the hypothesis that verotoxin plays a major role in the pathogenesis of mastitis caused by E.coli. The pathogenicity of mastitis probably results from the production of verotoxin or Shigaliketoxin which efficiency inhibits protein synthesis in mammalian cell free system (Dalia et al., 2007). In dairy animals, mastitis is one of the most important reasons for the frequent and persistent use of antimicrobials. Unfortunately, E.coli strains resistant to almost all antimicrobial agents in bovine mastitis have been increasingly reported (Eisenberger et al. 2018). To successfully control infectious diseases of bovines and to prevent the possible hazard linked with bacterial resistance as well as therapeutic failure, it is essential to evaluate antibiotic resistance of pathogenic bacteria (Authier et al., 2006). The improper and extensive use of antibiotics in veterinary practices is the main cause of the emerging bacterial resistance (Sorum et al., 2001). Therefore, a commensal bacteria that poses antimicrobial resistance determinants constitute a main resource of resistant genes for highly pathogenic bacteria (Moyaert et al., **2006).** The associated resistance is due to the fact that the strains of the bacteria become carriers of the factors of resistance to diverse classes of antimicrobials (Shafiq et al., 2021). The prominent found multidrug resistance (MDR) was in ESBL type include blaCTX-M, blaTEM group b-lactamases found in E. coli causing mastitis (Ali et al., 2017). Several

virulence factors have been detected in pathogenic *E. coli*. These include toxins, adhesins, invasions and capsule production. Only isolates with successful combinations of virulence factors will be capable of causing disease depending on host defense mechanism (**Fernandes** *et al.*, 2011). In addition, various virulence genes that are important for the pathogenicity in *E. coli* from mastitic cows include genes encoding aerobactin, autoagglutinating adhesion proteins, verotoxins, intimin, and hemagglutinin (**Zhang** *et al.* 2018; **Obaidat** *et al.*, 2018; **Tark** *et al.*, 2017; **Tavakoli** *et al.*, 2017; **Zhao** *et al.*, 2018). Hence, understanding of the resistance and virulence factors of *E. coli* isolates will assist in the treatment and management of bovine mastitis. In this study, the key objective was to determine the accurate information about antimicrobial resistance and virulence determinants and the unconditional association of resistance genes and virulence genes in *E. coli* recovered from mastitic animals.

MATERIAL AND METHODS

Collection of the samples:

Two hundred milk samples were collected from mastitic dairy animals (160 cows 40 buffaloes) located in different farms at Giza governorate during the period from December, 2019 till January, 2022). The samples were collected in sterile 50 ml falcon tubes, labeled and transported while cold, to the laboratory (**Quinn** *et al.*, **2002**).

Isolation and identification of *E. coli*:

Upon arrival to the laboratory, milk samples were centrifuged and the sediment were streaked onto the surface of MacConkey's agar plates and incubated aerobically at 37°C for 24 h. Lactose fermenting (Pink colored) colonies were sub-cultured on eosin methylene blue agar (EMB) agar plates. Colonies showing characteristic green metallic sheen on EMB agar were further confirmed biochemically and serologically. Biochemical identification of *E. coli* was based on indole production from tryptaphane, methyl red test, Voges-Proskauer test, citrate utilization test, catales test, sugar fermentation tests, oxidase test, behavior in triple sugar iron agar slopes and urea hydrolysis test (Quinn *et al.*, 2004).

Serotyping of *E. coli* isolates:

Confirmed *E. coli* isolates were serotyped using polyvalent and monovalent *E. coli* antisera sets. This was done in the Serology Unit of at the Animal Health Research Institute (AHRI, Dokki, Giza) according to the method of **Kok** *et al.* (1996).

Briefly, *E. coli* isolates were cultured overnight in Luria-Bertani broth at 37°C. The isolates were serotyped employing the slide agglutination assay using 46"O" antigens (**Schroeder** *et al.*, 2002).

Antimicrobial susceptibility test of *E. coli* serotypes:

E. coli isolates were tested for susceptibility to different antimicrobials using the disc diffusion method (**CLSI**, **2018**). The tested drugs were amoxicillin-clavulanic acid (30μg), ciprofloxacin (5μg), cefotaxime (30μg), ceftazidime (30μg), amikacin (30μg), cefepime (30μg), tobramycin (10μg), imipenem (30μg), meropenem (10μg), norofloxacin (10μg), ampicillin (10μg) and kanamycin (10μg).

Detection of antibiotic resistance genes and virulence genes in *E. coli* strains by multiplex PCR:

DNA extraction:

Bacterial DNA was extracted using the QIAamp DNA Mini kit (Qiagen, Germany, GmbH) following the manufacturer instructions. Briefly, 200 μ l of the bacterial broth suspension was incubated with 10 μ l of proteinase K and 200 μ l of lysis buffer at 56°C for 10 min. After incubation, 200 μ l of 100% ethanol was added to the lysate. The sample was washed and centrifuged following the manufacturer's recommendations. Nucleic acid was eluted with 100 μ l of elution buffer provided in the kit.

PCR amplification:

Primers were obtained from Metabion International AG (Germany). Primers' information are listed in (Table 1). Amplifications were performed in 25-µl reaction volumes containing 12.5 µl of Emerald Amp Max PCR Master Mix (Takara, Japan), 1 µl of each primer of 20-picomole concentration, 4.5 µl of water, and 6 µl of DNA template. The reaction was performed in an Applied biosystem 2720 thermal cycler. The products of PCR were separated by electrophoresis on 1.5% agarose gel (Applichem, Germany, GmbH) in 1x TBE buffer at room temperature using electric gradients of 5V/cm. For gel analysis, 15 µl of the products was

loaded in each gel slot. A gelpilot 100 bp ladder (Qiagen, gm bh, Germany) and gene ruler 100 bp ladder (Fermentas, Germany) were used to determine the fragment sizes. The gel was photographed by a gel documentation system (Alpha Innotech, Biometra) and the data was analyzed through computer software.

Table (1): Oligonucleotide primers information.

Gene	Primer sequence	Length of	Reference
	(5'-3')	amplified	
		product	
QnrA	ATTTCTCACGCCAGGATTTG	516 bp	Robicsek et al., 2006
	GATCGGCAAAGGTTAGGTCA		
Kan	GTGTTTATGGCTCTCTTGGTC	621 bp	Frana et al., 2001
	CCGTGTCGTTCTGTCCACTCC		
BlaTEM	ATCAGCAATAAACCAGC	516 bp	Colom et al., 2003
	CCCCGAAGAACGTTTTC		
Stx2	CCATGACAACGGACAGCAGTT	779 bp	Dipineto et al., 2006
	CCTGTCAACTGAGCAGCACTTTG		
EaeA	ATGCTTAGTGCTGGTTTAGG	248 bp	Bisi-Johnson et al., 2011
	GCCTTCATCATTTCGCTTTC		
BlaCTX-M	ATGTGCAGYACCAGTAARGTKATG GC	593 bp	Archambault et al., 2006
	TGGGTRAARTARGTSACCAGAAYCAGCGG		

RESULTS

E. coli colonies were pink on MacConkey's agar and green metallic sheen on EMB agar. Microscopically, the bacterial cells were Gram -ve rods. Biochemically, all *E. coli* isolates were lactose fermenters, indole and methyl red, and catalase positive. Meanwhile, they were negative for oxidase, urea hydrolysis, citrate utilization and Voges- Proskauer tests and did not produce H2S in TSI slopes butt.

j. Egypt wet med. Assac 84, no 1, 57 - 76 (2024)

E. coli incidence in milk samples of mastitic animals:

As depicted in (Table 2) the overall incidence of *E. coli* in milk samples of dairy cows and buffaloes was 38% (76 of 200). Concerning incidences in milk samples of cows and buffaloes, they were 44.4% in cows' samples (71 of 160 samples) and 12.5% in buffaloes' samples (5 of 40).

Table (2): Incidence of *E. coli* in mastitis milk samples.

Animal	Number of milk samples	E. coli containing samples
Cows	160	71 (44.4%)
Buffaloes	40	5 (12.5%)
Total milk samples	200	76 (38%)

Serotypes of *E. coli* isolates recovered from milk samples:

Of the *E. coli* isolates recovered in this study, 42 different serotypes were identified. Of the isolates recovered from cows' samples the serotypes O148, O125, O166, O158, O146, O126, O27, O26, O111, O1, O18, O119, O86a, O114, O78, O169, O25, O168, O157 were identified. On the other hand, serotypes identified among buffaloes-originated isolates were O55, O125, O86a and O124 (Table 3).

Antimicrobial susceptibility of *E. coli* serotypes:

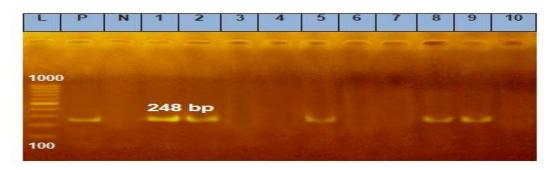
Using the disk diffusion method, all tested *E. coli* isolates were resistant to one or more of antibacterial therapeutics (**CLSI**, **2018**). (Table 4) illustrates the results of the assay using 12 different antibacterial agents.

Table (3): Serotypes of E. coli isolates recovered from cows and buffaloes' milk samples.

E. coli Positive	Serotype	Number of	% (out the isolates)		
samples		isolates			
	O148	5	11,9		
	O125	6	14.3		
	O166	1	2.4		
	O158	3	7,1		
	O146	1	2.4		
	O126	3	7.1		
	O27	3	7.1		
	O26	2	4.8		
	0111	1	2.3		
	01	1	2.4		
	O18	1	2.4		
	O119	2	4.8		
Cow's milk (42)	O55	3	7.1		
	O86a	1	2.4		
	O114	1	2.4		
	O78	1	2.4		
	O169	1	2.4		
	O25	2	4.8		
	O168	1	2.4		
	O157	1	2.4		
	Untypable	2	4.8		
	0125	1	20		
	055	1	20		
Buffaloes' milk (5)	086a	2	40		
	0124	1	20		

Table (4): Antimicrobial susceptibility test results of *E. coli* strains identified in this study against 12 different agents R: resistantS: susceptible I: intermediate susceptible.

Serotype	NOR	AK	AMP	TOB	AMC	IBM	OFX	FEB	CAZ	MRP	K	CTX
	10mg	30mg	10mg	10mg	30mg	10mg	10mg	30mg	30mg	10mg	30mg	30mg
O25	R	S	R	S	R	S	S	R	R	S	R	R
O157	R	\mathbf{S}	R	\mathbf{S}	R	S	R	Ι	R	\mathbf{S}	R	R
O169	R	\mathbf{S}	R	\mathbf{S}	R	S	\mathbf{S}	R	Ι	\mathbf{S}	\mathbf{S}	R
O158	R	\mathbf{S}	R	\mathbf{S}	R	S	R	I	Ι	\mathbf{S}	R	I
O168	R	\mathbf{S}	R	R	R	S	R	R	R	\mathbf{S}	\mathbf{S}	R
O25	R	\mathbf{S}	R	`S	R	S	R	R	R	\mathbf{S}	R	R
O55	R	\mathbf{S}	R	\mathbf{S}	R	S	R	R	R	\mathbf{S}	R	R
O78	R	\mathbf{S}	R	\mathbf{S}	R	S	R	R	R	\mathbf{S}	R	R
O114	\mathbf{S}	R	R	Ι	R	S	R	Ι	Ι	Ι	\mathbf{S}	I
O124	\mathbf{S}	Ι	R	R	R	S	Ι	R	R	\mathbf{S}	\mathbf{S}	R
0111	\mathbf{S}	\mathbf{S}	R	\mathbf{S}	R	S	\mathbf{S}	R	R	\mathbf{S}	\mathbf{S}	R
O26	Ι	\mathbf{S}	I	\mathbf{S}	R	S	\mathbf{S}	\mathbf{S}	Ι	\mathbf{S}	\mathbf{S}	R
O26*	Ι	\mathbf{S}	I	\mathbf{S}	R	S	Ι	R	R	\mathbf{S}	\mathbf{S}	R
01	\mathbf{S}	\mathbf{S}	\mathbf{S}	R	R	I	Ι	R	R	\mathbf{S}	Ι	R
O18	Ι	\mathbf{S}	I	R	R	I	Ι	R	R	\mathbf{S}	\mathbf{S}	R
O68	\mathbf{S}	R	\mathbf{S}	R	R	S	Ι	R	R	\mathbf{S}	I	R
O27	R	\mathbf{S}	R	\mathbf{S}	R	\mathbf{S}	R	Ι	R	\mathbf{S}	\mathbf{S}	I
O125	R	R	R	R	R	S	R	R	R	R	I	R
Total	55%	17%	72%	33%	100%	0%	50%	72%	78%	5%	33%	83%


Multiplex PCR amplification on DNA of *E. coli* serotypes to detect antimicrobial resistance and virulence genes:

PCR amplification of DNA extracted from different serotypes of *E. coli* recovered in this study resulted in the detection of intimin (*eae*A) gene in O55, O124, O157, O158 and O25 serotypes while the *stx*2 gene was not detected in any of them.

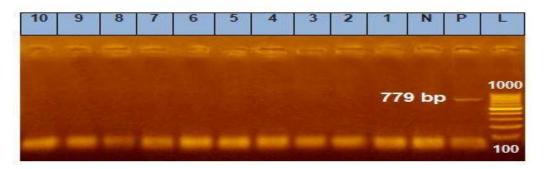
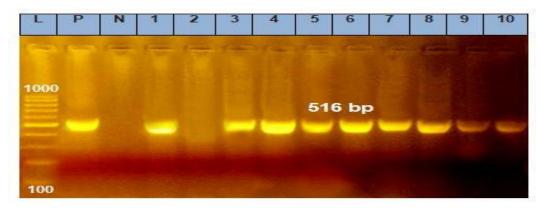
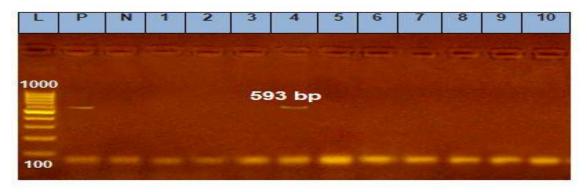
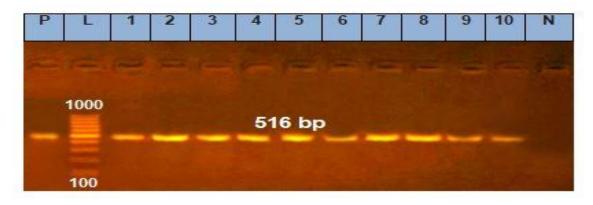

The antibiotic resistance gene *Bla*TEM was detected in the O55, O86a, O125, O157, O111, O26, O158, O25 and O168 serotypes. The *Bla*CTX-M gene was detected in the serotype O125 and the *qn*rA gene was detected in the serotypes O55, O124, O86a, O125, O157, O111, O26, O158, O25 and O168 while the *Kan* gene was not detected in any of the tested serotypes (Table 5) and Fig. (1, 2, 3, 4, 5 and 6).

Table (5): PCR amplifications of six virulence and antibiotic resistance genes in ten *E. coli* serogroups.


E. coli serogroups	The targeted gene							
	eaeA	Stx2	blaTEM	BlaCTX-M	qnrA	Kan		
O55	+	-	+	-	+	-		
O124	+	-	_	-	+	-		
O86a	-	-	+	-	+	-		
O125	-	-	+	+	+	-		
O157	+	-	+	-	+	-		
0111	-	-	+	-	+	-		
O26	-	-	+	-	+	-		
O158	+	-	+	-	+	-		
O25	+	-	+	-	+	-		
O168	-	-	+	_	+	-		


Fig. (1): Results of PCR for amplification of *eaeA* gene of *E. coli* serogroups. The positive result is indicated by a product of 248 pb.


Fig. (2): Results of PCR for amplification of *stx2* gene of *E. coli* serogroups. The positive result is indicated by a product of 779 bp.

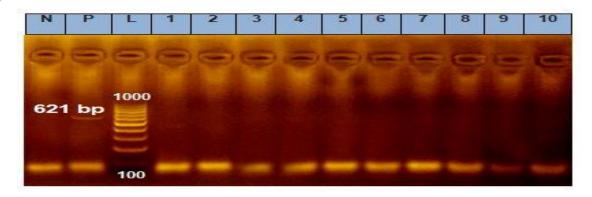

Fig. (3): Results of PCR for amplification of *bla TEM* gene of *E. coli* serogroups. The positive result is indicated by a product of 516 bp.

Fig. (4): Results of PCR for amplification of *bla CTX-M* gene of *E. coli* serogroups. The positive result is indicated by a product of 593 bp.

Fig. (5): Results of PCR for amplification of *qnrA* gene of *E. coli* serogroups. The positive result is indicated by a product of 516 bp.

Fig. (6): Results of PCR for amplification of *Kan* gene of *E. coli* serogroups. A product of 621 bp indicates the positive result.

DISCUSSION

Mastitis in lactating cows remains a serious problem and the environmental pathogens are flourishing in some governorates of Egypt through the practice of teat dipping (Hamouda et al., 2014; Günther et al., 2016; Allam et al., 2017; Hakim et al., 2017). The pathogenic E. coli induces 90% of these infections (Wang et al., 2008). In Egypt, coliform is a major inducer of E. coli mastitis which is the most important coliform microorganism that has received more attention due to its high incidence relatively to other mastitis pathogens (Abdel-**Fattah** et al., 2008). The present study recorded that total incidence rate of E. coli from mastitic buffaloes and cows was 38% (76 out of 200 milk samples). The incidence was 44.4% among cow samples and 12.5% in buffaloes. These results are consistent to some extend with that obtained by Elias et al. (1991) and Lamey et al. (2013). A higher incidence (90%) was obtained by Allam et al. (2018) and Shafiq et al. (2021) while a lower incidence (13.3%) was reported by others (Elbably et al., 2013; Lan et al., 2020; Ahmed et al., 2021). Of the 76 E. coli isolates recovered in this study, 47 serogroups were detected (42 of cow samples and 5 of buffalo samples). The identified serogroups among cows' isolates are O148 (12%), O125 (14.3%), O166(2.4%), O158(7.1), O146(2.4%), O126(7.1%), O27(7.1%), O26(4.8%), O111(2.4%), O1 (2.4%), O18 (2.4%), O119 (4.8%), O119 (7.1%), O86a (2.4%), O114 (2.4%), O78 (2.4%), O169 (2.4%), O25 (4.8%), O168 (2.4%), O157 (2.4%) and Untyped (4.8%). Serogroups identified amon buffaloes' isolates are O125 (20%), O55 (20%), O86a (40%) and 0124 (20%). Our recorded seropgroups match those reported by Moussa et al. (2006), Wenz

j. Egypt net med. Assac 84, no 1, 57 - 76 (2024)

et al. (2006), El-Mahrouki et al. (2006), Fernandes et al. (2011) and Amira et al. (2013). They recorded that E. coli strains recovered from mastitis cases belonged to different serogroups, varied greatly in O groups, and could not be considered epizootic strains. In addition, nearly similar results were obtained by Allam et al. (2018) and Gamal et al. (2018). Most of the O serogroups have not been detected in cows. Approximately 77.4% of E. coli isolates belonged to four different O serogroups (O26, O86, O111, and O127) in Egypt (Osman et al., 2012). This indicates that E. coli mastitis is not caused by a limited number of specific pathogenic strains, but seems to be associated with environmental fecal contamination and multifactorial (Rangel and Marin, 2009). Antimicrobial resistance in Gram-negative bacteria is rising globally, especially for E. coli. More troubling are the increasing reports of MDR pathogenic E. coli from food-producing animals, raising worries about animals and public health (Seiffert et al. 2013). Antimicrobials are commonly used in the control and/or prevention of mastitis. Unfortunately, the misuse of antimicrobials contributes to the emergence of bacterial strains with antimicrobial resistance (Metzger et al., 2013). In this study, a high percentage of strains were resistant to amoxicillin-clavulanic acid (100%), followed by cefotaxime (84%), ceftazidime (78%), ampicillin and cefepime (72%), Ciprofloxacin (50%), norofloxacin (55.5%), kanamycin and tobramycin (33%), meropenem (5%), imipenem (0%) as shown in (Table 4). The resistance rate towards ampicillin was higher in our study than that reported by **Zhang et al.** (2018) and Lan et al. (2020) where the rates were 25.3% and 41.3%, respectively. In contrast, Shafiq et al., (2021) found higher rates of E. coli resistance against cefotaxime (96%), cefepime (94.76%), ampicillin (93.84%) and ceftazidime (98.15%). Nüesch-Inderbinen et al. (2019) recorded resistance rates of E. coli against ampicillin (22 %), kanamycin (3.7 %) and amoxicillin-clavulanic acid (2.4 %). Barbour et al. (2015) reported that the resistance rates of E. coli isolates to 9 antimicrobials as follows: amoxicillin-clavulanic acid (100%), ceftazidime (100%), norfloxacin (100%), cefotaxime (97%), tobramycin (88%), kanamycin (77%), ciprofloxacin (65%), amikacin (65%) and Cefepime (53%). Broad-spectrum antibiotics, especially aminoglycosides, beta-lactams and quinolones are frequently used in the clinical treatment of mastitis. The continuous use of antibiotics may cause MDR in dairy herds. Therefore, it is important to control antibiotic use to prevent the risk of MDR (Chajecka et al., **2016**; Zurfluh et al., 2014). PCR based methods, as multiplex PCR is very useful as it allows

the simultaneous detection of several specific genes of each bacterial strain targeted (Touron et al., 2005). In the current study, PCR analysis of some E. coli serogroups using eaeA, stx2 primers demonstrated the presence of eaeA gene in five out of ten examined E. coli strains (50%) representing the serogroups O55, O124, O157, O158 and O25. These results are nearly similar with the reports of other authors (Clements et al., 2003; Moussa et al., 2006; Lamey et al., 2013) who detected eaeA gene in three out of five examined E. coli strains. In other investigations, a lower incidence of eaeA genes was reported only in 1% of 100 E. coli strains (Bean et al., 2004; Wenz et al., 2006; Güler et al., 2007). In the present study, the stx2 gene was not detected in any of the examined strains. Similar findings were reported by Murinda et al. (2004), Solomakos et al. (2009) and Lan et al. (2020). Meanwhile, other authors, detected the stx2 gene in some E. coli strains isolated from cases of mastitis (Cursons et al., 2005; Kobori et al., 2004; Sabry et al., 2006; Sayed et al., 2014). The detection of eae gene in some E. coli strains in this study suggested that adhesion of E. coli to mammary epithelial cells have a role in pathogenesis of mastitis. The eae gene has been considered an enteropathogenic E. coli (EPEC) marker implicated in developing countries as the cause of infantile diarrhea (Nataro et al., 1998). It was suggested that strains of E. coli recovered from mastitis cases in dairy cows adhere selectively to part of the cells (Gaastra et al., 2001; Dogan et al., 2006). In our study, further genotypic characterization was carried out to detect the major ESBL-encoding genes (blaTEM, blaCTX-M and Kan genes) and quinolone resistance genes (qnrA). The qnr gene was the most prevalent (100%) followed by blaTEM, blaCTX-M and Kan genes that were detected in 90%, 10%, and 0% in the examined E. coli strains, respectly. On the other hand, **Shafiq** et al. (2021) reported multi-drug resistance in more than 85% of ESBL-producing E. coli isolates with the dominance of the blaCTX-M gene, followed by the blaTEM gene. Memon et al. (2016) reported the presence of blaCTX-M and qnr genes in 48% of E. coli isolates from mastitis. In addition, Ahmed et al. (2021) recorded the predominance of one or two types of ESBL(blaCTX-M and blaTEM) genes in mastitic E. coli isolates recovered from mastitic animals while the quinolone resistance gene (qnrA) was present in only a few isolates. Effendi et al. (2019) and Ahmed et al. (2021) mentioned that kanamycin resistance in *E. coli* can be connected with the presence of Kan gene.

j. Egypt. aet.med. Assac 84, no 1, 57 - 76 (2024)

CONCLUSION

E. coli strains recovered from milk samples of mastitic cows and buffaloes were highly resistance to most of the tested agents. Moreover, important resistance and virulence genes were detected. This is alarming and could be the main reason for the clinical mastitis treatment failure. More studies are necessary to appraise the role of *E. coli* in bovine mastitis infection to develop proper approach for treatment and control of coliform mastitis.

REFERENCES

- **Abdel-FattahAA**, **AminAS**, **HamoudaRH**. (2008): Detection of *E.coli* O157:H7in bovine milk and fecal samples by the polymerase chain reaction assay. Journal of Egyptian Medical Association, 68 (3):83-9.
- Ahmed, W., Neubauer, H., Tomaso, H., El Hofy, F. I., Monecke, S., Abd El-Tawab, A. A., and Hotzel, H. (2021): Characterization of Enterococci-and ESBL-producing Escherichia coli isolated from milk of bovides with mastitis in Egypt. *Pathogens*, 10 (2), 97.
- Allam, N. A., Abdel-Hamid, M. S., and Abdel-Azeim, H. (2018): Pathogenic *E. coli* Virulence Traits Regarding Quantitative Cytokine Expression in Subclinical Mastitic Cows. *International Journal of Pharmaceutical and Phytopharmacological Research (eIJPPR)*, 8 (2), 45-58.
- **Allam NAT, Sedky D, Mira EK. (2017):** The clinical impact of antimicrobial resistance on she-camels recurrent mastitis with regards to geno typied ivergent Bacillus licheni formis field isolates. Veterinary World, 10 (11):1353-1360.
- Ali, T., Rahman, S.U., Zhang, L., Shahid, M., Han, D., GAO, J., Zhang, S., Ruegg, P.L. (2017): Characteristics and genetic diversity of multi-drug resistant extended spectrum beta-lactamase (ESBL)-producing Escherichia coli isolated from bovine mastitis. Oncotarget 8, 90144-9016.
- Amira, El-Sayed Lamey; Ammar, A. M.; Zaki, E. R.; Norhan, K.; Badea S. M. and Refai, M. K. (2013): Virulence factors of *Escherichia coli* isolated from recurrent cases of clinical and subclinical mastitis in buffaloes. International J. of Microbiological Research, 4 (1): 86-94.
- Archambault, M.; Petrov, P.; Hendriksen, R.S.; Asseva, G.; Bangtrakulnonth, A.; Hasman, H.; Aarestrup, F.M. (2006): Molecular characterization and occurrence of extended-spectrum beta-lactamase resistance genes among *Salmonella* enterica serovar Corvallis from Thailand, Bulgaria, and Denmark. Microb Drug Resist. Fall; 12 (3):192-8.

- Authier, S., Paquette, D., Labrecque, O. and Messier, S. (2006): Comparison of susceptibility to antimicrobials of bacteria isolates from companion animals in a veterinary diagnostic laboratory in Canada between 2 time points 10 years apart. *Canadian Veterinary Journal*, 47, 774-778.
- Barbour, E. K., Kassabian, T. J., Shaib, H., Kassaify, Z., Iyer, A., Azhar, E., and Kumosani, T. (2015): The Significance of Escherichia coli-induced Mastitis in Cows Associated with the Presence of Virulence Genes and Wide Range-resistance to Twenty Antimicrobials. International Journal of Applied Research in Veterinary Medicine, 13 (1).
- **Bean, A., Williamson, J., and Cursons, R. T. (2004):** Virulence genes of Escherichia coli strains isolated from mastitic milk. *Journal of Veterinary Medicine, Series B*, 51(6), 285-287.
- **Bisi-Johnson, M.A.; Obi, C.L.; Vasaikar, S.D.; Baba, K.A. and Hattori, T. (2011):** Molecular basis of virulence in clinical isolates of Escherichia coli and *Salmonella* species from a tertiary hospital in the Eastern Cape, South Africa. Gut Pathogens 2011, 3:9.
- **Blum, S. E., and Leitner, G. (2013):** Genotyping and virulence factors assessment of bovine mastitis Escherichia coli. Veterinary Microbiology, 163, 305-312.
- Chajęcka-Wierzchowska, W., Zadernowska, A., and Łaniewska-Trokenheim, Ł. (2016): Virulence factors, antimicrobial resistance and biofilm formation in Enterococcus spp. isolated from retail shrimps. LWT Food Science and Technology, 69, 117–122.
- Clements, A.C., D.J. Taylor and J.L. Fitzpatrick (2003): Evaluation of diagnostic procedures for subclinical mastitis in meat-producing sheep. Journal of Dairy Research, 70 (2): 139-148.
- Colom K, Pèrez J, Alonso R, Fernández-Aranguiz A, Lariňo E, Cisterna R. (2003): Simple and reliable multiplex PCR assay for detection of bla_{TEM} , bla_{SHV} and $bla_{\text{OXA-1}}$ genes in Enterobacteriaceae. FEMS Microbiology Letters 223 (2003) 147-151.
- Cursons, R.T., J. Williamson and A. Bean (2005): Shiga toxin genes from *Escherichia coli* strains isolated from mastitis milk. 4th International Dairy Federation (IDF), International Mastitis Conference, 12-15, June, Maastricht. Wageningen Academic Publishers, Wageningen, the Netherlands, pp: 671-676.
- **Dalia, M. Mohsen and Amany, N. Dapgh (2007):** Detection of gene sequence of *E. coli* toxins isolated from mastitic buffalo and cow's milk. Vet. Med. J. Giza, 55(2): 451-467.
- **Dhakal, I.P. and B.B. Thapa (2002):** Economic impact of clinical mastitis in the buffaloes in Nepal. Buffalo Journal, 2: 225-243.

- Dipineto, L.; Santaniello, A.; Fontanella, M.; Lagos, K.; Fioretti, A. and Menna, L.F. (2006):

 Presence of Shiga toxin-producing Escherichia coli O157:H7 in living layer hens. Letters in Applied Microbiology 43 (2006) 293-295.
- **Dogan, B., S. Klaessig, M. Rishniw, R.A. Almedia S.P. Oliver, K. Simpson and. Y.H. Schukken** (2006): Adherent and invasive *Escherichia coli* are associated with persistent bovine mastitis. Veterinary Microbiology, 116 (4): 270-282.
- Effendi, M.H.; Harijani, N.; Budiarto, N.; Triningtya, N.P.; Tyasningsih, W.; Plumeriastuti, H. (2019): Prevalence of pathogenic Escherichia coli isolated from subclinical mastitis in East Java Province, Indonesia. Indian Vet. J. 96, 22-25.
- Eisenberger, D., Carl, A., Balsliemke, J., Kampf, P., Nickel, S., Schulze, G. and Valenza, G. (2018): Molecular characterization of extended-spectrum beta-lactamaseproducing Escherichia coli isolates from milk samples of dairy cows with mastitis in Bavaria, Germany. Microb Drug Resist 24, 505-510.
- **Elbably, M.A.; Emeash, H.H.; Asmaa, N.M. (2013):** Risk factors associated with mastitis occurrence in dairy herds in Benisuef, Egypt. World's Vet. J. 3, 05-10.
- **El-Khodery, S.A. and S.A. Osman (2008):** Acute coliform mastitis in buffaloes (Bubalus bubalis): Clinical findings and treatment outcomes. Tropical Animal Health and Production, 40(2):93-99.
- Elias, S.S. and E.M. Riad (1991): Studies on subclinical mastitis in a commercial dairy herd in western nubaria. J. Egypt Vet. Med. Ass, 51: 261-273.
- **El-Mahrouki, A. M.; Nevine, M. Sobhy and Aggour, M. G. (2006):** Detection of coliform mastitis in cattle with special reference to molecular characterization of enterotoxigenic *E. coli* using polymerase chain reaction (PCR). J. Egypt. Vet. Med. Ass., 66 (1): 47-58.
- Fernandes, JB. C.; Zanardo, L. G.; Galvão, N.N.; Carvalho, I. A.; Nero, L. A. and Moreira, M.A. S. (2011): *Escherichia coli* from clinical mastitis: serotypes and virulence factors. J. of Vet. Diagnostic Investigation, 23 (6) 1146–1152.
- Fitzhenry, R. J., Pickard, D. J., Hartland, E. L., Reece, S., Dougan, G., Phillips, A. D., and Frankel, G. (2002): Intimin type influences the site of human intestinal mucosal colonisation by enterohaemorrhagic Escherichia coli O157:H7. Gut, 50, 180-185.
- **Friedman, E.S. and E. Ezra (2004):** Economical losses from clinical mastitis in 4 dairy herds in Israel. Israel Veterinary Medical Journal, 59: 1-2.

- **Gaastra** (2001): Studies about the mechanism of internalization by mammary epithelial cells of *Escherichia coli* isolated from persistent bovine mastitis. Veterinary Microbiology, 80 (3): 285-296.
- **Gamal, Y., Amal, A., and Reem, G. (2018):** Prevalence and virulence determinants of Escherichia coli isolated from raw cow's milk. African Journal of Microbiology Research, 12 (9), 225-229.
- Güler, L., and Gündüz, K. (2007): Virulence properties of Escherichia coli isolated from clinical bovine mastitis. *Turkish Journal of Veterinary and Animal Sciences*, 31(5), 361-365.
- Günther J, Koy M, Berthold A, and Schuberth HJ, Seyfert HM. (2016): Comparison of the pathogen species-specific immune response in udder derived cell types and their models. Veterinary Research, 47: 1-11.
- Hakim AS, Allam NAT, SyameSM, Sedky D, Hedia RH, Elshafaie MA.(2017): Selective pressure of resistance determinants and virulence genes on agr locus expression during Staphylococcus aureus infections in some farm animals in Egypt. Asian Journal of Epidemiology, 10 (2): 89-100.
- **Hamouda, RH, Allam HA, Allam NAT. (2014):** Molecular Identification of Bovine Recurrent Mastitis Status with regards to Arcanobacerium pyogenes (Trueperella pyogenes). Journal of Egyptian Veterinary Medical Association, 74 (4): 739-754.
- Hogan, J. S and Smith, K. L. (2003): Coliform mastitis. Vet. Res., 34:507-519.
- Kobori, D., Rigobelo, E. C., Macedo, C., Marin, J. M., and Avila, F. A. (2004): Virulence properties of Shiga toxin-producing Escherichia coli isolated from cases of bovine Mastitis in Brazil = Propiedades de virulencia de la Escherichia coli productora de toxina Shiga aislada de vacas de leche con mastitis en Brasil = Caractéristiques de la virulence d'Escherichia coli, productrice 420 T. LAN ET AL. de la toxine type Shiga, isolée à partir de cas de mammite bovine au Brésil. Revue d'Elevage et de Medecine Veterinaire des pays Tropicaux, 57(1-2), 15–20.
- **Kok, T.; Worswich, D. and Gowans, E. (1996):** Some serological techniques for microbial and viral infections. In Practical Medical Microbiology (Collee, J.; Fraser, A.; Marmion, B. and Simmons, A., eds.), 14th ed., Edinburgh, Churchill Livingstone, UK.
- Lamey, A. E., Ammar, A. M., Zaki, E. R., Khairy, N., Moshref, B. S., and Refai, M. K. (2013): Virulence factors of Escherichia coli isolated from recurrent cases of clinical and subclinical mastitis in buffaloes. *Int. J. Microbiol. Res*, 4 (1), 86-94.

- LAN, T., Liu, H., Meng, L., Xing, M., Dong, L., GU, M. and Zheng, N. (2020): Antimicrobial susceptibility, phylotypes, and virulence genes of Escherichia coli from clinical bovine mastitis in five provinces of China. *Food and Agricultural Immunology*, 31(1), 406-423.
- Memon, J., Kashif, J., Hussain, N., Yaqoob, M., Ali, A., Buriro, R. and Hongjie, F. (2016): Serotypes, Genotypes, Virulence Factors and Antimicrobial Resistance Genes of Escherichia coli Isolated in Bovine Clinical Mastitis from Eastern China. *Pakistan Veterinary Journal*, *36* (4).
- **Metzger, S. A., and Hogan, J. S. (2013):** Short communication: Antimicrobial susceptibility and frequency of resistance genes in Escherichia coli isolated from bovine mastitis. Journal of Dairy Science, 96, 3044 3049.
- **Moussa, I. M.; Mostafa, M. and Mohamed, F. (2006):** Determination of phylogenetic relationships among *E. coli* isolates recovered from bovine fecal and milk samples. J. Egypt. Vet. Med. Ass., 66: 7-25.
- Moyaert, H., De Graef, E.M., Haesebrouck, F. and Decostere, A. (2006): Acquired antimicrobial resistance in the intestinal microbiota of diverse cat populations. *Research in Veterinary Science*, 81, 1-7.
- Murinda, S.E., L.T. Nquyen, T.L. Landers, F.A. Draughon, A.G. Mathew, J.S. Hogan, K.L. Smith, D.D. Hancock and S.P. Oliver (2004): Comparison of *Escherichia coli* isolates from humans, food and farm and companion animals for presence of Shiga toxin-producing *E. coli* virulence markers. Foodborne Pathogens and Disease, 1 (3): 178-184.
- Nataro J. P. and Kaper J. B. (1998): Diarrhea genic Escherichia coli. Clin. Microbiol. Rev. 11:142-201.
- Nüesch-Inderbinen, M., Käppeli, N., Morach, M., Eicher, C., Corti, S., and Stephan, R. (2019): Molecular types, virulence profiles and antimicrobial resistance of Escherichia coli causing bovine mastitis. *Veterinary record open*, 6 (1), e000369.
- **Obaidat, M. M., Bani Salman, A. E., Davis, M. A., and Roess, A. A. (2018):** Major diseases, extensive misuse, and high antimicrobial resistance of Escherichia coli in large- and small-scale dairy cattle farms in Jordan. Journal of Dairy Science, 101, 2324–2334.
- Osman KM, Mustafta KM, Aly AK AbdElhamed GS. (2012): Serotypes, virulence genes, and intimin types of Shiga toxin-producing *Escherichia coli* and enteropathogenic *Escherichia coli* isolated from mastitic milk relevant to human health in Egypt. Vector Borne Zoonotic Dis. 12 (4):297-305.

- Quesnell, R. R.; Klaessig, S.; Watts, J. L. and Schukken, Y. H. (2012): Bovine intramammary *Escherichia coli* challenge infections in late gestation demonstrate a dominant anti-inflammatory immunological response. J. Dairy Sci., 95 (1):117-126.
- Quinn J, Carter M E, Markey B, Carter GR. (2004): Clinical veterinary microbiology. 6th ed., Mosby, Edinburgh, London, New York, Philadelphia, St. Louis, Sydney, Toronto.
- Quinn, P. J., Markey, B. K., Carter, M. E., Donnelly, W. J. C. and Leonard, F. C. (2002): Veterinary microbiology and microbial diseases.1st Iowa State University Press Blackwell Science.
- **Sabry, H., A. Deutz and M.A. Masalmeh** (2006): Virulence factors, O-serogroups and antibiotic resistance of *E. coli* isolates from cases of bovine mastitis in Austria. Vet. Med. Austria. 93: 136-144.
- **Sayed, S. M.** (2014): A contribution on Coliforms causing mastitis in cows with reference to serotypes and virulence factors of *E. coli* isolates. *Assiut Univ Bull Environ Res*, 17, 85-95.
- Schroeder C, Zhao C, Roy CD, and Torcolini J, Zhao S. (2002): Anti-microbial resistance of *escherichia coli* O157 isolated from humans, cattle, swine, and food. Appl Environ Microbiol, 68: 576-581.
- Shafiq, M., Huang, J., Shah, J. M., Wang, X., Rahman, S. U., Ali, I. ... and Wang, L. (2021): Characterization and virulence factors distribution of bla CTX-M and mcr-1 carrying Escherichia coli isolates from bovine mastitis. *Journal of Applied Microbiology*, 131(2), 634-646.
- Seiffert, S.N., Hilty, M., Perreten, V. and Endimiani, A. (2013): Extended-spectrum cephalosporinresistant Gram-negative organisms in livestock: an emerging problem for human health Drug Resistance156: 222-230.
- **Singh, R.S. and B.K. Bansal (2004):** Variation in selected components of milk among different milk fractions and relevance to diagnosis of mastitis in buffaloes. Buffalo Journal, 3: 213-224.
- Solomakos N, Govaris A, Angelidis AS, Pournaras S, Burriel, AR, and Kritas SK, Papageorgiou DK. (2009): Occurrence, virulence genes and antibiotic resistance of Escherichia coli O157 isolated from raw bovine, caprine and ovine milk in Greece. *Food Microbiol.*; 26:865 871.
- **Sorum, H. and Sunde, M. (2001):** Resistance to antibiotics in the normal flora of animals. *Veterinary Research*, 32, 227–241.

- Tark, D. S., Moon, D. C., Kang, H. Y., Kim, S. R., Nam, H. M., Lee, H. S., Lim, S.-K. (2017): Antimicrobial susceptibility and characterization of extended-spectrum beta-lactamases in Escherichia coli isolated from bovine mastitic milk in South Korea from 2012 to 2015. Journal of Dairy Science, 100, 3463-3469.
- **Tavakoli, M., and Pourtaghi, H. (2017):** Molecular detection of virulence genes and multi-drug resistance patterns in Escherichia coli (STEC) in clinical bovine mastitis: Alborz province, Iran. Iranian Journal of Veterinary Research, 18, 208–211.
- Timofte, D., Maciuca, I.E., Evans, N.J., Williams, H., Wattret, A., Fick, J.C. and Williams, N.J. (2014): Detection and molecular characterization of Escherichia coli CTX-M-15 and Klebsiella pneumoniae SHV-12 beta-lactamases from bovine mastitis isolates in the United Kingdom. Antimicrob Agents Chemother 58, 789 -794.
- **Touron, A., Berthe, T., Pawlak, B. and Petit, F. (2005):** Detection of *Salmonella* in environmental water and sediment by a nested-multiplex polymerase chain reaction assay. Res, Microbiol, 156:541–53.
- Wang G-Q, Wu C-M, Du X-D, Shen Z-Q, SongL-H, XiaChen X, Shen J-Z. (2008): Characterization of integrons-mediated antimicrobial resistance among Escherichia 55 coli strains isolated from bovine mastitis. Veterinary Microbiology, 127:73 -78.
- Wenz, J. R., Barrington, G. M., Garry, F. B., Ellis, R. P., and Magnuson, R. J. (2006): Escherichia coli isolates' serotypes, genotypes, and virulence genes and clinical coliform mastitis severity. *Journal of dairy science*, 89 (9), 3408-3412.
- Zhao, Q. Y., Yuan, F. W., Liang, T., Liang, X. C., Luo, Y. R., Jiang, M. Zhang, W. M. (2018): Baicalin inhibits Escherichia coli isolates in bovine mastitic milk and reduces antimicrobial resistance. Journal of Dairy Science, 101, 2415-2422.
- Zhang, D., Zhang, Z., Huang, C., GAO, X., Wang, Z., Liu, Y. Liu, M. (2018): The phylogenetic group, antimicrobial susceptibility, and virulence genes of Escherichia coli from clinical bovine mastitis. Journal of Dairy Science, 101, 572–58.
- Zurfluh, K., Abgottspon, H., Hächler, H., Nüeschinderbinen, M., Stephan, R., and Khan, A. U. (2014): Quinolone resistance mechanisms among extended-spectrum beta-lactamase (ESBL) producing Escherichia coli isolated from rivers and lakes in Switzerland. Plos One, 9, e958652|4.