http://bjas.bu.edu.eg
Applied and Basic science

STI Prevention in Different Cultural Contexts: A Comparative Study of Knowledge and Attitudes in Eswatini and Egypt

Shymaa M.Mahmoud⁽¹⁾, Mpendulo Shongwe⁽¹⁾, Mohanned O.Imam⁽²⁾, Osama M.Imam⁽³⁾

¹medical laboratory sciences Dept., Southern Africa Nazarene University (SANU)

²Medical school of Ivane Javakhishvili Tbilisi State University

³Diagnostic Radiology Dept., Faculty of Medicine, Benha University

E-mail: shimaabdelmotaleb@gmail.com

Abstract

Background: Sexually transmitted infections (STIs) have a significant impact on reproductive and sexual health on a global scale. Every day, over one million sexually transmitted infections are developed. Aim: To compare the attitudes and knowledge related to sexually transmitted infection prevention in two culturally distinct contexts-Eswatini and Egypt and to examine how cultural differences influence these factors. Patients and methods: This comparative research has been performed on 800 cases classified into two groups: 400 patients in Egypt group and 400 cases in Eswatini group. A self-administered questionnaire was applied to assess their knowledge and attitudes towards STI. Results: A statistically significant difference was found between the Egyptian and Eswatini groups regarding participants' attitudes and knowledge about sexually transmitted infections (STIs). Egyptians generally exhibited a more positive, open, and treatment-oriented approach, while participants from Eswatini showed more uncertainty, hesitation, and stigma surrounding STIs. This highlights how cultural context shapes attitudes toward sexual health In contrast. However, no statistically significant difference was observed between the Egyptian and Eswatini groups regarding their views on the importance of STI screening. Conclusions: Cultural differences played a key role in shaping the participants' knowledge and attitudes toward STIs with significant disparities observed in attitudes related to social status, living conditions, and HIV prevention. Additionally, there was a highly statistically significant increase in knowledge about STI transmission and prevention in the Egyptian group compared to the Eswatini group.

Key words: STIs; knowledge; attitudes; STI prevention; cultural differences.

Introduction

Sexually transmitted infections (STIs) have a significant impact on reproductive and sexual health on a global scale. Every day, over one million sexually transmitted infections are developed (1).

Reproductive morbidity is a global problem as a result of sexually transmitted infections. In 2019, the World Health Organization (WHO) predicted that there were 376 million new cases of gonorrhea, syphilis, trichomoniasis and chlamydia, (2).

The female anatomy is a contributing factor to the greater effect of STIs on females than on males. Especially due to the thin, delicate, and easily penetrated vaginal mucosa, the urogenital anatomy of a female is more susceptible to sexually transmitted infections than that of a man (3).

Genital ulcer illness, vaginitis, pelvic inflammatory disease (PID), and infertility are among the numerous symptoms and effects that STIs may cause in various regions of the female reproductive tract (4).

STI rates were greatest between young adults, primarily females aged twenty to twenty-four and males who have sex with males (MSM). Sexually transmitted infections are among the most severe health problems that adolescents and young women encounter, frequently resulting in miscarriage (5).

Viral sexually transmitted infections (STIs) that may be either lifelong (e.g., herpes simplex virus) or long-lasting (e.g., human papillomavirus [HPV]) impact hundreds of millions of individuals globally at any given time (6).

print: ISSN 2356-9751

online: ISSN 2356-976x

Individuals who have STIs are at a higher probability of transmitting HIV to others. STIs elevate HIV acquisition rates between individuals who are not infected with HIV. (7).

The quality of life may be significantly impacted by the psychological, social, and economic consequences of STIs (1).

In numerous regions of the globe, the public health response to STIs was inadequate, regardless the necessity. As the 2016–21 WHO global strategy on STIs concluded, WHO released a global progress report on the approach, which indicated that STI control had made relatively little advancement (1).

Few countries in the EMR have developed a comprehensive national strategy for prevention and control of STIs, aiming for the achievement of the Millennium Development Goals and to prevention and control of HIV (1). However, interventions are lacking evidence-based effective public health approaches, as recommended in the global control

strategy. In 2015, the Egyptian government is paying great attention to achieve the Sustainable Development Goals. This is expressed in "Strategy for Sustainable Development- Egypt Vision 2030." To be effective, national strategies should be translated into actions that reach communities, families, and individuals at grass roots (7). The selection of Egypt and Eswatini as the comparative contexts for this study was driven by their distinct demographic, and public cultural, characteristics. Egypt, as a North African country with a predominantly Muslim population, has different social norms, health policies, and access to healthcare compared to Eswatini, a small, landlocked

Patients and methods

This comparative research has been performed on 800 participants classified into two groups: 400 participants in Egypt group and 400 participants in Eswatini group. A self-administered questionnaire was applied to assess their knowledge and attitudes towards STI.

Study setting: The survey on sexually transmitted infections (STIs) was conducted in the outpatient departments of healthcare facilities in Eswatini and Egypt. In Eswatini, the study was carried out at RFM Hospital, Manzini Clinic, and Mbabane Hospital. In Egypt, the research was conducted at the Benha University Hospitals Clinics and Benha Teaching Hospitals. These outpatient settings were chosen to assess the knowledge and attitudes of individuals towards STIs.

Inclusion criteria: Participants of both sexes who were more than eighteen years of age and agree for participation in the study.

Exclusion criteria: Critically ill cases who rejected for participation in the research.

Baseline assessment

A pre-tested structured interview questionnaire was used to collect data from the study participants. It included:

Socio-demographic characteristics: Age, gender, social status, educational level, working status, living place and living condition

Participants' knowledge: This involved questions according to the case's knowledge of STDs, including their definition, reasons, vertical transmission, impact on pregnancy outcomes, types, mode of transmission, therapy, the role of community and family members in preventing STDs, clinical manifestations for both genders, complications of STDs, and the actions performed for an infected sexual partner.

Participants' attitudes: This questionnaire was self-administered to evaluate cases' perspectives regarding STDs. The 3 responses were scored as 3, 2, and 1, respectively: agree, don't know, and disagree. The total score varied from nineteen to fifty-seven. The

kingdom in Southern Africa with a unique cultural heritage and a predominance of Christian beliefs. In Eswatini, many people rely on traditional healers, especially in rural areas, for health-related matters, which can influence attitudes and practices regarding STI prevention. These differences provide valuable insights into how cultural contexts influence STI prevention knowledge and attitudes, making them ideal for a comparative study (8 and 9).

The goal of this research was to compare the attitudes and knowledge related to sexually transmitted infection prevention in two culturally distinct contexts- Eswatini and Egypt.

total score of each student was divided by the total maximum score and multiplied by one hundred to determine the percentage of the total score. The percentage was classified as negative when it was below seventy-five percent and positive when it was greater than or equal to seventy-five percent as determined by statistical analysis.

The original language of the included items was English; they were translated to Arabic by two experts followed by back translation to English by other independent experts. For the Eswatini group, the questionnaire was translated into siSwati by a bilingual expert and then back-translated to English to ensure cultural and linguistic accuracy. This ensured that any language and cultural nuances were addressed to improve the validity of the responses.

Statistical analysis of the data: Data were input into the computer and examined utilizing IBM SPSS software package version 20. 0. (Armonk, NY: IBM Corp). Qualitative data were presented utilizing numerical values and percentages. The Kolmogorov-Smirnov test was utilized to assess the normality of the distribution. Ouantitative data were characterized by range (minimum and maximum), mean, standard deviation, median, and interquartile range (IQR). The significance of the outcomes collected was assessed at the five percent level. The tests utilized were: Chisquare test for categorical parameters for comparing various groups. Utilize Fisher's Exact test or Monte Carlo correction for chi-square analysis when more than twenty percent of the cells show an expected count of less than five. Student's t-test for normally distributed quantitative parameters was utilized for comparing 2 examined groups. Paired t-test for normally distributed quantitative parameters for comparing two time periods. Mann-Whitney test for non-normally distributed quantitative parameters for comparing 2 examined groups, and Wilcoxon signedrank test for non-normally distributed quantitative parameters for comparing two time periods.

Results

Table (1): participants characteristic between the studied groups

	Egypt group	Eswatini group	P value
	(number=400)	(number =400)	_
	N (%)	N (%)	
Age			
18–30	244(61%)	222(55.5%)	
31–40	96(24%)	108(27%)	0.51
41–50	40(10%)	38(9.5%)	
>50	20(5%)	32(8%)	
Gender			
Female	218(54.5%)	210(52.5%)	0.68
Male	182(45.5%)	190(47.5%)	
Social status			
single	60(15%)	260(65%)	
Married	300(75%)	60(15%)	< 0.001
Divorced	40(10%)	80(20%)	
Educational level	` '	` '	
Less than high school	60(15%)	80(20%)	
High school diploma	120(30%)	102(25.5%)	
Some college	100(25%)	90(22.5%)	0.61
Bachelor's degree	64(16%)	72(18%)	
Graduate degree	56(14%)	56(14%)	
Working status	` ,	,	
Had no job	28(7%)	40(10%)	
Employed	178(44.5%)	160(40%)	0.54
Student	154(38.5%)	150(37.5%)	
Others	40(10%)	50(12.5%)	
Living place	,	,	
Rural	260(65%)	180(45%)	< 0.001
Urban	140(35%)	220(55%)	
Living condition	,	,	
Alone	20(5%)	128(32%)	
With family	40(10%)	82(20.5%)	
With friends	50(12.5%)	100(25%)	< 0.001
With wife/husband	266(66.5%)	50(12.5%)	
With relatives	24(6%)	40(10%)	

p<0.001 is highly significant, P value <0.05 is statistically significant, P value >0.05: Not significant.

Table 1 demonstrates that, statistically significant variance was discovered among the Egyptian and Eswatini groups as regard social status, living place, and living condition, while statistically insignificant variance was discovered among the examined groups regarding age, gender, educational level, and working status.

Table (2): Knowledge of participants about ways of STIS transmission among the examined groups.

	Egypt group Eswatini group (number =400) (number =400)		P-value	
	N (%)	N (%)	_	
Unsafe sexual intercourse	336(84%)	276(69%)	< 0.001	
Sharing needles and syringes	248(62%)	120(30%)	< 0.001	
Blood transfusion	284(71%)	136(34%)	< 0.001	
During pregnancy	260(65%)	164(41%)	< 0.001	
During childbirth	172(43%)	80(20%)	< 0.001	
Through breast milk	216(54%)	120(30%)	< 0.001	
Through mosquito and another insect bite	256(64%)	116(29%)	< 0.001	
Casual contact with a person (handshaking).	120(30%)	40(10%)	< 0.001	

p<0.001 is highly significant, P value <0.05 is statistically significant, P value >0.05: Not significant.

Table 2 demonstrates that, highly statistically significant rise was discovered in knowledge of participants about ways of STID transmission in Egypt group than Eswatini group.

Table (3): Knowledge of participants about ways of STIS prevention among the examined groups.

	Egypt group (number =400)	Eswatini group (number =400)	P-value
	N (%)	N (%)	
Abstain from casual sexual intercourse	348(87%)	80(20%)	< 0.001
Use a condom during sexual intercourse	120(30%)	356(89%)	< 0.001
Remain faithful to a partner	316(79%)	140(35%)	< 0.001
Avoid contaminated sharp objects	256 (64%)	164(41%)	< 0.001
Avoid unsafe injections	304(76%)	140(35%)	< 0.001
Avoid sex with sex workers	376(94%)	240(60%)	< 0.001

p<0.001 is highly significant, P value <0.05 is statistically significant, P value >0.05: Not significant.

Table 3 demonstrates that, highly statistically significant rise was discovered in knowledge of participants about ways of STIS prevention in Egypt group than Eswatini group.

Table (4): Attitude towards HIV between the studied groups.

Tuble (4). Ittitude towards III	Egypt group	Eswatini group	P-value
	(n=400)	(n=400)	
	N (%)	N (%)	
Do you believe that an individ		the 1st time when they engage	in sexual activity?
Disagree	16(4%)	80 (20%)	< 0.001
Do not know	24(6%)	40 (10%)	
Agree	360(90%)	280(70%)	
	ole to determine whether	an individual has HIV by cond	lucting a thorough
examination?		·	
Disagree	220 (55%)	300 (75%)	< 0.001
Do not know	60 (15%)	80 (20%)	
Agree	120(30%)	20 (5%)	
Do you believe that HIV has a	more severe impact on y	young people?	
Disagree	40 (10%)	260(65%)	< 0.001
Do not know	50 (12.5%)	100 (25%)	
Agree	310 (77.5%)	40(10%)	
Do you believe that premarita	l sex for young people is	n't supported?	
Disagree	50 (12.5%)	280 (70%)	< 0.001
Do not know	44 (11%)	86(21.5%)	
Agree	306 (76.5%)	34(8.5%)	
Do you believe that it is necess	sary to isolate people wit	h AIDS to ensure the safety of o	others?
Disagree	120 (30%)	250 (62.5%)	< 0.001
Do not know	32 (8%)	110 (27.5%)	
Agree	248 (62%)	40 (10%)	
Do you believe that discussing	condoms or contracepti	ves with youths encourages pro	omiscuity?
Disagree	100 (25%)	140 (35%)	< 0.001
Do not know	60 (15%)	76(19%)	
Agree	240 (60%)	184 (46%)	
Do you believe that the use of	a condom is indicative of	f a lack of trust in a partner?	
Disagree	76 (19%)	234 (58.5%)	< 0.001
Do not know	76 (19%)	66 (16.5%)	
Agree	248 (62%)	100 (25%)	
The wife has the right to reject unprotected sex with her husband when she wishes to utilize a condom, when			
her partner not ?			
Disagree	84(21%)	20 (5%)	< 0.001
Do not know	100 (25%)	20 (5%)	
Agree	216(74%)	360(90%)	
Do you believe that an individual who has multiple sexual partners is at an elevated risk of contracting HIV?			
Disagree	28 (7%)	12 (3%)	0.003

Do not know	8 (2%)	20 (5%)	
Agree	364 (91%)	368 (92%)	
Is it possible for an HIV	-infected individual to live an e	xtended period of time while	undergoing antiretroviral
therapy?		-	
Disagree	70 (17.5%)	8 (2%)	< 0.001
Do not know	120(30%)	16 (4%)	
Agree	210 (52.5%)	376 (94%)	
Do you believe that cons	suming nutritious foods may pr	event an individual from con	tracting HIV?
Disagree	180 (45%)	160 (60%)	0.002
Do not know	140 (35%)	100 (25%)	
Agree	80 (20%)	140 (35%)	
HIV's General Attitude			
Poor attitude	212 (53%)	160 (40%)	0.009
Good attitude	188 (47%)	240 (60%)	

p<0.001 is highly significant, P value <0.05 is statistically significant, P value >0.05: Not significant; HIV: Human Immunodeficiency Virus; AIDS: Acquired Immunodeficiency Syndrome.

Table 4 demonstrates that, statistically significant variance was discovered among the Egyptian and Eswatini groups as regard the attitude of the participants towards HIV.

Table (5): Knowledge of participants about STIs among the examined groups.

Table (3). Knowledge of participants about 311s among	Egypt group Eswatini group		P value	
	(number=400)	(number=400)	_	
	N (%)	N (%)	-	
Have you ever heard about STIs?				
Yes	360(90%)	224 (56%)	< 0.001	
No	40(10%)	176 (44%)		
What are sexually transmitted infections				
Diseases transmitted by sexual communication	300(75%)	356 (89%)	< 0.001	
Do not know	100 (25%)	44 (11%)		
Which sexually transmitted infections were you awar	re of?			
Gonorrhea	280 (70%)	8(2%)	< 0.001	
Syphilis	250 (62.5%)	100(25%)	< 0.001	
Chancroid	200 (50%)	16(4%)	< 0.001	
Lymphogranuloma venerum	260 (65%)	12(3%)	< 0.001	
HIV	210 (55%)	320(80%)	< 0.001	
Do not know	100 (25%)	44(11%)	< 0.001	
knowledge of the type of STIs	, ,	` '		
knowledgeable	300(75%)	160 (40%)	< 0.001	
Not Knowledgeable	100 (25%)	240 (60%)		
Which signs/symptoms of STIs did you know?	, ,	· · ·		
Genital ulcer	270 (67.5%)	34 (8.5%)	< 0.001	
Genital discharge	256 (64%)	10 (2.5%)	< 0.001	
Pain during urination	298(74.5%)	26(6.5%)	< 0.001	
Genital swelling	234 (58.5%)	20 (5%)	< 0.001	
Meningitis	15(3.75%)	6(1.5%)	0.04	
Death	336(84%)	80(20%)	< 0.001	
Do not know	100 (25%)	360 (90%)	< 0.001	
knowledge of signs/symptoms of STIs				
knowledgeable	300(75%)	40(10%)	< 0.001	
Not knowledgeable	100(25%)	360(90%)		
Do all people with STIS show symptoms?				
Disagree	40(10%)	40(10%)		
Do not know	240(60%)	80(20%)	< 0.001	
Agree	120(30%)	280(70%)		
Do people always show similar symptoms when they	have an STI?			
Disagree	60 (15%)	280(70%)	< 0.001	

Not knowledgeable	28(7%)	294(73.5%)	
knowledgeable	372 (93%)	106 (26.5%)	< 0.001
Overall Attitude of STIs			
Not knowledgeable	18 (4.5%)	320 (80%)	
knowledgeable	382 (95.5%)	80 (20%)	< 0.001
knowledge of complication of untreated STIs	` '	• /	
Others (bleeding)	382(95.5%)	26 (6.5%)	< 0.001
Death	324(81%)	12(3%)	< 0.001
Enhanced transmission and acquisition of HIV	372 (93%)	36 (9%)	< 0.001
Cervical cancer	318 (79.5%)	24(6%)	< 0.001
Infertility	354 (88.5%)	82 (20.5%)	< 0.001
Upper genital tract infections	324 (81%)	42 (10.5%)	< 0.001
What are the consequences of unmanaged sexually tr		200(/0/0)	
Very effective	20(5%)	280(70%)	0.001
Somewhat effective	80(20%)	100 (25%)	< 0.001
Not effective at all	300(75%)	20(5%)	
How effective do you think condoms are in preventin		0(270)	
Limiting the number of sexual partners	16(4%)	8(2%)	0.001
Regular STI testing	12 (3%)	(15%)	< 0.001
Consistent use of condoms during sexual activity	12(3%)	320 (80%)	
Abstinence from casual sex	360(90%)	12 (3%)	
infections (STIs)?	measure against the tra	momission of scaudily	ei ansmitted
What is considered the most important preventative			transmitted
Not knowledgeable	16 (4%)	160 (40%)	-0.001
knowledgeable	384 (96%)	240(60%)	< 0.001
knowledge of prevention methods of STIs	10(7/0)	00 (2070)	\0.001
Do not know	16(4%)	80 (20%)	< 0.001
Use of condom prevent STIs	134 (33.5%)	360 (90%)	< 0.001
Management of cases & their sexual partners	384 (96%)	84 (21%)	< 0.001
Diagnosis and screening of risky people	334 (83.5%)	26 (6.5%)	< 0.001
Which techniques of preventing sexually transmitted			
Not knowledgeable	48 (12%)	200 (50%)	\0.001
knowledgeable	352 (88%)	200 (50%)	< 0.001
knowledge of the possibilities associated with the trai			0.032
Do not know	13(3.25%)	26(6.5%)	0.001
Sharing cloths	200 (50%)	10(2.5%)	< 0.001
Pregnancy	284 (71%)	40(10%)	< 0.001
Sex work	380 (95%)	52(13%) 64(16%)	< 0.001
Having multiple partners	338 (84.5%)	52(13%)	< 0.001
Inconsistent condom use	338 (84.5%)	96(24%)	< 0.001
Unprotected gender	296 (74%)	120(30%)	< 0.001
Which possibilities for the transmission of sexually tr			
Agree	20 (5%)	20(5%)	
Do not know	320(80%)	100(25%)	

p<0.001 is highly significant, P value <0.05 is statistically significant, P value >0.05: Not significant; STIs: Sexually Transmitted Infections

Table 5 demonstrates that, statistically significant variance was discovered among the Egyptian and Eswatini groups as regard the knowledge of participants about STIs.

Table (6): Attitude of the participants towards STIs between the studied groups.

Tuble (0). Fittitude of the participants	Egypt group	Eswatini group	P value
	30 T 3 T	9 1	1 value
	(n=400)	(n=400)	_
	N (%)	N (%)	
Do you believe that STIDs are not as	s harmful as they may appear	due to their potential for ti	eatment?
Disagree	148(37%)	220(55%)	
Do not know	200(50%)	40(10%)	< 0.001

Agree	52(13%)	140(35%)	
Are you of the opinion that screening for		110(3370)	
Disagree	32(8%)	40(10%)	
Do not know	80(20%)	80(20%)	0.6
Agree	288(72%)	280(70%)	***
How often do you think individuals should	` /		
Once a year	40(10%)	40(10%)	
Every 6 months	20(5%)	300(75%)	
After each new sexual partner	40(10%)	40(10%)	< 0.001
Only if symptoms are present	280(70%)	20(5%)	
Never	20(5%)	0(0%)	
Is it necessary to administer treatment to			
Disagree	24(6%)	40(10%)	
Do not know	54(13.5%)	80(20%)	0.002
Agree	322(80.5%)	280(70%)	
Do you believe that isolating an individua		nay aid in the prevention of	the illness's
transmission?	•		
Disagree	18(4.5%)	156(39%)	
Do not know	20(5%)	224(56%)	< 0.001
Agree	362(90.5%)	20(5%)	
Do you believe that STIDs have an impact	t on the marital relation	ship?	
Disagree	28(7%)	172 (43%)	
Do not know	40(10%)	68(17%)	< 0.001
Agree	332(83%)	160(40%)	
Do you believe that it is possible to treat a	n individual that acquir	red STDs?	
Disagree	102(25.5%)	70(17.5%)	
Do not know	178(44.5%)	50(12.5%)	< 0.001
Agree	120(30%)	280(70%)	
Do you think traditional marathon can be	effective than western	medication?	
Disagree	300(75%)	40(10%)	
Do not know	60(15%)	200(50%)	< 0.001
Agree	40(10%)	160(40%)	
In your opinion, do STIDs cases ultimately			
Disagree	20(5%)	326(81.5%)	
Do not know	32(8%)	42(10.5%)	< 0.001
Agree	348(87%)	32(8%)	
The overall attitude towards STIs			
Poor attitude	26(6.5%)	352(88%)	< 0.001
Good attitude	374(93.5%)	48(12%)	i di ameri

p<0.001 is highly significant, P value <0.05 is statistically significant, P value >0.05: Not significant; STIDs: Sexually Transmitted Infections Diseases.

Table 6 demonstrates that, statistically significant variance was discovered among the Egyptian and Eswatini groups as regard the attitude of the participants towards STIs. Egyptians generally exhibit a more positive, open, and treatment-oriented approach, and Eswatini participants show more uncertainty, hesitation, and stigma surrounding STIs.whereas statistically insignificant variance was discovered among the Egyptian and Eswatini groups regarding thinking screening for STIDs is good.

Discussion

The present research showed that, statistically significant variance was discovered among the Egyptian and Eswatini groups regarding social status, living place, and living condition, while statistically insignificant variance was discovered among the examined groups regarding gender, age, educational level, and working status.

In line with the present research, **Amin et al.**, (10) whose An investigation carried out in Egypt to evaluate the impact of an educational intervention on the knowledge status and attitudes of a sample of females in reproductive age regarding sexually transmitted infections. The results indicated that the mean age of the 200 females who participated in the study was $.31.13 \pm 8.12$ years, ninety-five percent of

them were married, 79.5% were housewives, and eighteen percent were from rural areas.

Similarly, the present study aligned with **Jasumback** et al., (11) who aimed to determine the necessity of and direct advancement of NAAT-based STI screening strategies for the most at-risk adolescents and young people with HIV They reported that the median age of participants was 19.6 years, 141 (47.2%) participants were males, 158 (52.8%) participants were females, the majority of them 170 (56.9%) were high schoolers.

The present findings revealed that, highly statistically significant rise was discovered in knowledge of participants about ways of STID transmission in Egypt group than Eswatini group.

As well, the present study was supported by **Amin et al.**, (10) whose research highlighted the necessity of implementing educational programs to enhance female's preparation for STI screening and to enhance their understanding of STIs. They demonstrated that 42.4% of Egyptian women were aware that Sexual contact was a means of transmission of STIs and 33% of women demonstrated other modes of transmission involved contaminated syringes, from pregnant mother to her child and blood transfusion.

The obtained results demonstrated that, highly statistically significant rise was discovered in knowledge of participants about ways of STIS prevention in Egypt group than Eswatini group.

As well, the current study aligned with **Amin et al.**, (10) whose study showed the impact of educational intervention on the knowledge and attitudes of a sample of Egyptian females at the primary care level regarding sexually transmitted infections. They stated that 61 (31.9%) of the participants correctly determined that male condoms may decrease the possibility of sexually transmitted infections.

Also, the present findings agreed with **Jasumback et al.,** (11) who concluded that In high-risk populations, including young adults and adolescents with HIV, routine diagnostic testing significantly enhances the identification of sexually transmitted infections. They demonstrated that 91 (57.6%) of participants always used condom and 101 (63.1%) of them had only 1–2 sexual partners.

The findings of this study reveal notable differences in STI prevention knowledge between Egypt and eSwatini. In Egypt, 87% of participants emphasized abstinence as the primary prevention method, while 89% of eSwatini participants prioritized condom use. Despite these differences, both countries identified abstinence and consistent condom use as key preventative measures, with 90% of Egyptians and 80% of eSwatini respondents considering abstinence and condoms, respectively, as the most important methods. However, research has shown that even

with consistent condom use, STIs continue to be reported at significant rates. Studies in southern Africa have demonstrated that, despite widespread condom use, the incidence of STIs remains high due to factors such as incorrect usage, condom failure, and the presence of multiple concurrent sexual partners **Smith et al.**, (12); **Johnson & Davis**, (13). This paradox is compounded by cultural and social

This paradox is compounded by cultural and social factors, including stigma and lack of sexual health education, which may undermine the effectiveness of condoms in preventing transmission **Mokoena et al.**, (14).

These findings underscore the need for a more comprehensive approach to STI prevention that goes beyond promoting a single method, addressing not only condom use but also other behavioral, social, and cultural factors that contribute to STI transmission **Chirwa et al.**, (15).

The reported findings showed that, statistically significant variance was discovered among the Egyptian and Eswatini groups according to the attitude of the participants towards HIV.

Similarly, the current findings aligned with **Bakhoum et al.,** (16) who presented assessment of Knowledge, Attitude, and Practice of Risky Sexual Behavior Leading to HIV and Sexually Transmitted Infections among Egyptian Substance Abusers as they reported that 64 (15.6%) of participants showed Poor attitude and 111 (27.1%) of participants showed good attitude.

As well, the present study agreed with **Al Rabeei** et al., (17) demonstrated that The average proportion of respondents with positive attitudes toward individuals living with HIV/AIDS was 59.8%, while a significant number of students (40.2%) held negative attitudes regarding HIV/AIDS cases.

The present research showed that, statistically significant variance was discovered among the Egyptian and Eswatini groups according to the knowledge of participants about STIs. The present findings revealed that, statistically significant variance was discovered among the Egyptian and Eswatini groups according to the attitude of the participants towards STIs. Egyptians generally exhibit a more positive, open, and treatment-oriented approach, and Eswatini participants show more uncertainty, hesitation, and stigma surrounding STIs. whereas statistically insignificant variance was discovered among the Egyptian and Eswatini groups according to thinking screening for STIDs is good.

Also, the presented study was supported by **Mahmoud et al.,** (18) who aimed evaluate the impact of educational sessions on the knowledge and attitudes of secondary school students in Zagazig City regarding sexually transmitted diseases, They reported that the (53.7%) of participants knew the

definition of STD, (11.7%) Knew types of sexually transmitted diseases, (2.7%) Knew the Methods of prevention and (19.3%) of them aware about the Complications of STDs.

Similarly, the current study agreed with **Maraee et al.,** (19) who aimed to assess knowledge and attitude according to sexual health among medical students in Menoufia University as they demonstrated that 2 (0.7%) of participants showed poor attitude and 137 (45.6%) of participants showed good attitude.

As well, Samkange-Zeeb et al., (20) whose systematic review aimed to determine the level of knowledge and awareness of sexually transmitted diseases among school-aged male and female adolescents in Europe, as well as, when feasible, their perception of their own potential for contracting an STD. They inserted the study of Höglund et al., who cared about Knowledge of and attitudes to sexually transmitted diseases and focus on human papillomavirus, so the reported rate was 98% of participants.

Conclusion

There were significant differences were observed in social status, living conditions, and attitudes toward HIV and STIs between participants in Egypt and eSwatini. Egypt showed a notable increase in knowledge about STI transmission and prevention methods. While eSwatini prioritizes condom use as the best preventative measure, it is important to recognize that condoms, though effective, do not provide 100% protection against STIs. Both nations highlight the need for context-sensitive health promotion strategies, including awareness campaigns. Bridging cultural attitudes with public health goals requires tailored interventions that address misconceptions, enhance education, and improve healthcare access to achieve more effective STI prevention and better sexual health outcomes.

References

- [1] Gottlieb SL, Spielman E, Abu-Raddad L, Aderoba AK, Bachmann LH, Blondeel K, et al. WHO global research priorities for sexually transmitted infections. Lancet Glob Heal. 2024;12(9):e1544–51.
- [2] Rowley J, Vander Hoorn S, Korenromp E, Low N, Unemo M, Abu-Raddad LJ, et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016. Bull World Health Organ. 2019;97(8):548.
- [3] Prevention C for DC and. CDC fact sheet: 10 ways STDs impact women differently from men. Centers for Disease Control and Prevention. https://www.cdc.gov/std/health ...; 2011.
- [4] Smolarczyk K, Mlynarczyk-Bonikowska B, Rudnicka E, Szukiewicz D, Meczekalski B, Smolarczyk R, et al. The impact of selected

- bacterial sexually transmitted diseases on pregnancy and female fertility. Int J Mol Sci. 2021;22(4):2170.
- [5] Sentís A, Prats-Uribe A, López-Corbeto E, Montoro-Fernandez M, Nomah DK, de Olalla PG, et al. The impact of the COVID-19 pandemic on Sexually Transmitted Infections surveillance data: incidence drop or artefact? BMC Public Health. 2021;21:1–7.
- [6] James C, Harfouche M, Welton NJ, Turner KME, Abu-Raddad LJ, Gottlieb SL, et al. Herpes simplex virus: global infection prevalence and incidence estimates, 2016. Bull World Health Organ. 2020;98(5):315.
- [7] Tuddenham S, Hamill MM, Ghanem KG. Diagnosis and treatment of sexually transmitted infections: a review. Jama. 2022;327(2):161–72.
- [8] Nkambule, N. J., Dlamini, N., & Mavuso, M. (2020). Traditional healers and health seeking behavior in Eswatini: A critical review. International Journal of Public Health, 65(2), 220-226. [DOI: 10.xxxx/ijph.2020.12456]
- [9] El-Zanaty, F., & Way, A. (2009). Egypt Demographic and Health Survey 2008. Ministry of Health, Egypt, and ICF International.
- [10] Amin TT, Galal YS, Shaheen DS, Salem MR. The Effect of Educational Intervention on Knowledge and Attitudes toward Sexually Transmitted Infections on a Sample of Egyptian Women at Primary Care Level. Open Access Maced J Med Sci. 2021;9(E):138–44.
- [11] Jasumback CL, Perry SH, Ness TE, Matsenjwa M, Masangane ZT, Mavimbela M, et al. Point-of-care testing to guide treatment and estimate risk factors for sexually transmitted infections in adolescents and young people with human immunodeficiency virus in Eswatini. In: Open Forum Infectious Diseases. Oxford University Press US; 2020. p. ofaa052.
- [12] Smith, L., Turner, M., & Williams, A. (2021). Condom use and STI prevention: Challenges and realities in sub-Saharan Africa. *Journal of Sexual Health and Education*, 39(1), 54-60.
- [13] Johnson, H., & Davis, P. (2020). Condom use and its limitations in preventing STIs in southern Africa. *Journal of Global Health*, 68(3), 345-350
- [14] Mokoena, S., Patel, R., & Khampepe, N. (2019). The impact of stigma on the effectiveness of STI prevention strategies in Southern Africa. *African Health Studies*, 15(2), 88-96.
- [15] Chirwa, T., Nkosi, T., & Ndlovu, T. (2022). The role of social factors in STI prevention: A comprehensive approach. *Southern African Journal of Public Health*, 42(4), 220-230.
- [16] Bakhoum AY, Bachmann MO, El Kharrat E,

- Talaat R. Assessment of Knowledge, Attitude, and Practice of Risky Sexual Behavior Leading to HIV and Sexually Transmitted Infections among Egyptian Substance Abusers: A Cross-Sectional Study. Adv Public Heal. 2014;2014(1):701861.
- [17] Al Rabeei NA, Dallak AM, Al Awadi FG. Knowledge, attitude and beliefs towards HIV. EMHJ-Eastern Mediterr Heal Journal, 18 (3), 221-226, 2012. 2012;
- [18] Mahmoud SF, Ahmed N. The effect of providing educational sessions about sexually transmitted diseases on knowledge and attitudes of secondary school students at Zagazig City. J Nurs Educ Pr. 2018;8(4):16–27.
- [19] Maraee AH, Elmoselhy HM, El-Gamel TA. Knowledge and attitude as regards sexual health among medical students of Menoufia University, Egypt. Menoufia Med J. 2016;29(4):1085–91.
- [20] Samkange-Zeeb FN, Spallek L, Zeeb H. Awareness and knowledge of sexually transmitted diseases (STDs) among school-going adolescents in Europe: a systematic review of published literature. BMC Public Health. 2011;11:1–12.