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Abstract

In response to the pressing challenges posed by the COVID-19 pandemic, this research endeavors to
revolutionize disease classification through an innovative fusion of data analytics and advanced machine learning
methodologies. The proposed study meticulously employs a dataset enriched with key physiological parameters
namely, oxygen levels, pulse rates, and temperatures leveraging a systematic approach to dataset analysis,
exploratory data analysis, and preprocessing. The research addresses a critical problem: the accurate and timely
classification of COVID-19 cases. The developed methodology encompasses a diverse array of models, from
traditional machine learning techniques to sophisticated deep learning architectures, ensuring a comprehensive
evaluation. Through rigorous model selection, hyperparameter tuning, and performance analysis, we unravel
actionable insights. The achieved results of the proposed model are very competitive with state-of-the-art models.
This research not only contributes to the scientific understanding of COVID-19 classification but also lays the
foundation for deploying effective machine learning tools in real-world scenarios for infectious disease

management.
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1. Introduction

The COVID-19 pandemic, since its emergence
in December 2019, has spurred a relentless global
health crisis, inflicting severe human losses and
wreaking havoc on economies [1]. As the virus
continues to evolve, the imperative to develop
robust predictive models capable of deciphering its
trajectory becomes increasingly paramount. In this
context [2], our research endeavours to dissect and
evaluate various prediction models, specifically
focusing on the pivotal role of machine learning
and deep learning techniques in early detection and
comprehensive understanding of the virus's
dynamics [3].

The gravity of the COVID-19 crisis is
underscored by the challenges it poses to accurate
diagnosis, timely intervention, and the overall
strain it imposes on healthcare systems. Efficient
prediction models are not only instrumental in
forecasting the virus's spread but also in informing
strategic decisions for resource allocation, public
health measures, and containment strategies.
Against this backdrop, our study assumes a critical
role in unravelling the complexities of existing
predictive  methodologies, emphasizing their
capacity to provide actionable insights in real-time
scenarios [4], [5], [6].

Central to our exploration is the role of data in
enabling the detection and understanding of
COVID-19. The wealth of information
encompassed in datasets, comprising clinical
parameters, demographic details, and temporal
dynamics [1], [7], forms the backbone of our
analytical approach. Leveraging the power of
machine learning and deep learning algorithms,
we aim to harness the latent patterns within this
data to not only predict the spread of the virus but
also to comprehend the intricate interplay between
various factors influencing its trajectory [8], [9].

The multifaceted nature of the pandemic demands a
nuanced approach to prediction modelling.
Traditional statistical methods, while valuable,
often fall short in capturing the intricate patterns
inherent in the data. Machine learning techniques,
on the other hand, hold promise in their ability to
discern complex relationships, adapt to evolving
scenarios, and provide more accurate forecasts [1],
[5]. Our research bridges the gap between
conventional statistical models and advanced
machine learning paradigms, aiming to discern the
most effective strategies for COVID-19 prediction.

Deep learning, with its capacity to unravel
intricate patterns in vast datasets, assumes a pivotal
role in our investigation. Neural networks,
modelled after the human brain, exhibit a unique
capability to learn from data and make predictions.
Our study delves into the application of deep
learning, particularly in  the context of
understanding the virus's behaviour, predicting
outbreaks, and contributing to more effective
public health responses [10]

In the subsequent sections, we embark on an in-
depth exploration of the methodologies employed
in COVID-19 prediction models. Each avenue is
meticulously scrutinized, with a focus on unveiling
not only their technical underpinnings but also their
practical significance in the broader context of
pandemic management. Our research aspires to be
more than an academic exercise; it aims to provide
tangible, data-driven insights that empower
decision-makers, healthcare professionals, and
researchers in the ongoing battle against the
formidable adversary that is COVID-19.

2. Literature Review
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COVID-19 pandemic, has spurred an
unprecedented surge in research aimed at
understanding its dynamics, predicting its
trajectory, and formulating effective strategies for
containment. The extant literature surrounding
COVID-19 prediction models encompasses a
diverse array of methodologies, each striving to
harness the power of data and computational
techniques for timely and accurate insights.

Machine learning (ML), particularly artificial
neural networks (ANN), has emerged as a powerful
tool in COVID-19 predictive modelling. A seminal
study by conducted a comparative analysis of ANN
and logistic regression (LR) models, revealing the
superior performance of ANN with an accuracy of
85.6% compared to LR's 80.8%. This underscores
the efficacy of ML algorithms in enhancing the
precision of COVID-19 predictions, laying the
groundwork for our research, which seeks to
further explore the potential of ML in the context
of COVID-19 detection [11]. Further, employed a
hybrid Gaussian model and time series
methodology for short-term prediction of COVID-
19 data in India, showcasing the potential of
integrating machine learning techniques for
forecasting dynamics of infected, recovered, and
active cases [12] .

Time series models, a cornerstone in
forecasting, have played a pivotal role in predicting
COVID-19 trends explored short-term dynamics of
hospitalized COVID-19 patients in Italy, identifying
Neural Network Auto-Regressive (NNAR) and
Auto-Regressive  Integrated Moving  Average
(ARIMA) as accurate models [13], [14]. S. de la
Torre et. al. conducted a comprehensive analysis of
time series models focusing on confirmed cases,
deaths, and recoveries [15]. ML's role extends
beyond predicting the spread to screening and
diagnosis. Alzahrani et. al. [14], utilized time series
models for COVID-19 infection prediction in Saudi
Arabia, emphasizing the accessibility and accuracy
of such models.

In [16], challenges in COVID-19 prediction
modelling are acknowledged, highlighted the time-
intensive nature of RT-PCR tests, emphasizing the
need for immediate decisions. Advanced
computational techniques, such as the Gaussian
Mixture Model and decision trees, have been
explored for real-time prediction and classification
of COVID-19 cases in China.

Our methodology, inspired by these findings,
incorporates advanced time series models to capture
the temporal nuances of COVID-19 data,
particularly for mortality predictions. The proposed
research aims to early detection of COVID-19 using
ML, aligning with the global need for rapid and
efficient diagnostics.

3. Methodology

This section delineates the systematic
framework employed to investigate and classify
COVID-19 cases based on tabular data, comprising
crucial physiological parameters such as oxygen
levels, pulse rates, and temperatures. The
methodological design is essential for ensuring the
rigor and reliability of our study, ultimately
contributing to the robustness of the findings.

3.1. Data Collection and Pre-processing:

The initial phase of our research involves a
meticulous examination of the dataset, comprising
vital physiological parameters namely; Oxygen, Pulse
Rate, Temperature, and the binary Result variable
indicating COVID-19 test outcomes.  This
comprehensive dataset overview lays the groundwork
for subsequent analyses.

If we take a look at the results of the COVID-19
test, we will notice that the number of positive and
negative cases is approximately equal. This provides a
clear insight into the distribution of each class within
dataset. It is crucial for understanding the balance
between positive and negative instances, and it plays a
fundamental role in influencing the final classification
results. Exploratory data analysis is pivotal for
uncovering feature relationships. We employ a pair
plot, a graphical representation illustrating pairwise
interactions between features, each differentiated by
the Result variable. This visualization allows us to
discern potential clusters or patterns associated with
COVID-19 outcomes. Figure 1 depicts this pair plot,
enhancing our understanding of feature relationships.
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Fig.1: Pair Plot for Feature Relationships with Result

Addressing missing values is a critical pre-
processing step. Through an examination of missing
data, decisions are made on whether to drop or
impute values based on their impact and nature,
ensuring data completeness. Imputation methods,
such as mean or median imputation, are employed
with careful consideration of their applicability to
maintain the integrity of the dataset.
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Categorical labels, particularly the result
variable, undergo label encoding, facilitating
numerical compatibility with machine learning
algorithms. This step is crucial for a seamless
integration of categorical data into our model
training process. Feature scaling is applied to ensure
that features with different scales contribute equally
to the model. Standardization or normalization
methods are considered based on the distribution of
the data. For instance, features might be
standardized to have a mean of 0 and a standard
deviation of 1.

Feature selection is guided by physiological
relevance. Features such as Oxygen, PulseRate, and
Temperature are chosen with a clear rationale based
on their significance in understanding COVID-19
symptoms. In figure 2, a correlation analysis is
conducted through a heatmap visually representing
the correlation matrix. This aids in identifying
potentially correlated features, guiding subsequent
decisions on feature selection. Highly correlated
features may be considered for removal to mitigate
multicollinearity
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Fig. 2: Correlation Heatmap

The dataset is then split into training and testing
sets, a pivotal step in ensuring the robust
development and evaluation of our machine
learning models. Stratified sampling is considered,
especially in the case of imbalanced datasets, to
maintain class distribution in both training and
testing sets.

3.2. Feature Selection and Scaling

Let X represent our feature vector, with
X=[Oxygen, PulseRate, Temperature], and y as the
binary Result variable indicating COVID-19 test
outcomes. Feature selection and scaling, two crucial
facets in optimizing the proposed dataset for
COVID-19 classification, have been discussed and
highlighting the standardization technique.

A) Feature Selection

A meticulous feature selection is paramount to
improve the model performance by reducing
dimensionality and emphasize the most influential
features.

Feature selection techniques includes filter,
wrapper and embedded techniques. In this work, a
well-known filter method called Mutual Information
(MT) will be applied. MI assesses the
relationship between the feature and the target based
on the extent of information exchange between
them, and becomes instrumental in quantifying the
relevance between each feature x_i and the target
variable y:

MI(x;,y) = Z Z p(xiy) log(%) @

X;EX yEY

where p(x,y) denotes the joint probability
distribution of x; and y, while p(x;) and p(y) are the
marginal probabilities. Utilizing the MI scores
guides the selection of features that significantly
contribute to the accurate classification of COVID-
19 outcomes.

B) Feature Scaling

Feature scaling through standardization is
imperative to ensure the robustness of ML models to
variations in feature scales. Standardization aligns
the features to a common scale, mitigating issues
arising from disparate magnitudes and enhancing the
convergence and performance of machine learning
algorithms. We employ standardization,
transforming each feature x; to have a mean of 0 and
a standard deviation of 1:

X - mean(X)
L std(X)

(2)

These meticulous steps, encompassing feature
selection  through MI  equation (1) and
standardization equation (2), collectively contribute
to the effective preparation of our dataset for
machine learning, ensuring optimal performance in
the classification of COVID-19 cases based on
standardized physiological parameters.

3.3. Model Selection and Hyperparameter Tuning

This section delineates the intricate process
undertaken for model selection and hyper parameter
tuning, a pivotal phase in our research aimed at
classifying COVID-19 cases.

The proposed model spans an array of traditional
ML algorithms and advanced deep learning
architectures, each meticulously tailored to extract
optimal performance.

A) Traditional Machine Learning Models

K-Nearest Neighbours (KNN) operates on the
principle of proximity, classifying a test sample
based on the majority class of its nearest neighbors.

The hyper parameter k, number of classes, plays
a pivotal role in determining the balance between
local sensitivity and global accuracy. The selection
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of an appropriate k is crucial for the model's
adaptability to variations in the local feature space.

Decision Trees (DT) recursively partition the
feature space, creating a tree structure. The depth of
the tree indicates its complexity, balancing the
trade-off between capturing intricate patterns and
avoiding overfitting.

Logistic Regression (LR) models the probability
of a binary outcome using the sigmoid function.
The hyper parameter C controls the regularization
strength, influencing the model's resistance to
overfitting. A meticulous choice of C ensures an
optimal balance between bias and variance.

Support Vector Machines (SVM) seek an
optimal hyper plane for class separation. For a
linear kernel, the decision function is determined by
a weight vector w and a bias term b.

f(x) = sign(w-x +b)

Random Forest (RF) leverages ensemble
learning by aggregating predictions from multiple
decision trees.

Gradient Boosting constructs a sequence of
weak classifiers to improve model accuracy
iteratively. The learning rate (1) and tree depth are
key hyper parameters influencing the boosting
process.

N
GB(X) = Z n - DecisionTree;(X)

i=1

B) Deep Learning Architectures

TensorFlow Logistic Regression model adopts a
neural network structure with a logistic activation
function. The architecture, characterized by input,
hidden, and output layers, undergoes hyper
parameter tuning for layer count, units per layer, and
learning rate. Figure 3 elucidates the structured
layers of the proposed model, providing a visual
representation of the network'’s configuration.

— D0

Fig. 3: Tensor Flow Logistic Regression Model
Architecture

Long Short-Term Memory (LSTM), a recurrent
neural network variant, excels in capturing
sequential  dependencies.  Hyper  parameters,
including the number of LSTM units, epochs, and
batch size, are meticulously tuned for effective
learning and memory retention.

hy = LSTM (X¢, he—q, Ct-1)

The hidden state h;, influenced by the input X; and
the cell state c.1, reflects the temporal evolution of
information. Figure 4 offers a graphical insight into
the intricate architecture of the implemented LSTM
model, highlighting the recurrent nature of
information flow over time.
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Fig.4: LSTM Model Architecture

The ensuing hyper parameters tuning process employs
methods such as grid search and random search,
ensuring each model's configuration strikes an optimal
balance between complexity and accuracy.
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Fig. 5: Confusion matrices for results of implemented classifiers

4. Results

In this section, a detailed results of
implemented classification models have been
reported. The models under scrutiny encompass FR,
GB, LR, KNN, Decision Tree, SVM, ANN and
LSTM. The results have been reported in terms of
accuracy, precision, recall, F1-score, and confusion
matrix for a granular understanding of model
behavior as shown in Figure 5. The RF, GB and DT
models emerge as frontrunners, showcasing
impeccable performance across precision, recall, F1-
score, and accuracy, all registering a perfect score of
1.0. Figure 5 above (A, B and E) capture the
confusion matrices, offering a detailed visualization
of the models' precision in predictions, effectively
distinguishing between true positive, true negative,
false positive, and false negative instances.

The logistic regression model demonstrates
commendable performance, achieving an accuracy of
0.927, with well-balanced precision, recall, and F1-
score. Figure 5 (C) intricately presents the confusion
matrix, unravelling the model's classification
outcomes. The model excels in correctly identifying
both positive and negative cases. Impressively, the
KNN model attains an accuracy of 0.994, coupled
with robust precision, recall, and F1-score metrics.
Figure 5 (D) visually represents the confusion
matrix. The model excels in distinguishing between
positive and negative cases with high accuracy.

SVM with a radial basis function kernel attains an
accuracy of 0.975, accompanied by well-balanced
precision, recall, and F1-score. Figure 5 (F) unveils
the confusion matrix, offering insights into the
model's classification performance. The model
demonstrates a robust ability to identify positive and

ANN and LSTM manifest outstanding accuracy,
precision, recall, and F1-score, all registering at 0.999.
Figure 5 (G and H) outlines the confusion matrices,
showcasing the models' high accuracy in classifying
COVID-19 cases. The model exhibits exceptional
performance in capturing both true positive and true
negative instances.

Model Acc. Precision Recall  Fl-score
RF 10 1.0 1.0 1.0
GB 1.0 1.0 1.0 1.0
LR 0.927 0.927 0.927 0.926

KNN 0.994 0.994 0.994 0.993

Decision 1.0 1.0 1.0 1.0
Tree

SVM 0.974 0.974 0.974 0.974
(RBF)

ANN 0.999 0.999 0.999 0.998
LSTM 0.999 0.999 0.999 0.998

Table 1: Results of implemented classification
models

In Figure 6, comprises accuracy bar plot and
Fl-score bar blot comparisons. This facilitates a
nuanced understanding of the models' relative
performance, precision and recall balance.
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F1 Score on the test set
(the Y-Axis is between 0.8 and 1.0}

Fig. 6: Comparison of accuracy and F1-score of
the implemented algorithms

Table 2 Reports a general overview of the proposed
work and the previous work.

Method and Accuracy Sensitivity  Specificity
reference
ML and LSTM 99.53% 93% 90.95
Decision Trees 94.3% 93% 91%
Decision Tree + 98.75% 97% 96%
GMM
LPC + SVM 98% 95% 90%
Proposed Model 99.9% 99% 99.9%
5. Discussion

The examination of multiple classification
models for COVID-19 case identification reveals
noteworthy  insights into  their  respective
performances. The RF and GB models emerge as top
performers, achieving perfect precision, recall, F1-
score, and accuracy, highlighting their exceptional
ability to make accurate predictions. The LR model,
while slightly trailing in accuracy, maintains a
commendable balance in precision, recall, and F1-
score, affirming its reliability in correctly classifying
positive and negative cases. KNN impresses with a
high accuracy of 0.994 and demonstrates robust
precision in distinguishing between positive and
negative instances. The Decision Tree model stands
out with perfection across all metrics, showcasing its
capability for accurate COVID-19 classification.

SVM (RBF) attains a notable accuracy of
0.9745, exhibiting a balanced performance in
precision, recall, and Fl-score. ANN and LSTM
models deliver outstanding results, boasting
accuracy, precision, recall, and Fl-score all
registering at 0.999. The consistent high performance
observed across these diverse models underscores the

efficacy of machine learning in accurately classifying
COVID-19 cases, thereby providing valuable tools for
real-world applications in infectious disease
identification and management.

6. Conclusion

In the crucible of our research, where data meets
algorithms, we have unearthed profound insights into
the classification of COVID-19 cases. The
amalgamation of traditional machine learning models
and sophisticated deep learning architectures has
yielded a symphony of accuracy, precision, and recall.
The models, each a virtuoso in its own right, have
showcased unparalleled performance, with Random
Forest and Gradient Boosting standing tall with
perfect scores across metrics.

As we traverse the landscape of infectious disease
management, our findings echo with the promise of
practical applications. The Logistic Regression model,
with its commendable balance, and the robustness of
KNN in distinguishing positive and negative instances
underscore the versatility of our approach. The
Decision Tree's flawless precision and the balanced
performance of SVM contribute to the diverse toolkit
we present for real-world deployment. ANN and
LSTM models emerge as the crown jewels, boasting
an extraordinary accuracy of 0.999. These deep
learning architectures not only signify the cutting edge
of technology but also herald a new era in the battle
against infectious diseases.

Future work that can be carried out includes using
multi-modal data, developing algorithms capable of
processing real-time data streams, expanding
population to enhance the quality of dataset, and using
advanced techniques to handle data imbalance. The
major limitations of the proposed work are data
privacy and sharing, complexity, and quality.

In conclusion, our research not only illuminates
the path to accurate COVID-19 classification but
paves the way for the integration of machine learning
into the fabric of infectious disease identification and
management.
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