BIOLOGICAL ASPECTS AND PHYTOCHEMISTRY OF THREE DESERT PLANTS GROWING IN WESTERN DESERT, EGYPT.

Abu Ziada, M. E.; M. A. Al-Shami and M. J. Jalal*

Botany Department, Faculty of Science, Mansoura University, Egypt.

* College of Science, Karkuk University, Iraq.

ABSTRACT

The present study aims to investigate morphology, and anatomy of *Astragalus vogelii*, *Bassia muricata* and *Morettia philaeana* growing in Abu Tartur region, that lies between Kharga and Dakhla Oases in Western Desert of Egypt. Polyphenols, flavonoids, fatty acids, protein-amine acids as well as antioxidant activity of these plants were detected. The stems, leaves and roots have the general anatomical features of dicotyledons and the aerial surface of the epidermal cells covered by thick protective cuticle. Multicellular trichomes could be distinguished. The root of *A. vogelii* exhibited anomalous secondary thickening with rough surface periderm while those of *Bassia* and *Morettia* possess normal secondary thickening and have well-defined periderm. The highest values of polyphenols and flavonoids content were recorded in *Bassia* and *Astragalus*, respectively. Six essential and seven non-essential amino acids were identified in *Astragalus* shoot. GLC analysis of fatty acids revealed the presence of ten fatty acids in *Bassia* and twelve in *Morettia* shoots. The methanolic extracts of the plants showed antioxidant activity.

Keywords: Anatomy, Germination, Fatty acids, Desert plants.

INTRODUCTION

The medicinal plants in Egypt represent a new promising resource as there is a relatively high representation of medicinal species in the native flora (Batanouny, 1999; Asmeda, 2008). It is already seen the need to shed light on some medicinal plants because of their significance.

Several studies have been focused on the biological and phytochemical properties of different species of *Astragalus*, the largest genus of the flowering plants (Massoumi, 1998). Species of this genus were used in folk medicine due to their hepatoprotective, antioxidative and antiviral properties (Türker et al., 2009; Abbas and Zayed, 2005; Lie et al., 2003 and Jassbi et al., 2002). The root is well-known drug in traditional Chinese medicine (Yen et al., 2006). *A. vogelii* is useful plant of west Tropical Africa, Mauritania to Niger and in the central Sahara (Boulos, 1999).

Bassia muricata is a chenopod herb common in Egyptian deserts. It’s ether and benzene extracts showed antimicrobial activity (Al-Yahya et al., 1990). *Bassia* was found to contain triterpenoidal saponins and acetyl flavonoid glycosides (Shaker et al., 2013 and Kamel et al., 2001).

Essential oils were obtained from the aerial parts of *Morettia philaeana* growing in central Sudan, by GLC analysis. Seven compounds were identified (El-Egami et al., 2011). The plant is used by Sudanese local people to nourish the sheep and choken. Burham (2008) reported the presence of flavonoids in the methanolic extract in the flowering parts of *M. philaeana*. Nine flavonoids were isolated from the whole plant (Kawashy et al., 2012).
The present study directed towards outlining morphological and anatomical description of the three selected plants. Also, recording details information about polyphenols, flavonoids, protein-amino acids and fatty acids contents as well as the antioxidant activity.

MATERIALS AND METHODS

Study area: The Abu Tartur plateau is a part of the New Valley in Western Desert of Egypt. It is located at 600 km southwest of Cairo and occupied an area of about 1200 km². It extends between Kharga and Dakhla oases in east-west direction with altitude varies from 500 to 600 m above sea level.

Climate is arid to hyper arid characterized by practically nil value of rainfall coupled with high rate of evaporation. Daily mean temperatures vary between 13.9°C in winter to 32.2°C in summer with June being the hottest month. Rainfall is generally low and tends to fall between November to February. The low values of relative humidity (21 – 46 %) showed that atmosphere is dry all over the year.

For anatomical investigation, cross-section of the plant parts were prepared as described by Peacock and Hard bury (1973).

The total polyphenols content was determined as described by Sadasivam and Manickam (2008). The content of flavonoids was determined as described by Boham and Kocipai-Abyazan, (1994). The protein amino acids were determined in A. vogelii aerial parts using GLC / MS as described by Magomya et al., (2014). Investigation of fatty acids was according to Tsuda et al., 1960 and Finar, 1967.

Determination of antioxidant activity using the free radical scavenging activity DPPH (1,1-diphenyl-2-picryl hydrazyl) according to the method employed by Kitts et al. (2000) with slight modification Liyana-Pathirana and Shahidi (2005).

RESULTS AND DISCUSSION

Biological aspects

1. Morphology

A. vogelii is grey-crescent annual herb with minute yellowish papilionaceous flowers and stem is white-villous, long and prostrate or ascending. Leaves are petiolate, stipulate and compound imparipinnate (leaflet 5-8 pairs); legume is small straight, oblong-ovoid, under 1 cm with globose, dark-brown seeds which are compressed, 1-1.5 mm and wingless, Plate (1).

B. muricata is an annual herb with flat subsessile leaves, densely villous; stem is slightly frutescent with woody base; leaves are simple entire, linear-lanceolate and covered by silky hairs; flowers greenish in axillary clusters. Fruit is nut, compressed, with permanent perianth forming yellowish 5-armed disc. Seed is discoid, 1mm, smooth and greyish, Plate (2).
Plate (1). Close-up view of *Astragalus vogelii* plant.

Plate (2). A close-up view of *Bassia muricata* plants.

M. philaeana is a yellowish-green, densely woolly perennial plant; stem ascendant, herbaceous, much branched with woody base; leaves simple, elliptic, short petiolate, estipulate; inflorescence is simple raceme with condensed yellow tetramerous flowers; fruit is simple dry dehiscent siliqua, 7-12 mm long, slightly curved, tetragonous in cross section. Seeds are very small, brown and flattened, Plate (3).
Plate (3). A close-up view of Morettia philaeana plants.

2. Anatomy

Microscopic examination of the cross-sections in stems of *A. vogelii*, *B. muricata* and *M. philaeana* revealed that, the stems of the three plants have the general characters of herbaceous dicotyledons (Fahn, 1982). They have the same tissue types, epidermis of a single layer of cells with the outer wall covered by thick protective cuticle and possess multicellular trichomes, serve mainly for restricting the rate of transpiration. The innermost layer of the cortex constitutes easily distinguishable endodermis surround the stele. The vascular bundles are a ring. The pith occupied the central portion and formed of thin-walled, hexagonal parenchymatous cells, (Plates 4a, 5a and 6a).

Transversal section of leaves of the three species showed that both upper and lower epidermis composed of tightly-packed cells with the outer walls thick cutinized and possess visible hairs. *Astragalus* leaf is isobilateral (Plate 4b) while those of *Bassia* and *Morettia* are befacial or dorsiventral. (Plates 5b and 6b).

The root of *A. vogelii* exhibits anomalous secondary thickening with rough surface periderm and the stele is triarch (Plate 4c), while those of *Bassia* and *Morettia* have normal secondary thickening and characterized by well-defined periderm. Their steles forming central solid core (Plate 5c and 6c).

The anatomical examination showed that the Cuticularization and extreme cutinization of the epidermal cells of the leaves in addition to the sheltered location of the stomata in furrows, greatly reduce are movement over stomatal areas thus prevent water loss. Also abundant hairs over entire aerial parts prevents rapid transpiration through the stomata. These xerophyte features enable these plants to survive under the extreme climatic aridity prevailing the study area.
Plate (4): Light microscopy of transverse section in *A. vogelli* stem (a), leaf (b) and root (c).

Plate (5): Cross section in stem (a), leaf (b) and root (c) of *B. muricata*.
Plate (6): Light microscopy of cross section in stem (a), leaf (b) and root (c) of *M. philaeana*.
Phytochemical Investigation
Quantitative estimation of flavonoids and polyphenols

As shown in Fig.(1) the highest value of Flavonoids content (1.81 ± 0.013 %) was recorded in **Bassia**, while **Morettia** shoots attained intermediate value of 1.09 ± 0.008 %. The lowest value was that of **Astragalus** shoot (0.86 ± 0.008 %). El-Sayed et al. (1998) reported that, two flavonoids were extracted from aerial parts of **B. muricata**. Burham (2008) reported the presence of flavonoids in flowering parts of **M. philaeana** and nine flavonoids were identified.

![Fig.(1): Mean values of flavonoids and polyphenols contents of Astragalus vogelii, Bassia muricata and Morettia philaeana shoots.](image)

The total polyphenols content of **A. vogelii** aerial parts was relatively higher (8.29 %) than those of **Bassia** and **Morettia** (3.28 and 3.33 %, respectively. Several beneficial properties (anti-inflammatory and anti-carcinogenic) have been attributed to phenolic products and flavonoids (Kamel, et al. 2001).

The results of protein-amino acids investigation (Table 1) showed that, six essential amino acids were identified in aerial parts of **A. vogelii**. Among them Histidin, Lysine, Leucine, valine and threonine. Also, seven non-essential amino acids including Glutamic acid, Alanine, Glycine, Arginine, Aspartic acids and Tyrosine were detected.

Table (1): The protein amino acids content (%) of Astragalus vogelii shoot.

<table>
<thead>
<tr>
<th>Essential amino acids</th>
<th>Concentration g / 100g</th>
<th>Non-essential amino acids</th>
<th>Concentration g / 100g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histidine</td>
<td>0.520</td>
<td>Glutamic acid</td>
<td>11.380</td>
</tr>
<tr>
<td>Lysine</td>
<td>0.400</td>
<td>Alanine</td>
<td>2.480</td>
</tr>
<tr>
<td>Leucine</td>
<td>0.310</td>
<td>Glycine</td>
<td>1.720</td>
</tr>
<tr>
<td>Valine</td>
<td>0.260</td>
<td>Arginine</td>
<td>1.480</td>
</tr>
<tr>
<td>Threonine</td>
<td>0.043</td>
<td>Aspartic acid</td>
<td>0.850</td>
</tr>
<tr>
<td>Phenyl alanine</td>
<td>0.030</td>
<td>Tyrosine</td>
<td>0.460</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td>Serine</td>
<td>0.100</td>
</tr>
</tbody>
</table>
Table (2) gives the results of the GLC analysis of fatty acids. Ten fatty acids were detected in *Bassia* shoot. The most important of these acids were Undecanoic, Linoleic, Lauric, Myristic, Palmitic and Oleic acid. On the other hand, investigation of the fatty acids content of *M. philaeana* showed the presence of twelve identified fatty acids including Tridecanoic, Myristic acid, Lauric acid, Linolenic acid, Stearic acid and Palmitic acid.

Evaluation of the antioxidant scavenging activity (DPPH) revealed that the extract of *A. vogelii* shoot has the highest antioxidant activity through other tested extracts of the studied plants (Table 3). As the rate of antioxidant activity of the plant extract rise with the rising of the phenolic content of the extract, the obtained results are in coherence with those reported by Miser-Saliboglu et al. (2013); Ahmed et al. (2012) and Cai et al. (2004).

Table (2): GLC analysis of fatty acids of *Bassia muricata* and *Morettia philaeana* shoot.

<table>
<thead>
<tr>
<th>Fatty acids</th>
<th>Bassia muricata</th>
<th>Morettia philaeana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undecanoic acid</td>
<td>0.0523</td>
<td>0.0205</td>
</tr>
<tr>
<td>Linoleic acid</td>
<td>0.0455</td>
<td>0.0184</td>
</tr>
<tr>
<td>Lauric acid</td>
<td>0.0434</td>
<td>0.0810</td>
</tr>
<tr>
<td>Myristic acid</td>
<td>0.0428</td>
<td>0.0923</td>
</tr>
<tr>
<td>Palmitic acid</td>
<td>0.0218</td>
<td>0.0270</td>
</tr>
<tr>
<td>Oleic acid</td>
<td>0.0217</td>
<td>0.0240</td>
</tr>
<tr>
<td>Pentadecanoic acid</td>
<td>0.0146</td>
<td>0.0145</td>
</tr>
<tr>
<td>Linolenic acid</td>
<td>0.0073</td>
<td>0.0364</td>
</tr>
<tr>
<td>Arachidonic acid</td>
<td>0.0054</td>
<td>0.0009</td>
</tr>
<tr>
<td>Lignoceric acid</td>
<td>0.0034</td>
<td>0.0020</td>
</tr>
<tr>
<td>Tridecanoic acid</td>
<td>-</td>
<td>0.1144</td>
</tr>
<tr>
<td>Stearic acid</td>
<td>-</td>
<td>0.0310</td>
</tr>
</tbody>
</table>

Table (3): Antioxidant scavenging activity of *Astragalus*, *Bassia* and *Morettia* shoots methanolic extracts using DPPH.

<table>
<thead>
<tr>
<th>Plants</th>
<th>DPPH assay EC_{50}%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astragalus vogelii</td>
<td>0.815</td>
</tr>
<tr>
<td>Bassia muricata</td>
<td>0.191</td>
</tr>
<tr>
<td>Morettia philaeana</td>
<td>0.105</td>
</tr>
</tbody>
</table>

REFERENCES

J. Plant Production, Mansoura Univ., Vol. 6 (8), August, 2015

Abu Ziada, M. E. et al.

