Protective Effect of Selenium Nanoparticles against Acrylamide-Induced Hepatotoxicity in Albino Rats

Ghada Khiralla*
National Organization for Drug Control and Research (NODCAR), 6-7, AboHazem Street, Pyramids, PO Box 29, Giza, Egypt

ABSTRACT

Selenium nanoparticles have received wide attention due to their importance in nutrition compared to other forms of selenium used in food fortification. In the present study, chitosan-stabilized selenium nanoparticles (Ch-SeNPs) were prepared, characterized and evaluated for their hepatoprotective effect against acrylamide-induced hepatotoxicity in albino rats. According to TEM and Zetasizer analysis, the size of Ch-SeNPs produced in the present study were ranged from 18 to 55 nm with average of 22 nm. Acrylamide treatment led to elevation of the studied biochemical parameters of liver including total protein, albumin, globulin, alkaline phosphatase, aspartate aminotransferase and alanine aminotransferase. Intake of Ch-SeNPs either 15 days prior to or simultaneously with the treatment with acrylamide led to enhance the biochemical parameters to be near the normal range. Same trend was obtained when rats were fed on sodium selenite, but Ch-SeNPs were more closely related to control group (untreated). The histopathological structure examination of rat liver emphasized the obtained biochemical results. The obtained results confirmed that, the intake of Ch-SeNPs 15 days before treatment by acrylamide had significant (< 0.05) protective effect against liver injury compared to the intake of these nanoparticles along with acrylamide.

Keywords: Selenium nanoparticles, Sodium selenite, Hepatotoxicity, acrylamide

INTRODUCTION

Selenium is an essential trace element of many biological systems including enzymatic reactions. Because of its protective potential against the reactive oxygen species (ROS), selenium has an important role for reducing chronic disease risks such as cancer neurodegenerative disease and hepatotoxicity (Khan et al., 2012; Teodor et al., 2011). Moreover, several studies have demonstrated that selenium play an important role for improving the clinical symptoms of many diseases such as hypertension, coronary heart disease and hepatitis B and C (Ju et al., 2017; Peresadina et al., 2004; Zeng and Combs, 2008). Since the 1950s, the important nutritional role of selenium has been known for organisms, especially in plant and animal nutrition. Moreover, selenium intake has been reported to improve lipid metabolism, anticoagulation and antioxidant status (Peresadina et al., 2004; Teodor et al., 2011). Selenium, being an essential element of enzyme like glutathione peroxidase (GPx) and other seleno-chemical compounds, can improve the chemotherapeutic potential by working as a functional group of redox center and protecting the tissues from cellular damage by ROS (Menon et al., 2018). On the other hand, Zhang et al. (2010) had mentioned that, at least one third of the 25 selenium proteins in humans display antioxidant activity, but it is also known that selenium metabolites accelerate the types of ROS. Symptoms of selenium toxicity (called selenosis) include gastrointestinal disorders, alopecia, fatigue, and irritability. These symptoms appear at doses of about 2,400 μg / day (Navarro-Alarcon and Cabrera-Vique, 2008).

Due to the high toxicity of the selenium element, the zero-oxidation state (Se0) is of great interest because of its low toxicity and high availability (Zhai et al., 2017). At present, Se0 nanoparticles (SeNPs) are of great importance in the field of medicine because of their promising properties and excellent bioactivities, where they showed substantial impact as anticancer, non-toxic and biocompatible operators compared to the other selenium forms such as selenite (SeO3-2) and selenate (SeO4-2) compounds (Menon et al., 2018). Protective effect of SeNPs against cyclophosphamide induced hepatotoxicity and genotoxicity in Swiss albino mice have been previously demonstrated (Bhattacharjee et al., 2014). Since SeNPs are unstable and rapidly becoming inactive, great efforts have been conducted to ensure the stability of SeNPs using chitosan with different molecular weight. In this respect, selenium has been successfully encapsulated into chitosan/triphosphate nanoparticles, which displayed improved antioxidant activities in vitro (Luo et al., 2010). Also, selenium has been encapsulated in chitosan nanoparticles to improve selenium availability and protects animal cells from selenium-induced DNA damage response (Zhang et al., 2011). Moreover, the chitosan-stabilized SeNPs displayed a lower toxicity, enhanced antioxidant capacities during 30-day storage and perform their antioxidant effects in mice models (Zhai et al., 2017). Moreover, Bai et al. (2017) demonstrated the protection effect of selenium nanoparticles-loaded chitosan/citrate complex against oxidative stress and hepatotoxicity in d-gal-induced liver injury.

Several studies have indicated the intensive presence of acrylamide (ACR) in foods exposed to high temperatures, particularly starchy foods such as potatoes, cereals and bakery products (Riboldi et al., 2014; Surdyk et al., 2004; Tareke et al., 2002). ACR is well-known neurotoxicant that induced several biochemical, hematological, and behavioral alterations experimental animals (Lebda et al., 2015). Several efforts have been made to reduce the negative
effects of acrylamide in foods by reducing acrylamide formation during food processing and/or by using certain food additives (Krishnakumar and Visvanathan, 2014; Lebda et al., 2015). Therefore, the present study was designed to investigate the ameliorative effect of chitosan-stabilized SeNPs on hepatotoxicity of acrylamide in the experimental albino rats.

**MATERIAL AND METHODS**

**Materials**

**Chemicals**

All chemicals were purchased from Sigma-Aldrich, Germany. The diagnostic biochemical kits were obtained from Bio Diagnostic Company, Al-Dokki, Giza, Egypt.

**Methods**

**Synthesis of chitosan-stabilized selenium nanoparticles**

Chitosan-stabilized selenium nanoparticles (Ch-SeNPs) were prepared according to the method described by Bai et al. (2008). Briefly, an aqueous chitosan acrylamide solution was prepared at a concentration of 0.5% (w/v). Ten milliliters of this solution were mixed with 7.5 mL of ascorbic acid (0.23 M) and 5 mL of acetic acid (2.4 M); then, 0.25 mL of sodium selenite (0.51 M) was slowly added into the mixture. During the reaction, the change in the color of the mixture from colorless to reddish-orange indicates the formation of selenium nanoparticles. Finally, the solution was diluted to 50 mL using distilled water to obtain a final concentration of 200 mg/L of Ch-SeNPs.

**Characterization of Ch-SeNPs**

The formation of Ch-SeNPs was primary observed by visual examination of the solution in the test-tubes for color changes. For determining size and morphology of Ch-SeNPs, Transmission Electron Microscopic (TEM) analysis Ch-SeNPs was carried out at an accelerating voltage of 200 kV (Techni 20, Philips, Holland). The size distribution of the dispersed particles was measured using a Zetasizer Nano ZS7.11 (Malvern Instruments Ltd., Malvern, UK). Ch-SeNPs were dispersed in deionized water and mixed thoroughly via vortexing and sonication. Samples were measured at 25 μg/mL (Khiralla and El-Deeb, 2015).

**Animals and Treatments**

Thirty-six adult male rats (120 - 150 ± 5 g, 10 weeks of age) were obtained from the National Organization for Drug Control and Research (NODCAR), Giza, Egypt. Rats were housed in separate stainless-steel cages under controlled conditions at constant temperature (24 °C). After acclimation period (15 days) rats were divided into six groups (n=6) and fed on basal diet (10 % casein, 10 % corn oil, 5% cellulose, 1 % vitamin mixture, 4 % salt mixture, 70% corn starch (Lana Peter and Pearson, 1971) during the experimental period. All treatments were given orally using stomach tube.

Untreated group (G1); fed on basal diet and given 1 mL distilled water/day during the experimental period. Acrylamide treated group (G2); treated with acrylamide only at a dose of 20 mg/ Kg b.w. selenium- acrylamide jointly treated group (G3); treated with selenium selenite and acrylamide solutions simultaneously at a dose of 20 μg/ Kg b.w. and 20 mg/ Kg b.w., respectively during the experimental period. Sodium selenite pretreated group (G4); treated with selenium selenite at dose of 20 μg/ Kg b.w. for 15 days prior to acrylamide treatment and then continued along with acrylamide (20 mg/ Kg b.w.) for 30 days. Ch-SeNPs acrylamide jointly treated group (G5); treated with Ch-SeNPs and acrylamide were simultaneously at a dose of 0.2 and 20 mg/ Kg b.w., respectively. Ch-SeNPs pretreated group (G6); treated with Ch-SeNPs at dose of 0.2 mg / Kg b.w. for 15 days prior to acrylamide treatment and then continued along with acrylamide (20 mg/ Kg b.w.) for 30 days.

**Serum biochemical parameters**

Blood serum samples were collected in clean centrifuge tubes. Samples were collected from the eye plexuses of the animals at the beginning and end of the experimental period by fine capillary glass tubes. The serum was separated after centrifugation for 10 minutes at 3000 rpm (1500 xg) and kept at -20 ° C until analysis (Young, 1995). The biochemical parameters including total protein (TP), albumin, alkaline phosphatase (ALP), alanine aminotransferase (ALT; EC 2.6.1.2) and aspartate aminotransferase (AST; EC 2.6.1.1) were estimated by test reagent kits (Biodiagnostics, Egypt).

**Histopathological Assessment**

After the autopsy of rats, liver samples were taken from different groups and then fixed in a 10% normal saline solution for 24 hours. The stabilized samples were washed in tap water and then dehydrated in serial dilutions of alcohol (methyl, ethyl and absolute ethyl). Specimens were cleared in xylene and embedded in paraffin at 56 °C in hot air oven for 24 h. Paraffin was poured onto the samples to form blocks, which are dried, then placed at 56 °C in a hot air oven for 24 hours. The blocks are cut into slices 4 microns thick by sledge microtome. The obtained tissue sections were collected on glass slides, deparaffinized, stained by hematoxylin & eosin stain for routine examination through the light electric microscope (Banchroft et al., 1996 ).

**Statistical Analysis**

All biochemical parameters collected from six animals (n= 6) were presented as mean values ± SD. Data were analyzed with SAS software (SAS Institute, Cary, N.C.) using SAS analysis of variance (PROC ANOVA). Significant differences between means were determined by Tukey’s multiple range test (P = 0.05).

**RESULTS AND DISCUSSION**

**Characterization of Chitosan stabilized selenium nanoparticles**

The change in color is one of the visual signs of the formation of nanoparticles in the chemical solutions. As shown in Fig. 1.

Fig. 1. The visualization of colour changes as a result of Ch-SeNPs formation.

A color change from colorless to orange-red of elemental selenium (Se0) was demonstrated in the tube 1.
However, tube 2 displayed the colorless solution before preparing nanoparticles. This notice has been confirmed previously by Khiralla and El-Deeb(2015), where they mentioned that the first signs of nanoparticles formation being the transformation of the solution from transparent to red.

As shown in TME, the Ch-SeNPs prepared in the present work were spherical and monodispersed with diameter average of 18-55 nm (Fig. 2, A). The dynamic light scattering (DLS) results indicated that all the particles are nano-sized with average diameters of 22 nm (Fig. 2, B), (Zare et al., 2013).

Biological evaluation of hepatoprotective effect of Ch-SeNPs

Biochemical Assay

There was a significant decrease in total protein as a result of the treatment of acrylamide where the recorded total protein reduced from 7.4 to 4.8 g/dL. Moreover, the decrease in globulin was more than the decrease in albumin, which led to an increase in the ratio of albumin to globulin (A/G ratio) due to the treatment of rats with acrylamide (Table 1). There was an improvement in the values of total protein, albumin and globulin as a result of the intake of selenium or nanoparticles in the diet of rats.

Table 1. Total protein, Albumin, globulin and A.G (g/dL) of male albino rat serum fed on different selenium and nano-selenium solutions

<table>
<thead>
<tr>
<th>Rat Group</th>
<th>Total protein</th>
<th>Albumin</th>
<th>Globulin</th>
<th>A/G Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>7.4±0.4</td>
<td>4.5±0.2</td>
<td>2.9±0.2</td>
<td>1.5±0.1</td>
</tr>
<tr>
<td>G2</td>
<td>4.8±0.6</td>
<td>2.9±0.1</td>
<td>1.9±0.2</td>
<td>2.0±0.1</td>
</tr>
<tr>
<td>G3</td>
<td>7.1±0.5</td>
<td>3.8±0.1</td>
<td>3.3±0.1</td>
<td>1.2±0.2</td>
</tr>
<tr>
<td>G4</td>
<td>7.2±0.5</td>
<td>4.2±0.3</td>
<td>3.0±0.1</td>
<td>1.4±0.1</td>
</tr>
<tr>
<td>G5</td>
<td>6.1±0.3</td>
<td>3.9±0.1</td>
<td>2.2±0.1</td>
<td>1.7±0.1</td>
</tr>
<tr>
<td>G6</td>
<td>7.2±0.2</td>
<td>4.6±0.2</td>
<td>2.6±0.1</td>
<td>1.8±0.2</td>
</tr>
</tbody>
</table>

Data were represented as mean ±SD. Normal range: G1: Positive control fed on basal diet only, G2: Negative control fed on basal diet and acrylamide, G3: fed on Se solution and acrylamide simultaneously, G4: fed on Se solution 15 days prior to acrylamide treatment and then continued along with acrylamide for 30 days. G5: fed on Ch-SeNPs and acrylamide simultaneously, G6: fed on Ch-SeNPs 15 days prior to acrylamide treatment and then continued along with acrylamide for 30 days.

** Normal range of biochemical parameters in rats according to Giknis and Clifford (2008)

The total protein and albumin values returned to normal range in rats of all groups except group G2, which was treated with acrylamide only. The best group that approached the control group at the end of the experiment was the group treated with nano-selenium 15 days prior to the start of acrylamide treatment. Zhang et al. (2011) mention in their recommendations that, selenium nanoparticles have a significant effect in reducing toxicity on living cells and thus improve the performance of cell functions.

Serum liver functions, including ALT, AST and ALP, of male albino rats fed on different selenium selenite and Ch-SeNPs solutions were presented in Table 2.

Table 2. Serum liver function of male albino rats fed on different selenium and nano-selenium solutions

<table>
<thead>
<tr>
<th>Rat Group</th>
<th>ALT (U/ml)</th>
<th>AST (U/ml)</th>
<th>ALP (IU/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>40 ±4</td>
<td>123 ±9</td>
<td>120 ±3</td>
</tr>
<tr>
<td>G2</td>
<td>87 ±4</td>
<td>201 ±12</td>
<td>190 ±6</td>
</tr>
<tr>
<td>G3</td>
<td>68 ±5</td>
<td>162 ±10</td>
<td>160 ±2</td>
</tr>
<tr>
<td>G4</td>
<td>51 ±6</td>
<td>139 ±8</td>
<td>146 ±4</td>
</tr>
<tr>
<td>G5</td>
<td>64 ±3</td>
<td>161 ±9</td>
<td>160 ±6</td>
</tr>
<tr>
<td>G6</td>
<td>44 ±3</td>
<td>132 ±7</td>
<td>124 ±4</td>
</tr>
</tbody>
</table>

Normal range: 18 – 45 74 - 143 62 - 230

** Normal range of biochemical parameters in rats according to Giknis and Clifford (2008)

All tested parameters of the control group (G1) were in the normal range of rats. An increase in these parameters was recorded as a result of the acrylamide treatment (G2). There was significant improvement in the ALT, AST and ALP values when rats were treated with selenium selenite or Ch-SeNPs simultaneously with acrylamide (G3 and G5, respectively). Further reduction in liver functions was detected in G4 and G6 due to pretreatment 15 days before acrylamide treatment with selenium selenite or Ch-SeNPs, respectively. The treatment of rats with Ch-SeNPs prior to acrylamide (G6) could be considered as the best treatment for maintaining the ALT, AST and ALP values to be near the control rats (G1) and in the normal range of rats (Table 2). In this respect, Wang et al. (2013) study showed improved liver properties using
nanoparticles to reduce liver enzyme loss in the hepatic cytoplasm into the blood and reach normal levels of enzymes in the blood.

**Histopathological Assessment**

The prepared Ch-SeNPs were biologically evaluated for its protective effect against acrylamide induced liver diseases. Optical micrographs of rat livers fed on Ch-SeNPs or selenium selenite were presented in Fig. 3. Rats in control group (G1) demonstrated normal histological structures of hepatic tissue including central veins (White closed arrow), portal tracts (White open arrow), sinusoids and apparent intact hepatocytes. Treatment with acrylamide (G2) led to pericentral vacuolar degeneration of hepatocytes (Black closed arrow) with many hepatocytes showing pyknotic nuclei, many dilated and congested blood vessels (star) and periportal inflammatory cells infiltration (Black open arrow).

Selenium- acrylamide jointly treated group (G3) showed periportal inflammatory cells infiltrations (Black open arrow), many activated kupffer cells and lymphocytic infiltrations (dashed arrow), few scattered degenerated hepatocytes were observed (black arrow). Selenium selenite pretreated group (G4) showed diffuse vacuolar degeneration of hepatocytes with pyknotic nuclei (arrow), mild periportal inflammatory cells infiltrations were recorded (Black open arrow). On the other hand, Ch-SeNPs- acrylamide jointly treated group (G5) demonstrated many congested, dilated blood vessels (star).

![Fig. 3. The representative histological photomicrographs of the liver fed on Ch-SeNPs or selenium selenite. H&A stain 300x magnification.](image)

Mild periportal inflammatory cells infiltrations (Black open arrow). Many activated kupffer cells (dashed arrow), scattered hepatocytes showed necrobiotic changes and single cell apoptosis (dashed open arrow). Ch-SeNPs pretreated group (G6) showed histological structures near to the appearance of the normal hepatic tissue. However, diffuse vacuolar degeneration of hepatocytes with pyknotic nuclei (arrow) with more extensive lesion were observed in pericentral zones.

In general, the obtained histological examination affirms that treatment with sodium selenite cannot completely prevent hepatotoxicity in experimental rats. On the other hand, treatment with Ch-SeNPs has resulted in significant liver protection, especially when it was administered to rats for 15 days prior to acrylamide treatment. This finding could be explain by those mention by (Bhattacharjee et al., 2014), who indicated that, pretreatment with nano selenium leads to the maintenance of liver cell membranes and protection from oxidative stress.

**CONCLUSION**

Selenium in the form of sodium selenite was confirmed as a trace element for protecting rats from liver diseases induced by acrylamide. Chitosan-stabilized selenium nanoparticles (Ch-SeNPs) showed hepatoprotective effect better than those of sodium selenite.
Pretreatment of rats with Ch-SeNPs 15 days prior to induce liver injury using acrylamide led to improve the protective potential of the produced nanoparticles.

REFERENCES


الخصائص البيوكيميائية مع الدراسة. وقد أظهرت المجموعة التي أعطت جزيئات نانو السلينيوم المحمولة على الشيتوzan قبل المعالجة بالآكريلاميد ب 15 يوم تأثير أفضل في الهيستولوجي وذلك عند مقارنتها بالمجموعة التي أعطت جزيئات نانو السلينيوم المحمولة على الشيتوzan بالتزامن مع المعالجة بالآكريلاميد.