PERFORMANCE ASSESSMENT OF CENTER PIVOT IRRIGATION SYSTEM UNDERARID AREASCONDITION

M.H. Abd El-Wahed ${ }^{1}$ and Atef Swelam ${ }^{2}$

Abstract

This study was planned to evaluate the effects of operating pressure (P), spacing between sprinklers (S) and height of sprinkler above the ground surface (H) on the uniformity parameters[(coefficient of uniformity (CU), distribution uniformity $\left(D U_{l q}\right)$ and coefficient of variation (CV)] under center pivot system. The quantitative variables were $\left(P_{20}, 40\right.$ and 60$)$, ($S_{200}, 250$ and ${ }_{300}$) and ($H_{150,175}$ and 200). The obtained values ofCU and $D U$ were higher under the highest P, closer Sand higher H. In contrast, CV was lower under the highest P, closer S and higher H.Both $C U$ and $D U_{l q}$ were increased with increasing the P and S, P andHand decreasing S with an increase H. While the CVdecreased with increasing the P and S, P andH.Also, decreasing Sandincrease H. The highest $C U$ values were recorded when thecenter pivot was operatedunder $\left(P_{60}, S_{200}\right.$ and $\left.H_{200}\right)$ and $\left(P_{40}, S_{200}\right.$ and $\left.H_{200}\right)$ without significant differences between them. Also, the highest DU and the lowest $C V$ were recorded when the center pivot wasoperated under $\left(P_{40}, S_{200}\right.$ and H_{200}). So, it is recommended to operate the center pivot at $\left(P_{40}, S_{200}\right.$ and H_{200}) to save the pumping costs in studied area and similar conditions.

Keywords: Center pivot, Uniformity parameters, Operating pressure, Spacing between sprinklers and Height of sprinklers.

INTRODUCTION

With response to the increase in water scarcity created by rising demands in several sectors and slowing down of new water source development, irrigated agriculture, the largest user of water in most semi-arid countries is under significant pressure to reduce water consumption.

[^0]Technical solutions to the growing phenomenon of water scarcity abound, and governments throughout the world have undertaken commitments to reduce water use in agriculture by improving the efficiency of water use in that sector (Brennan, 2008).Application efficiency can be increased by adopting pressurized irrigation system like sprinkler irrigation (Ranaet al., 2006).

Center pivot irrigation systems are often preferred by farmers due to its robustness and automation possibilities (Hanson and Orloff, 1996 andDechmiet al., 2003);low labor requirements and ability to irrigate large fields (Kincaid, 2005);easier operation and have the capacity to attain highly uniform and efficient irrigation results in water saving and farm profitability (Tarjueloet al., 1999).

Theuniformity coefficients are often determined from measurementswith water collection cans located above the cropor on bare soil (Mateoset al., 1997). Two methods have been developed to quantify uniformity, CUand the distributionuniformity (DU).Coefficient of uniformity (CU) is a one of the first criteria defined to express uniformity. This coefficientis derived from catch-can data assuming that the catch-cans representthe same area. It is a measure of the absolute difference from themean divided by the mean. Distribution uniformity (DU) is usually defined as a ratio of thesmallest accumulated depths in the distribution to the averagedepths of the whole distribution. The largest depths could also beused to express DU, but since the low values in irrigation are morecritical, the smallest values are used (Burt et al., 1997). Distribution uniformity emphasizes the areas which receive the least of irrigation water by focusing on the low quarter ($\mathrm{DU}_{\mathrm{lq}}$). They suggested the $\mathrm{DU}_{\mathrm{lq}}$ is expressed as a decimal. Thus, both CU and $\mathrm{DU}_{\mathrm{lq}}$ coefficients give complementaryinformation. Uniformity is increased when the two coefficients (CUand DU $\mathrm{lq}_{\mathrm{lq}}$) are closer (Ortı'zet al., 2010).

In addition, the coefficient of variation (CV) in application volume can be computed as the standard deviation of all catch can measurements divided by the average catch can volume for a test. Both $\mathrm{DU}_{\mathrm{lq}}$ and CU have been related to the CV analytically (Warrick, 1983) and verified
experimentally on center pivot irrigation machines (Heermannet al., 1992 and Dukes, 2006).

Distribution uniformity with center pivotsystems mainlydepends on the sprinkler unit, the type or size of sprinklersand spacing along the lateral, the height above the ground orcanopy, plot topography, and the speed of the machine in order to avoid run-off (Allen et al., 2000).

Tarjueloet al. (1999) reported that there was a negative correlation between DU and P.Moazedet al. (2010) found that the CU value was increased by increasing P. They added that relation was not linear and with lower P, the slop was steeper. Keller (1983) reported that, in a given sprinkler as the P lowers, the dispersion is intensified and water drops hit the ground greater, but this will decrease the water distribution, also, the relatively excessive sprinkled water in the predefined dispersion range. Pressure enhancement will decrease excessive sprinkled water leading to an improve water distribution uniformity coefficient. Therefore hesuggested that the lower P occurs when sprinkler spacing is lower.

Water distribution uniformityincreases when H is increased (Hills and Barragan 1998 and Tarjueloet al., 1999Alazbaet al., 2004). Increased height gives a larger wetted diameter for the same nozzle type and size, and consequently the overlap percentage is increased and the water application uniformity along the lateral is improved (Allen et al., 2000). IncreasingH usually produces better irrigation uniformity for a specific wind speed and direction, but it also increases evaporation and drift losses (Faciet al., 2001). Installing the sprinkler at a lower height reduces the wetted area and increases the applicationrate (Keller andBliesner, 1990 and Faciet al.,2001).

Moazedet al. (2010) studied the effect of S on CU under solid set system. Also, (Clarket al., 2003) studied the effect of S on CU under center pivot system. They reported that the elongated spacing between sprinkler decreasing CU value.

The objective of this study was to quantify the operating effect of some factors influencing the water distribution uniformity undercenterpivot irrigation system. In addition, a set of recommendations will be given for
management of center pivot system for Sebha region and other environmentallysimilar regions.

MATERIALS AND METHODS

Field evaluations were conducted on center pivot irrigation systemto quantify the effect of someoperating factors influencing the water distribution uniformityunder Sebha region,south of Libya- conditions. The evaluations were carried out in October 2010 on bare soil to avoid the plant interference of applied water.The experiment was doneduring 09:00 and 12:00 in an attempt to coincide with low temperature and evaporation conditions as well as lower wind speed.

The center pivot systemis a 250 mlength, five spans (where span is defined as the pipeline and support truss between two support towers), each span is 50 m length. Thetotal irrigated area was 19.6 ha.Fixed spray plate sprinklers (FSPS) were used along the spans with the overhang of the center pivot.

The catch can test is a commonly used toassess the uniformity of sprinkler systems. Standards have been developed for determining the uniformity of water distribution of center pivot (ASAE, 2001). All collectors used in the test to measure the depth of water applied was identical and shaped such that water does not splash in or out. The lip of the collector was symmetrical and without depressions.

Catch cans with a 10 cm opening diameter and a 15 cm height were used. The catch can tests were conducted on the outer of the center-pivot irrigation systems(spans three, four and five), which represents 60% of the total irrigated area.So, catch cans began 100 m from the center pivotpoint and the spacing between cans was 1 m . There were 90 catch cans along a line.This line was far away from the pipeline to allow the system achieve working conditionsbefore arriving at the test site. The catch can reading process was carried out as quickly as possible with the aim ofreducing evaporation losses in collectors. The water depth collected was calculated by dividingthe volume caught by the open area of the catch can.

The FSPS were place at 200 cm above the ground $\left(\mathrm{H}_{200}\right)$ inthe third span, at $175 \mathrm{~cm}\left(\mathrm{H}_{175}\right)$ in the forth span and $150 \mathrm{~cm}\left(\mathrm{H}_{150}\right)$ in the fifth span (Fig.1). The spaced between sprinklers (S) were 200, 250 and 300 cm ($\mathrm{S}_{200}, \mathrm{~S}_{250}$ and S_{300}) apart in each span. The operatingpressures (P) at the fixed center pivot point were 20, 40 and 60 bar ($\mathrm{P}_{20}, \mathrm{P}_{40}$ and $\left.\mathrm{P}_{60}\right)$.

In order to avoid the overlapping effect between treatments under each span, two borders conducted between three spacing treatments. Five m between each two spacing treatments were considered and 2.5 m at the two ends of each span. So, each spacing treatment has a 10 m (Fig.1). All treatments were conducted at 50% rotation speed.

TheCU, $\mathrm{DU}_{\mathrm{lq}}$ and CV values for each span were calculatedfor evaluating center pivot irrigation system.

Fig. (1): Diagram of the positioning of sprinklers on the span.

Evaluation of Uniformity:

Several quantitative analyses procedures of water uniformity were used.
Theseuniformities were calculated by the following equations:
1- Coefficient of uniformity (CU):
The center pivot coefficient of uniformity was calculated using the modified formula of Heermann and Hein (1968)given by (ASAE, 2001):

$$
C U=\left[1-\frac{\sum_{i=1}^{n} S_{s}\left|D_{s}-\frac{\sum_{i=1}^{n} D_{s} S_{s}}{\sum_{i=1}^{n} S_{s}}\right|}{\sum_{i=1}^{n} D_{s} S_{s}}\right] \times 100
$$

Where:
$D_{\mathrm{s}} \quad$ water depth (mm) collected by a catch can to a distance S from the center pivot.
s a subscript that denotes the position to a distance S.
n number of the catch can.

2- Distribution uniformity $\left(\mathrm{DU}_{\mathrm{lq}}\right)$:

The low quarter irrigation distribution uniformity ($\mathrm{DU}_{\mathrm{lq}}$) wascalculated using the following equation (Merriam and Keller 1978):

$$
D U_{l q}=\frac{A D C_{25}}{A D C} \times 100
$$

Where:
ADC_{25} lowest quarter of the average water depth of a group of catchcan measurements.
ADC total average water depth of a group of catch-can measurements.

2- Coefficient of variation (CV):

The coefficient of variation (CV) is the quotient between thestandard deviation of the applied water depths at the differentpoints of the field (σ) and the average of water depth collected:

$$
C V=\frac{\sigma}{D s^{-}}
$$

Where:
σ the standard deviation of the applied water.
$D s^{-}$the average of water depth collected.
This experiment was designedas spilt-split-plot design with three replicates. The operating pressure ($\mathrm{P}_{20,40}$ and ${ }_{60}$) was arranged in main plots, the sprinkler spacing ($\mathrm{S}_{200}, 250$ and ${ }_{300}$) were allocated in the subplots, while sprinkler height $\left(\mathrm{H}_{150}, 175\right.$ and 200$)$ were allocated in the sub-sub-plots.The obtained data were statistically analyzedusing SPSS software program (2008).Differences between means were compared by LSD at 5\% level (Gomez and Gomez. 1984).

RESULTS AND DISCUSSION

1- Effect of quantitative variables on CU and $\mathrm{DU}_{\mathrm{lq}}$

Data illustrated in Tables (1and 2) focused the significant influence of P , S, H and their interactions on CUand $\mathrm{DU}_{\mathrm{lq}}$ parameters. However, CU was significantly with increasing the P .The same trend was recorded forDU I_{lq} but the increment was insignificant.
The highest $\mathrm{P}\left(\mathrm{P}_{60}\right)$ gained acceptable CU and $\mathrm{DU}_{\mathrm{lq}}$ values comparing to P_{20} and P_{40} (Tables, 1 and 2). Over all testing conditions, under $\mathrm{P}_{60}, \mathrm{P}_{40}$ and P_{20}, the average CU values were $83.19,81.00$ and 76.20%, while those ofDU $\mathrm{lqq}_{\mathrm{lq}}$ were $0.785,0.759$ and 0.703 , respectively.
Table (1):The effects of operating pressure, spacing between sprinklers and height of sprinkler above the groundsurface on coefficient of uniformity (CU) values.

$\begin{gathered} \text { Pressure(b } \\ \text { ar) } \end{gathered}$	Spacing(cm)			Sprinkler height (cm)			
				150	175	200	
20	200			71.26	80.05	90.72	
	250			67.17	75.18	84.76	
	300			63.37	71.44	82.12	
	Average			67.27	75.55	85.86	
40	200			75.02	87.00	93.93	
	250			71.83	82.39	89.66	
	300			65.30	79.69	84.15	
	Average			70.72	83.03	89.25	
60	200			76.32	89.12	94.67	
	250			74.94	86.04	90.09	
	300			69.50	81.50	86.54	
	Average			73.59	85.55	90.43	
Average of spacing	200			74.20	85.39	93.11	
	250			71.31	81.20	88.17	
	300			66.06	77.54	84.27	
	Average			70.52	81.38	88.52	
$\begin{gathered} \text { LSD } 0.05 \\ \text { for: } \end{gathered}$	P	S	H	$\mathbf{P} \times \mathrm{S}$	$\mathbf{P} \times \mathbf{H}$	S \times H	$\mathbf{P} \times \mathbf{S} \times \mathbf{H}$
	1.13	1.13	1.13	1.43	1.43	1.43	2.17

Regardingsprinkler spacing (S) effect onCUand $\mathrm{DU}_{\mathrm{lq}}$ values decreased with increasing SS. CU values decreased by 5.02 and 10.89% when SS was increased to S_{250} and S_{300}, the corresponding values for $\mathrm{DU}_{\mathrm{lq}}$ were 8.36 and 14.34%, respectively. This result is full agreements with (Clark
et al., 2003 and Moazedet al., 2010). They reported that, CU values tended to decrease with increasingsprinkler spacing.
Tables (1 and 2) show that CU and $\mathrm{DU}_{\mathrm{lq}}$ were increased with increasing H. CU values increased by 15.39 and 25.48% when H was increased to H_{175} and H_{200}, respectively.However, the highest and lowestvalues of CU were recorded at sprinkler height H_{200} and H_{150}, respectively. This result occurred because some soil points received larger amount of water, whereas water distribution at otherpoints was very scarce. This trend was also shown by Allen et al. (2000), Faciet al. (2001) and Alazbaet al.(2004).As shown in Table (2) the average values of $\mathrm{DU}_{\mathrm{lq}}$ overall H were $0.647,0.757$ and 0.843 for $\mathrm{H}_{150}, \mathrm{H}_{175}$ and H_{200}, respectively. This means that $\mathrm{DU}_{\mathrm{lq}}$ was increased by 16.99 and 30.21% as sprinkler height increased to H_{175} and H_{200}, respectively.
As showed in Tables (1 and 2) the different dual interactions between the quantitative variableswere significant.
Table (2):The effects of operating pressure, spacing between sprinklers and height of sprinkler above groundsurface on distribution uniformity ($\mathrm{DU}_{\mathrm{lq}}$) values.

Pressure (Bar)	Spacing (cm)			Height (cm)			Average
				150	175	200	
20	200			0.661	0.760	0.867	0.763
	250			0.627	0.647	0.773	0.682
	300			0.577	0.640	0.777	0.665
	Average			0.622	0.682	0.806	0.703
40	200			0.680	0.813	0.933	0.809
	250			0.630	0.793	0.843	0.755
	300			0.617	0.720	0.803	0.713
	Average			0.642	0.775	0.860	0.759
60	200			0.717	0.880	0.920	0.839
	250			0.680	0.820	0.860	0.787
	300			0.637	0.743	0.810	0.730
	Average			0.678	0.814	0.863	0.785
Average of spacing	200			0.686	0.818	0.907	0.803
	250			0.646	0.753	0.825	0.741
	300			0.610	0.701	0.797	0.703
	Average			0.647	0.757	0.843	
$\begin{aligned} & \text { LSD } 0.05 \\ & \text { for: } \end{aligned}$	P	S	H	P \times S	$\mathbf{P} \times \mathbf{H}$	$\mathbf{S} \times \mathbf{H}$	$\mathbf{P} \times \mathbf{S} \times \mathbf{H}$
	NS	0.117	0.117	0.171	0.171	0.171	0.242

Both CU and $\mathrm{DU}_{\mathrm{lq}}$ were increased with increasing both the P and S . The lowest $\mathrm{P}\left(\mathrm{P}_{20}\right)$, caused reduction in throw radius. These reductions in radius of throw would result in sprinkler overlap changing this will reduce the water distribution uniformity.Under S_{200} and different $P\left(P_{20}\right.$, P_{40} and P_{60}), the uniformity parameter values of CU were $80.67,85.32$ and 86.70%,(Table, 1). The corresponding values for $\mathrm{DU}_{\mathrm{lq}} w e r e 0.763$, 0.809 and 0.839 (Table, 2),respectively. At the highest spacing $\left(S_{300}\right)$ the uniformity parameter values were $72.31,76.38$ and 79.18% for CU and $0.665,0.713$ and 0.730 for $\mathrm{DU}_{\mathrm{lq}}$, respectively in the same order. The highest CU values 85.32 and 86.70% were recorded at P_{40} and P_{60} at S_{200}. But the difference between CU resulted from P_{40} and P_{60} (85.32 and 86.70%) was not significant. Thus, to save the pumping costs, it's recommended to operate the center pivot at P_{40}.It's clear from Table (1), that in the case of the closer spacing $\left(\mathrm{S}_{200}\right)$, to obtain the acceptable CU , operate thecenter pivot at lower $\mathrm{P}\left(\mathrm{P}_{20}\right)$ to gainCU $=80 \%$. This result is in an agreement with Keller, (1983). He suggested that the lower P occurs when S is lower.
To obtain the highest CU under combinations ofP and S parameters, center pivot irrigation system has to operate at pressure P_{40} and S_{200} (the difference between CU resulted from P_{40} and P_{60} (85.32 and 86.70%) was not significant.).
Data in Tables (1 and 2) illustrate the data of grouped P and Hwhere the CU and $\mathrm{DU}_{\mathrm{lq}}$ increased by increasing P and H . The lowest CU and $\mathrm{DU}_{\mathrm{lq}}$ values (67.27% and 0.622) were recorded under low P and $\mathrm{H}\left(\mathrm{P}_{20}\right.$ and H_{150}), respectively. The highest CU and $\mathrm{DU}_{\mathrm{lq}}$ values $(90.43 \%$ and 0.863) were recorded under high P and $\mathrm{H}\left(\mathrm{P}_{60}\right.$ and $\left.\mathrm{H}_{300}\right)$, respectively.

Under H_{200} and both P_{40} and P_{60} the highest $\mathrm{CU}(89.25 \& 90.43 \%)$ and $\mathrm{DU}_{\mathrm{lq}}(0.860 \& 0.863)$ were recorded. The difference between CU and $\mathrm{DU}_{\mathrm{lq}}$ values resulted from P_{40} and P_{60} was insignificant. Also, to save the pumping costs, it's recommended to operate thecenter pivot at P_{40}. To obtain the highest CU and $\mathrm{DU}_{\mathrm{lq}}$ under grouped P and Hconditions, and at the same time save the pumping cost, the center pivot must operate at pressure P_{40} and H_{200}.
From Tables(1 and 2) the CU and $\mathrm{DU}_{\mathrm{lq}}$ values were increased by increasing H and decreasing S.The lowest CU and $\mathrm{DU}_{\mathrm{lq}}$ values (66.06 \%
and 0.610 , respectively) were recorded under the lowest $\mathrm{H}\left(\mathrm{H}_{150}\right)$ and the widest $\mathrm{S}\left(\mathrm{S}_{300}\right)$. The highest CU and $\mathrm{DU}_{\mathrm{lq}}$ values (93.11% and 0.907) were recorded under the highest $\mathrm{H}\left(\mathrm{H}_{200}\right)$ and closer $\mathrm{S}\left(\mathrm{S}_{200}\right)$. To obtain the height CU andDU $\mathrm{Iq}_{\mathrm{lq}}$ (93.11% and 0.907 , respectively) under grouped H and Sconditions sprinklers must be install at S_{200} and H_{200}. Fig (2) show that, under S_{200}, when the Hwas increased from H_{150} to H_{175} and H_{200} the CU values increased by 15.08 \& 25.49%, while those of $\mathrm{DU}_{\mathrm{lq}}$ were $19.24 \& 32.22 \%$, respectively.

Fig. (2): The percentage of uniformity parameters under H_{175} and H_{200} compared to H_{150} one.

As shown in Tables (1and 2) the trio-interactions between the quantitative variableswere significant. Thehighest CUvalues (94.67 and 93.93%) were recorded when the center pivot operated under ($\mathrm{P}_{60}, \mathrm{H}_{200}$ and $\left.\mathrm{S}_{200}\right)$ and $\left(\mathrm{P}_{40}, \mathrm{~S}_{200}\right.$ and $\left.\mathrm{H}_{200}\right)$, respectively without significant differences between them. While, the lowest CUvalue (63.37\%) wasrecorded when operate the center pivot under $\mathrm{P}_{20}, \mathrm{H}_{150}$ and S_{300}. So,
to save the pumping costs, it's recommended to operate the center pivot at $\left(\mathrm{P}_{40}, \mathrm{~S}_{200}\right.$ and $\left.\mathrm{H}_{200}\right)$ (Table, 1).
The highest $\mathrm{DU}_{\mathrm{lq}}$ value (0.933) was recorded when the center pivot operatedunder $\mathrm{P}_{40}, \mathrm{~S}_{200}$ and H_{200}, while the lowest one (0.577) was recorded at $\mathrm{P}_{20}, \mathrm{~S}_{300}$ and $\mathrm{H}_{150}($ Table, 2).
From Tables (1and 2), it's clear also that, when the center pivot wasoperatedunder both H_{200} and S_{200} at different P treatments $\left(\mathrm{P}_{20}, \mathrm{P}_{40}\right.$ and $\left.\mathrm{P}_{60}\right)$ gained the highest $\mathrm{CU}(\mathrm{CU}>90 \%)$ and $\mathrm{DU}_{\mathrm{lq}}\left(\mathrm{DU}_{\mathrm{lq}}>0.867\right)$.

2- Effect of quantitative variables on CV:

Data illustrated in Table (3) focused on the significant influence of P, S, H and their interactions on CV . The CV value was significantly decreased with increasing each P and H , but increased with increased with increasing spacing between sprinklers.

Table (3):The effects of operating pressure, spacing between sprinklers and height of sprinkler above the groundsurface on coefficient of variance (CV) values.

$C V$ value at the lowest height P_{20} was higher than those at P_{40} and P_{60} by 27.86 and 43.94%, respectively. Also, CV at the lowest sprinkler height $\left(\mathrm{H}_{150}\right)$ was higher than those at H_{175} and H_{200} by 48.40 and 129.27%, respectively. CV at the lowest sprinkler spacing (S_{200})was lower than those at S_{250} and S_{300} by 23.74 and 47.79%, respectively.

As shown in Table (3) the dual interactions between the quantitative variables were significant.

The CV decreased with increasing both P and S . Under S_{200} and different $\mathrm{P}\left(\mathrm{P}_{20}, \mathrm{P}_{40}\right.$ and $\left.\mathrm{P}_{60}\right)$ the uniformity parameter values were $24.02,17.02$ and 15.97%, respectively.Thecorresponding values under S_{300} were $32.65,27.43$ and 24.15%, respectivelyin the same order.

Data grouped according to P and H (Table 3), the CV was decreased by increasing P and H.The lowest CVvalue (11.93\%) was recorded under the highest P and Htreatment $\left(\mathrm{P}_{60}\right.$ and $\left.\mathrm{H}_{200}\right)$. While the highest CV value (38.11%) was recorded under the lowest P and Htreatment $\left(\mathrm{P}_{20}\right.$ and $\left.\mathrm{H}_{150}\right)$. Under H_{200} and both P_{40} and P_{60} was recorded the lowest CV (13.14 and11.93, respectively). The difference between CV resulted from P_{40} and P_{60} was insignificant. Therefore, to obtain the lowest CV under grouped according to P and Hconditions the center pivot must operate at pressure of P_{40} and height of H_{200}.

The interaction between S and H was significant and declare thatthe lowest CV value (9.02%) was recorded under the highest $H\left(\mathrm{H}_{200}\right)$ and closer S (S_{200}). While the highest CV value (37.31%) was recorded under the lowest $\mathrm{H}\left(\mathrm{H}_{150}\right)$ and the widest $\mathrm{S}\left(\mathrm{S}_{300}\right)$. To obtain the lowest CV sprinklers must be installed at S_{200} and H_{200}.

From Fig (1), under S_{200}, when the H increased from H_{150} to H_{175} and H_{200} the CV declined to -39.26\&-69.78\%. The same trend was recorded under S_{250} and S_{300}.

Thetrio-interaction between the quantitative variableswas significant. According to the interaction between the overall testing conditions the lowest CV (6.98 \%)was recorded when the centerwas operated under P_{40},
H_{200} and S_{200} conditions. While, the highest CV (40.58\%) was recorded when operate the center pivot under $\mathrm{P}_{20}, \mathrm{H}_{150}$ and S_{300} conditions(Table 3).

It is clear that, when operate the center pivot under both H_{200} and S_{200} and different $\mathrm{P}\left(\mathrm{P}_{20}, \mathrm{P}_{40}\right.$ and $\left.\mathrm{P}_{60}\right)$ gained the lowest $\mathrm{CV}(\mathrm{CV}<12 \%)$.

3- Correlation coefficient:

The correlation coefficient between the uniformityparameters and the considered quantitative variableswere arranged in (Table,4). The correlation coefficients between the uniformity parameters and the quantitative variables were very strong.

There were negative correlations between both the $\mathrm{CU} \& \mathrm{DU}_{\mathrm{lq}}$ and S ,but it waspositive with each of P and H.An opposite trend was recorded with CV. So, its correlations with both P and H were negative, while it was positive with S .

Table (4): Correlation coefficientbetweenthe uniformity parametersand the quantitative variables.

Quantitative variables	Uniformity parameters		
	CU	$\mathrm{DU}_{\mathrm{lq}}$	CV
P	0.978	0.979	-0.971
S	-0.994	-0.991	1.000
H	0.993	0.997	-0.996

As shown in Fig. (3), the CU was consistently higher than $\mathrm{DU}_{\mathrm{lq}}$ and both are inversely related to CV. This result is on line with Keller and Bliesner(2000). They reported that, according to the mathematical relationship between CU andDU l_{lq}, CU will always be larger (when both are decimals or a percentage) since positive and negative deviations from the mean application volume are used in the calculation of CU . whereas, only negative deviations are used in the calculation of $\mathrm{DU}_{\mathrm{lq}}$. Both $\mathrm{DU}_{\mathrm{lq}}$ and CU are linearly related to CV (Fig.3), similar results were reported
by Tarjueloet al.,(1999). Warrick (1983) showed similar relationships in an analytical analysis of $\mathrm{CU}, \mathrm{DU}_{\mathrm{lq}}$, and CV .

As shown in Fig. (3), the obtained relation between CU and $\mathrm{DU}_{\mathrm{lq}}$ against CV were:

$$
\begin{aligned}
& \mathrm{CU}=101.82-0.92 \mathrm{CV}, \mathrm{R}^{2}=0.99 \\
& \mathrm{DU}_{\mathrm{lq}}=99.21-1.03 \mathrm{CV}, \mathrm{R}^{2}=0.96
\end{aligned}
$$

The relationships from the present studywere close to relationships found by Heermannet al. (1992) and Dukes (2006) despite there were differences and variation in the testing conditions.

Fig. (3): Relationships between DUlq and CU with (CV).

CONCLUSIONS

From the obtained results, it is recommended to apply the highest uniformity parameters and good management of center pivot irrigationunder Sebha region and other similar regions.Tooptimize the system performance, center-pivot shouldbe operatedunder 40 bar
pressure (P_{40}), 200 cm between sprinklers (S_{200}) and 200 cm height of sprinklers above the ground $\left(\mathrm{H}_{200}\right)$.

REFERENCES

Alazba, A.A.;Alghobari, H.M. and Alotay, A.A. (2004).Assessment of Surface and Subsurface Water Uniformities for Center Pivot. J. King Saud Univ., Agric. Sci., 16:127-136.

Allen, R. G.; Keller, J. and Martin, D. (2000).Center Pivot System Design.The Irrigation Association. www.irrigation.org.

ASAE.(2001). Test procedure for determining the uniformity of water distribution of center pivot and lateral move irrigation machines equipped with spray or sprinkler nozzles. ANSI/ASAE Standard S436.1, American Society of Agricultural Engineers, St. Joseph, MI.

Brennan, D. (2008). Factors affecting the economic benefits of sprinkler uniformity and their implications for irrigation water use. Irrig. Sci., 26:109-119

Burt, C. M.;Clemmens, A. J.;Strelkoff, T. S.; Solomon, K. H.;Bliesner, R. D.; Hardy, L. A.; Howell, T. A. and Eisenhauer, D. E. (1997). Irrigation performance measures: Efficiency and uniformity. J. Irrig. Drain. Eng. 123: 423-442.

Clark, G. A.;Srinivas, K.; Rogers, D. H.; Stratton R. and Martin, V. L. (2003). Measured and simulated uniformity of low drift nozzle sprinkler. Trans. ASAE 46: 321-330.

Dechmi, F.;Playán, E.;Faci, J. and Tejero, M. (2003).Analysis of an irrigation district in northeastern Spain. I: Characterisation and water use assessment. Agric. Water Manage. 61: 75-92.

Dukes, M.D. (2006).Effect of wind speed and pressure on linear move irrigation system uniformity. Appl. Eng. Agric. 22:541-548.

Faci, J. M.; Salvador, R.; Playa' n, E., and Sourell, H. (2001). Comparison of fixed and rotating spray plate sprinklers. J. Irr. Drain. Eng. 4: 224-236.

Gomez, K.A. and Gomez A.A. (1984). Statistical Procedures For Agriculture Research. A Wiley - Inter Science Publication, John Wiley sons, lnc. New York, USA.

Hanson, B. R. and Orloff, S. B. (1996).Rotator nozzles more uniform than spray nozzles on the center-pivot sprinklers.California Agriculture. 50: 32-35.

Heermann, D.F. and Hein, P.R. (1968). Performance characteristics of self-propped center pivot sprinkler irrigation system. Trans. ASAE 11:11-15.

Heermann, D.F.; Duke, H.R.; Serafirm, A.M. and Dawson, L.J. (1992). Distribution functions to represent center-pivot water distribution. Trans. ASAE 35:1465-1472.

Hills, D. and Barragan, J. (1998). Application uniformity for fixed and rotating spray plate sprinklers. Applied Engineering in Agriculture, 14: 33-36.

Keller, J. (1983). SCS national engineering handbook section 15.US government office, Washington, DC.

Keller, J., and Bliesner, R. D. (1990).Sprinkle and Trickle Irrigation. New York, USA: Van Nostrand 460 Reinhold. 652 pp.

Kincaid, D. C. (2005). Application rates from center pivot irrigation with current sprinkler types. Appl. Engi. Agric. 4: 605-610

Mateos, L.;Mantovani, E. C. and Villalobos, F. J. (1997).Cotton response to non-uniformity of conventional sprinkler irrigation.Irrig Sci. 17: 47-52.

Merriam, J. L., and Keller, J. (1978). Farm irrigation system evaluation: A guide for management, Dept. of Agricultural and Irrigation Engineering, Utah State Univ., Logan, Utah.

Moazed, H.;Bavi, A.;Boroomand-Nasab, S.; Naseri, A. and Albaji, M. (2010).Effect of climatic and hydraulic parameters on water uniformity coefficient in solid set systems. J. Applied Sci., 10: 1792-1796.

Ortı'z, J. N.; de Juan, J. A. and Tarjuelo, J. M. (2010). Analysis of water application uniformity from a center pivot irrigator and its effect on sugar beet (Beta vulgaris L.) yield. BiosystemsEngineering, 105 :367-379.

Rana, M. A.;Arshad, M. and Masud, J. (2006).Effect of basin, furrow and raingun sprinkler irrigation systems on irrigation efficiencies, nitrate-nitrogen leaching and yield of Sunflower. Pakistan J. Water Res., 10:1-7.

Statistical Package for Social Sciences (SPSS).(2008). Statistical Software.P.17.

Tarjuelo, J. M.; Montero, J.;Honrubia, F. T.; Ortiz, J. J. and Ortega, J. F. (1999).Analysis of uniformity of sprinkler irrigation in a semiarid area.Agric. Water Manag. 40 : 315-331.

Warrick, A. W. (1983). Interrelationships of irrigation uniformity terms.J. of Irrigation and Drainage Engineering. 109: 317-332.

الملخص العربي

تقييم آداء نظام الرى بالرش المحورى تحت ظروف المناطق الجافة

محمد عبد الواحد' وعاطف سويل「
تهغف هذه الاراسة إلى تقييم تأثئبر ضغط التشغيل(P)، المسافة بين الرشاثشات (S)وارتفاع الرشاثشات عن سطح الأرض (H) على معامل الانتظامية (CU)و إنتظاميةالتوزيع (CV) تحت نظام الري بالرش المحوري. وكانت المعاملات كما يلي: ثلاثة ضغوط تشغيل (P) P
 وقد أظهرت النتائج أن أعلى قيم C و و CU وانتا تحت ضغط النثشغيل العالي (•7 بار)
 (r . . .
 وإرتفاع الرشاثشات عن سطح الأرض (HS) وأيضا بتقليل والمسافة بين الرشاثشات (SS). بينما
 معامل التوزيع عند تشغيل النظام على (${ }^{\text {ع }}$
 . $\mathrm{HS}_{200} \mathrm{SS}_{200}$
و علية توصى الدر اسة بتشغيل نظام الري بالرش المحوريتحت ظروف منطقة الدراسة و المناطق

ا ـ قسم الأراضي والمياه (هنسة زراعية)، كلية الزراعة، جامعة الفيوم، مصر
ץ- البرنامج الإقليمى لحوض النيل وجنوب الصحراء الأفريقية، إيكاردا، مصر

[^0]: 1. Water and Soil Dept. (Agric. Eng.), Fac. of Agric., Fayoum Univ. Egypt.
 2. ICARDA, Egypt, a.swelam@cgiar.org
