Bacteriological Studies on *Salmonella* Isolated from Balady Chicken Meat

Eid H. M.*, Helal I. M. and Radwa H. Kouta

Bacteriology, Immunology and Mycology Department, Fac. Vet. Med. Suez Canal University, *Animal Health research institute -Port-Said branch, ARC.

Abstract

Two hundred freshly slaughtered of balady chicken samples were collected aseptically from markets in Port-Said city during the period from September 2016 to September 2018. Nine Salmonella isolates (4.5%) were isolated and therefore serologically identified. The isolated Salmonellae were Salmonella Typhimurium 2/9 (22.2%) and Salmonella Muenster 2/9 (22.2%) which was the most frequent identified. Other serotypes as Salmonella Enteritidis 1/9 (11.1%), Salmonella Blegdam 1/9 (11.1%), Salmonella Anatum 1/9 (11.1%), Salmonella Lamberhurst 1/9 (11.1%) and Salmonella Avinde 1/9 (11.1%) were also identified. The antibiogram revealed highly resistant to Erythromycin and Oxytetracycline by a percentage (100%) followed by Nalidixic acid (44.4%) while it was highly sensitive to Chloramphenicol and Ciprofloxacin by a percentage (100%) followed by Gentamycin (88.9%). Polymerase Chain Reaction detected the virulence genes (stn, sopB, spvC and bcfC) genes were positive in all tested Salmonella serotypes 7/7 (100%) while (avrA) gene was positive in 6/7 (85.7%) of tested Salmonella serotypes.

Key words: Salmonella- chicken- PCR- Antibiogram sensitivity-Port-Said.

Introduction

Salmonella is a cause of foodborne illness worldwide with estimated annual an economic loss about 3.7 billion dollars United **States** Department of Agriculture Salmonellosis (2015).was considered as an important public health problem which causes high morbidity on poultry and human. The main clinical signs of salmonellosis in human are (typhoid) enteric fever and gastroenteritis so enteric fever is a systemic illness which results from S. Typhi and S. Paratyphi Pegues and Miller (2000). Over use of antimicrobial agents in prophylaxis, poultry for treatment purposes and growth promotion got major а antimicrobial resistance and so multidrug resistance, which are

observed among many serovars of Salmonella Duong et al. Polymerase Chain (2006). Reaction (PCR) is a method to investigate outbreaks of foodborne and identification of pathogens Riyaz et al. (2004) while PCR is high specific, give and less timefast results cultural consuming than technique. PCR technique considered as a rapid diagnostic tool for detection of Salmonella in food.

Therefore. this work was observed for isolation and identification of Salmonella from chicken meat, serotyping, study antimicrobial sensitivity of Salmonella isolates and screens the presence of virulence genes (stn, sopB, spvC, bcfC and *avr*A) in the isolated serotypes by using PCR method.

Material and Methods

A total of 200 freshly slaughtered balady chicken samples collected aseptically from markets in Port-Said city since September 2016 to September 2018, the collected samples were from chicken breast and then subjected for

bacteriological examination.

• Isolation and identification of *Salmonella* isolates

Twenty-five grams of the test samples were added aseptically to 225 ml buffered peptone water then incubated at 37°C for 18 hours after that enriched on **Rappaport-Vassiliadis** sova broth by incubation at 41.5°C / 24 hours. Enriched samples streaked were on Xylose lysine deoxycholate agar and Hekton enteric agar and incubated at 37 °C/24 hrs Oxoid (1998). Suspected colonies were purified on nutrient agar, biochemically identified by triple sugar iron agar, urea hydrolysis test, lysine decarboxylation test, indole production test, citrate utilization test and oxidase test Oxoid (1998). Auto-agglutination test was made for biochemically positive isolates, then serological confirmation by poly O and poly H antisera ISO 6579 (2002).

• Antimicrobial susceptibility testing

By using disc diffusion technique *Finegold and Martin (1982)* and isolates were classified as sensitive, intermediate and resistant according to *CLSI (2011)*.

• PCR of Salmonella serotypes

For detection of the different virulence genes in *Salmonella* serotypes (**Table 1 and Table 2**) were performed according to *Sambrook et al.* (1989).

Results And Discussion

The prevalence of *Salmonella* in chicken samples was 9/200 (4.5%) as shown in **Table (3)** which is nearly the same result with *Adelino et al. (2018)* who detected *Salmonella* in 3/850

(3.7%) in chicken samples from Brazil. The results on this study are higher than the reports of FSAI (2004) who detected 245 (3.2%) Salmonella isolates in Ireland from 7,616 raw poultry meats samples. On the other hand, the results on this study was lower than *Dhary* (2019) who surveyed the prevalence of Salmonella in retail outlets 16/225 was (7.1%)and Elkenanv et al. (2019) who isolated Salmonella from chicken samples 50/170 (29.4%) in Egypt.

Variations in the prevalence of Salmonella from chicken meatin many studies could be due to the differences in type and number of samples. sensitivity of detection methods, time of sampling and storage conditions. Salmonella isolates were serotyped in this study into Salmonella Typhimurium 2/9 (22.2%)and Salmonella Muenster 2/9 (22.2%) which was the most frequent identified. Other serotypes as Salmonella Enteritidis 1/9 (11.1%), Salmonella Blegdam 1/9 (11.1%), Salmonella Anatum 1/9 (11.1%),Salmonella Lamberhurst 1/9 (11.1%) and Salmonella Ayinde 1/9 (11.1%) were also identified as shown in Table (4). These results nearly the same result with Hee et al. (2007) who detected Salmonella Typhimurium 15/64 (23.4%) which was the most common

broiler chicken serotype in These results were isolates. higher than Narapati (2007) who isolated Salmonella Typhimurium 8/52 (15.38%). While it was lower than Chaiba et al. (2008) who isolated Salmonella Typhimurium (40.35%) from chicken samples at markets as the most frequent serotype isolated out of 57 Salmonella isolates in Morocco.

According the results to concerning antimicrobial susceptibility tests in Table (5). Salmonella isolates showed high resistance to Erythromycin and Oxytetracycline by a percentage (100%) followed by Nalidixic acid (44.4%) while it was highly sensitive to Chloramphenicol and Ciprofloxacin bv а percentage (100%) followed by Gentamycin (88.9%), Colistin (77.8%) and finally Ceftoxin and Trimethoprim+Sulfamethaxzole by a percentage (66.7%) for each which is in agreement with Martha et al. (2006) who observed all tested Salmonella Enteritidis strains showed resistance to Erythromycin and 80/80 Tetracycline (100%). These results were disagreed with Ulaya et al. (2012) who showed that. Salmonella Enteritidis revealed sensitivity to Amoxicillin (95.7%), Tetracycline (82.6%)and Gentamicin (17.4%).

In present study 7 Salmonella serotypes were examined by PCR for determination the virulence genes (stn, spvC, sopB, bcfC and avrA) as shown in Table (6). We found stn and sopB genes were positive in all tested serotypes 7/7 (100%) as shown in Figure (1) which is parallel with Vivek et al. (2015) who observed that. Salmonella Typhimurium and Salmonella Enteritidis were positive in stn gene and Prager et al. (1995) who showed S. Typhimurium and S. Enteritidis were found to

carry stn gene. spvC gene was positive in all tested serotypes 7/7 (100%) as shown in **Figure** (2) and *bcf*C gene was positive in all tested Salmonella isolates 7/7 (100%) as shown in **Figure** (3) while *avr*A present in 6/7 (85.7%)of the isolated Salmonella which is present in all *Salmonella* serotypes except Salmonella Lamberhurst as shown in Figure (4) and it is in agreement with Borges et al. (2013) who showed avrA gene present in 100% in Salmonella Enteritidis strains.

Primer	Sequence	Amplified product	Reference
stn	TTG TGT CGC TAT CAC TGG CAA CC	617 bp	Murugkar et al.
	ATT CGT AAC CCG CTC TCG TCC		(2003)
avrA	CCT GTA TTG TTG AGC GTC TGG	422 bp	Huehn et al.
	AGA AGA GCT TCG TTG AAT GTC C		(2010)
sopB	tca gaa gRc gtc taa cca ctc	517 bp	
	tac cgt cct cat gca cac tc		
bcfC	acc aga gac att gcc ttc c	467 bp	
	tte tge teg eeg eta tte g		
spvC	acc aga gac att gcc ttc c	467 bp	
	tte tga teg eeg eta tte g		

Table (2): Cycling conditions of the different primers for virulence genes during PCR:

Gene	Primary denaturation	Secondary denaturation	Annealing Extension		No. of cycles	Final extension	
stn	94°C 5 min.	94°C 30 sec.	59°C 40 sec.	72°C 45 sec.	35	72°C 10 min.	
avrA	94°C 5 min.	94°C 30 sec.	58°C 40 sec.	72°C 45 sec.	35	72°C 10 min.	
sopB	94°C 5 min.	94°C 30 sec.	58°C 40 sec.	72°C 45 sec.	35	72°C 10 min.	
bcfC	94°C 5 min.	94°C 30 sec.	53°C 40 sec.	72°C 45 sec.	35	72°C 10 min.	
spvC	94°C 5 min.	94°C 30 sec.	58°C 40 sec.	72°C 45 sec.	35	72°C 10 min.	

Total number of chicken samples (n)	Salmonella isolates	
	Number	%
200	9	4.5

 Table (3) Number and percentage of of Salmonella isolates:

Table (4): Number and percentage of different serotypes of the isolated Salmonella from chicken samples n=9:

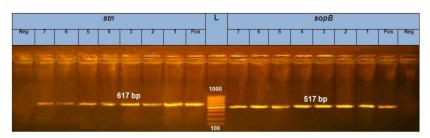

Serotype	Number of isolates	% of <i>Salmonella</i> serotypes		
S. Typhimurium	2	22.2		
S. Enteritidis	1	11.1		
S. Blegdam	1	11.1		
S. Anatum	1	11.1		
S. Muenster	2	22.2		
S. Lamberhurst	1	11.1		
S. Ayinde	1	11.1		
Total no.	9	100		

Table (5): Number and percentage of Salmonella serotypes exhibiting resistance and sensitivity to various antimicrobial agents (n=9):

Antimicrobial agents	Sensitive Salmonella isolates		Intermediate		Resistant Salmonella isolates	
	No	%	No	%	No	%
Levofloxacine (5 µg)	5	55.6	1	11.1	3	33.3
Amoxicillin (10 µg)	2	22.2	4	44.4	3	33.3
Cefotaxim (30 µg)	6	66.7	1	11.1	2	22.2
Chloramphnicol(30µg)	9	100	0	0	0	0
Colistin (10 µg)	7	77.8	0	0	2	22.2
Erythromycin (15µg)	0	0	0	0	9	100
Gentamycin (10µg)	8	88.9	1	11.1	0	0
Nalidixic acid (30 μg)	5	55.6	0	0	4	44.4
Ciprofloxacin (5 µg)	9	100	0	0	0	0
Oxytetracycline (30 µg)	0	0	0	0	9	100
Trimethoprim+Sulfamethaxzole (1.25+23.75 μg)	6	66.7	1	11.1	2	22.2

Sample	Results					
	stn	spvC	sopB	bcfC	avrA	
S. Typhimurium	+	+	+	+	+	
S. Enteritidis	+	+	+	+	+	
S. Blegdam	+	+	+	+	+	
S. Anatum	+	+	+	+	+	
S. Muenster	+	+	+	+	+	
S. Lamberhurst	+	+	+	+	-	
S. Ayinde	+	+	+	+	+	

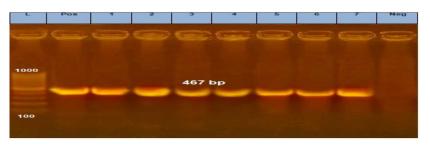

Table (6): Results of Polymerase Chain Reaction technique fordifferent virulence genes of Salmonella serotypes:

Figure (1): PCR of (stn) and (sop B) in Salmonella serotypes:

Primer set for genes (*stn* and *sop***B**) (617 bp and 517 bp) respectively. Neg= negative control*, Pos=positive control* and L= ladder (100-1000 bp). All lanes showed positive results: Lane (1): *S*. Typhimurium, Lane (2): *S*. Enteritidis, Lane (3): *S*. Blegdam, Lane (4): *S*. Anatum, Lane (5): *S*. Muenster, Lane (6): *S*. Lamberhurst and Lane (7): *S*. Ayinde.

*(Positive and or negative controls were represented by field sample that were previously confirmed to be positive or negative by PCR for the related genes in the Reference laboratory for veterinary quality control on poultry production, Animal health research institute).

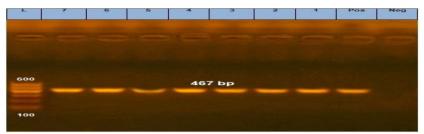


Figure (2): PCR of (*spv*C) in *Salmonella* serotypes:

Primer set for $spv\bar{C}$ gene (467 bp). Neg= negative control*, Pos=positive control* and L=ladder (100-1000 bp). All lanes showed positive results: Lane (1): S. Typhimurium, Lane (2): S. Enteritidis,

Lane (3): *S*. Blegdam, Lane (4): *S*. Anatum, Lane (5): *S*. Muenster, Lane (6): *S*. Lamberhurst and Lane (7): *S*. Ayinde.

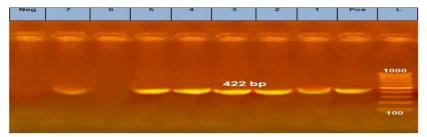

*(Positive and or negative controls were represented by field sample that were previously confirmed to be positive or negative by PCR for the related genes in the Reference laboratory for veterinary quality control on poultry production, Animal health research institute).

Figure (3): PCR of (*bcf*C) in *Salmonella* serotypes:

Primer set for bcfC gene (467 bp). Neg= negative control*, Pos=positive control* and L= ladder (100-600 bp). All lanes showed positive results: Lane (1): *S*. Typhimurium, Lane (2): *S*. Enteritidis, Lane (3): *S*. Blegdam, Lane (4): *S*. Anatum, Lane (5): *S*. Muenster, Lane (6): *S*. Lamberhurst and Lane (7): *S*. Ayinde.

*(Positive and or negative controls were represented by field sample that were previously confirmed to be positive or negative by PCR for the related genes in the Reference laboratory for veterinary quality control on poultry production, Animal health research institute).

Figure (4): PCR of (*avr*A) in *Salmonella* serotypes:

Primer set for *avr*A gene (422 bp). Neg= negative control*, Pos=positive control* and L= ladder (100-1000bp). Lanes (1-2-3-4-5-7) showed positive results and lane (6) *S*. Lamberhurst showed negative result.

*(Positive and or negative controls were represented by field sample that were previously confirmed to be positive or negative by PCR for the related genes in the Reference laboratory for veterinary quality control on poultry production, Animal health research institute).

Conclusion

Salmonellosis is very important public health problem which has a negative effect on human health all over the world. Antibiogram considered an important tool to detect the proper antibacterial which should be used in treatment of salmonellosis and must be know the antimicrobial sensitivity to *Salmonella* to prevent the random use of antibiotic in poultry treatment and so to avoid the occurrence of antibiotic resistance. PCR is a good rapid tool for detection the virulence genes in pathogenic bacteria

References

Adelino, d. C. N., Larrayane, A. C., Ricardo, C.T. C., Dália, d. P. R., Sergio, B. M., Eduardo, E. d. S. F., Carlos, A. C. J. (2018): *Salmonella* isolated from chicken carcasses from a slaughterhouse in the state of Mato Grosso, Brazil: antibiotic resistance profile, serotyping, and characterization by repetitive sequence-based PCR system. Poultry Science. Vol. 97, Pp. 1373–1381. https://doi.org/10.3382/ps/pex406.

Borges, K. A., Furian, T. Q., Borsoi, A., Moraes, H. L. S., Salle, C. T. P., Nascimento, V. P. (2013): Detection of virulence-associated genes in *Salmonella* Enteritidis isolates from chicken in Southerm Brazil. Pesquisa Veterinária Brasileira. 33(12), 1416-1422.

Chaiba, A., Rhazi, F. F., Abdelkader, C., Soulaymani, B. R., Zerhouni, M. (2008): Occurrence of *Salmonella* in Chicken Carcasses and Giblets in Meknes-Morocco. Pakistan Journal of Nutrition, Pp. 231-233. DOI: 10.3923/pjn.2008.

CLSI (**Clinical and Laboratory Standards Institute**) (2011): Performance standards for antimicrobial susceptibility testing; twenty first informational supplements, 1-172.

Dhary, A. A. (2019): Occurrence and antimicrobial susceptibility of *Salmonella* isolates from grilled chicken meat sold at retail outlets in Erbil City, Kurdistan region, Iraq. Ital. J Food Saf. 8(2), 8233.

Duong, V. N., Paulsen, P., Suriyasathaporn, W., Smulders, F. J., Kyule, M. N., Baumann, M. P. *et al.* (2006): Preliminary analysis of tetracycline residues in marketed pork in Hanoi, Vietnam. Annals of the New York Academy of Sciences. 1081, 534-542.

Elkenany, R., Elsayed, M. M., Zakaria, A. I., El-Sayed, S. A., Rizk, M. A. (2019): Antimicrobial resistance profiles and virulence genotyping of *Salmonella enterica* serovars recovered from broiler

chickens and chicken carcasses in Egypt. BMC veterinary research. 15(1), 124. doi:10.1186/s12917-019-1867-z.

Finegold, S. M. and Martin, W. J. (1982): Diagnostic microbiology. 6th Ed., the C.V. Mosby Company, St. Louis, Toronto, London.

FSAI (Food Safety Authority of Ireland) (2004): Report on Zoonoses in Ireland. Dublin, 1-46.

Hee, J. C., Yeon, J. L., In, S. H., Sae, Y. K., Hye, W. C., Joon, Y. S., Jun, M. K., Yong, H. P., Ji-Hun, J., Woo, J. K. (2007): Characteristics of non-typhoidal *Salmonella* isolates from human and broiler chickens in Southwestern Seoul, Korea. J Korean Med Sci. 22(5), 773–778. doi: 10.3346/jkms.2007.22.5.773.

Huehn, S., La Ragione, R. M., Anjum, M., Saunders, M., Woodward, M. J., Bunge, C., Helmuth, R., Hauser, E., Guerra, B., Beutlich, J., Brisabois, A., Peters, T., Svensson, L., Madajczak, G., Litrup, E., Imre, A., Herrera-Leon, S., Mevius, D., Newell, D. G., Malorny, B. (2010): Virulotyping and antimicrobial resistance typing of *Salmonella enterica* serovars relevant to human health in Europe. Foodborne Pathogens Dis 2010. 7, 523-35.

ISO 6579 (International Organization for standardization) (2002): Microbiology of food and animal feeding stuffs. Horizontal methods for the detection of *Salmonella* species (4th ed.).

Martha, O. C., Aldemir, R. R., Luciana, R. d. S., Fernando, P., Hamilton, L. S. d. M., Carlos, T. P. S., Silvio, L. d. S. R., Vladimir, P. d. N. (2006): Antibiotic resistance in *Salmonella* Enteritidis isolated from broiler carcasses. Brazilian Journal of Microbiology. 37, 368-371. https://doi.org/10.1590/S1517-83822006000300030.

Murugkar, H. V., Rahman, H., Dutta, P. K. (2003): Distribution of virulence genes in *Salmonella* serovars isolated from man and animals. Indian J Med Res. 117, 66-70.

Narapati, D. (2007): Prevalence and Antimicrobial Resistance of *Salmonella* in imported chicken carcasses in Bhutan. Chiang Mai University and Freie Universitat Berlin, Pp. 1-92.

Oxoid, (1998): The oxoid manual of culture media.8th Ed. Oxoid, Limited, Basingstoke, Hampshire, England.

Pegues, D. and Miller, S. I. (2000): *Salmonella* species including *Salmonella* Typhi. In GL Mandell, JE Bennett & R. Dolin (Eds.), Principles and Practice of Infectious Diseases (7th ed., Vol. 2): Elsevier Inc.

Prager, R., Fruth, A., Tschäpe, H. (1995): Salmonella enterotoxin (*stn*) gene is prevalent among strains of Salmonella Enterica, but not among Salmonella bongori and other Enterobacteriaceae. FEMS Immunol Med Microbiol. 12(1), 47-50.

Riyaz-Ul-Hassan, S., Verma, V., Qazi, G. N. (2004): Rapid detection of *Salmonella* by polymerase chain reaction. Mol Cell Probes. 18, 333–339.

Sambrook, J., Fritscgh, E. F., Mentiates (1989): Molecular coloning. A laboratory manual. Vol !., Cold spring Harbor Laboratory press, New York.

Ulaya, W., Hang'ombe, M., Zulu, V., Nalubamba, K., Mulenga, E., Isogai, H., Isogai, E. (2012): Distribution of virulence genes and antimicrobial susceptibility of *Salmonella* isolated from dogs and chickens in Zambia. IJAVMS, Vol. 6, Issue 5, 2012, 360-367. DOI: 10.5455/ijavms.170 Research Article.

USDA (United States Department of Agriculture) (2015): Economic Research Service. Available from: http://www.ers.usda.gov/data-products/chartgallery/detail.aspx?chartId=50500.Accessed on 25-04-2016.

Vivek, K. N., Sanjay, S., Anil, P., Nitin, E. G. (2015): Detection of virulence genes in *Salmonella* Species isolated from chevon and chicken meat. Journal of Animal Research. Vol. 5, No 1, Pp. 115-118.

در اسات بكتريولوجيه عن السالمونيلا المعزوله من لحوم الدجاج البلدى حمزه ابراهيم عيد ، ايهاب محمود هلال *، رضوى حسني قوطه قسم البكتريا والمناعه والفطريات - كليه الطب البيطري - جامعه قناه السويس معهد بحوث صحه الحيوان - فرعى بورسعيد, مركز البحوث الزراعية *

اجريت الدراسه على 200 عينة من الدجاج البلدي المذبوح بشكل عشوائي من أسواق بورسعيد لدراسة مدى انتشار أنواع السالمونيلا. كشف الفحص البكتريولوجي لعينات لحوم الدجاج عن عزل 9 من عزلات السالمونيلا (4.5٪). وكشف التصنيف السيرولوجي عن عزل السالمونيلا تيفميريم (22.2٪)، السالمونيلا مونستر (22.2٪), السالمونيلا انتيريتيس (11.1٪)، السالمونيلا الناتم (11.1٪), السالمونيلا البلجدام (11.1٪)، السالمونيلا انتيريتيس لامبر هورست (11.1٪) و السالمونيلا اييندي (11.1٪). كشف اختبار الحساسيه للمضادات المير وبيه للسالمونيلا المونيلا البلجدام (11.1٪)، السالمونيلا انتيريتيس لامبر هورست (11.1٪) و السالمونيلا اييندي (11.1٪). كشف اختبار الحساسيه للمضادات والأوكسيتتر اسيكلين بنسبة (10.1٪)، السالمونيلا انتيريتيس الميدير وبيه للسالمونيلا المعزولة، أن العزلات المختبرة كانت شديدة المقاومة للإيريثر وميسين والأوكسيتتر اسيكلين بنسبة (100٪) يليها حمض الناليديكسيك (44.4)) بينما كانت حساسة للغاية للكلور امفينيكول وسيبر وفلوكساسين بنسبة (100٪) تليها الجنتاميسين (88.9٪). كما الخرارة الخرارة الخرارة الخرارة الخرارة الخرارة المورية الغايسة المونيلا النالمونيلا المرادة الموريمينين (20.8%). كسولية الموريمينين المير وميسين (11.1٪) السالمونيلا المونيلا المورية، أن العزلات المختبرة كانت شديدة المقاومة للإيريثر وميسين والأوكسيتتر اسيكلين بنسبة (100٪) يليها حمض الناليديكسيك (44.4٪) بينما كانت حساسة للغاية للكلور امفينيكول وسيبر وفلوكساسين بنسبة (100٪) تليها الجنتاميسين (88.9٪). كما والأوكسيتتر البلمره أن 7 عترات من السالمونيلا كانت إيجابية لوجود جين كانت ألحراوة (101.8%).