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Introduction                                                               

Ultracold atomic gases, in a state of Bose-
Einstein condensation (BEC), provide a highly 
controllable experimental setting for studies of 
many-body quantum phenomena, in particular 
superuidity and superconductivity [1]. Both of 
these two phenomena may occur in a systems 
which obey Bose-statistics. In the Bose-systems 
such a condensate appears due to a direct grouping 
of bosons in the ground state and in the Fermi 
systems due to the formation of Cooper pairs, 
which are also bosons. Therefore, it seems very 
attractive to explain superfluidity of the BEC.

Experimentally, superfluidity nature of an 
ultracold boson gases in a state of BEC has 
become a subject of extensive investigation. In 
this sprite, Cooper and Hadzibabic [2] proposed 
a direct method to measure the superfluid fraction 
of an ultra cold atomic boson gas. This method 
is closely analogous to the classic experimental 
method of Andronikashvili [3, 4] for measuring 
the superfluid fraction of heluim liquid. The key 
idea in experiments is that the super fluid  is 
distinguished from normal fluid by their unusual 
response to rotation. However, a natural way to 
discuss superfluidity in a BEC system is to focus 
on its rotational properties. For a macroscopic 
system the moment of inertia is given by the rigid 
value unless the condensate exhibits superfluidity. 
Crucial deviations from the rigid motion occur 
in rotating liquid helium below the lambda 
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temperature (transition temperature from normal 
helium to superfluid helium, heluim II ). 

Superfluid phase of He II possesses some 
more unique properties such as: (i) The superfluid 
fraction can be defined via the response of the 
system to infinitesimal rotations. The superfluid 
part shows no response to rotations at all while 
its density distribution contributes to the classical  
moment of inertia. (ii) the shape of the specific 
heat capacity versus temperature curve resembles 
the shape of the letter 𝛌 and therefore, the singular 
point on this curve is called 𝛌 point.  The specific 
heat diverge logarithmically at 𝛌  transition, it 
increases sharply at temperature less than T 𝛌 
until it shows a steep maximum at about 2.17 K 
followed by a sharp fall at T > 2.17K to a shallow 
minimum at 2.6 K, beyond  which it again 
increases slowly. So, if we want to investigate the 
physical mechanisms of the superfluidity of BEC 
we should calculate these two parameters.

In this respect, Stringari [5] drew a parallel 
between the rotating BEC and the superfluid 
systems, and he pointed out that the rotational 
properties of a BEC provides a natural way to 
analyze the deviations from a rigid motion due 
to condensation. Several studies showed that the 
evidence of the superfluidity in a rotating BEC is 
the reduction of the moment of inertia below the 
classical rigid-body value [6 -10]. The reduction 
in superfluid density depresses the transition 
temperature and is expected to cause the specific 



42

Egypt. J. Phys. Vol. 46 (2018)‎

ALYAA A. MAHMOUD   et al

heat capacity to be enhanced. However, BEC is 
usually accompanied by a cusp in the temperature 
dependence of the heat capacity [11, 12, 13, 14]. 
The essential features of the superfluidity of BEC 
are clearly exhibited in the behavior of the specific 
heat, such as in the case of the _-point superfluid 
transition of liquid helium, which is observed in 
its heat capacity.

In this paper we present a calculation of the 
superfluid fraction and the heat capacity for a cloud 
of non-interacting BEC in a rotating trap. The semi 
classical approximation, which is the density of 
state (DOS) approach, is employed to calculate the 
thermodynamic potential. Finite size effects are 
allowed for by calculating the appropriate DOS for 
this regime. Using the thermodynamical potential, 
the transition temperature, superfluid fraction and 
the heat capacity are calculated. Our calculations 
are complementary to [5] and show markedly 
different results for the superfluid fraction. The 

obtained numerical results are calculated by using 
the trap parameters of Abo-Shaeer et al. experiment 
[Abo-Shaeer] and qualitatively compared with the 
experimental data of He II. 

The calculated results showed that the 
superfluid fraction is independent on the rotation 
rate while the heat capacity is dependent strongly 
on the rotation rate for the whole temperature 
range. Both of them depend on the finite size. 

The paper is planned as follows: section 
two includes the system definition and a 
systematic method for calculating the accurate 
thermodynamic potential. The superfluid fraction 
is given in section three. In section four, the heat 
capacity is given. Conclusion is given in the last 
section.

Basic formalism
Our model consists of N particles living in a 

exterior potential

where and  are the trapping 
frequencies, respectively, and m is the atomic 
mass. In the presence of an uniformly rigid 

rotation in the xy-plane with an angular velocity 
Ω ( ) around the z-axis, the Hamiltonian 
describing the system is given by [15]

where  is the angular momentum 
. Hamiltonian in Eq.(2) is 

characterized by a single particle energy levels 
[13, 16, 17] given by

Where is 
the ground state energy and n+, n- and n are non-
negative integers. Stability of the harmonically 

trapped gas in (2), requires that the rotation rate 
is limited to:

For  =  =   the Hamiltonian 

(2) describes a quasi-2D system of particles in 
a uniform magnetic field. The energy spectrum 

takes the form familiar from studies of the 
quantum Hall effect,

                         
Where   = 0, 1, 2, …. is the Landau level 

index ,  
the angular momentum quantum number about 
the rotation axis, and  is the 
sub band index for motion along the rotation 

axis. The spectrum is highly degenerate, with 
the single particle states of different angular 
momentum m having the same energy. In 
the following we will consider a system 
characterized by the condition Eq.(4) for any 

.
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Usually BEC is described within the grand 
canonical ensemble. Once  has been determined, 
all relevant thermodynamical quantities can 
be calculated from partial derivative of the 

thermodynamic potential q, which is the logarithm 
of the grand canonical partition function for 
confined Boson in a rotating trap is given by [11, 
12],

                                    
where  ,  is 

the fugacity. In order to use the semiclassical
approximation, summation over i is converted 

into integral weighted by an accurate DOS 
it is convenient to expand the logarithm in 

Eq.(6) and express the grand potential as a sum over 
Bose-Einstein distribution [12]. After separating 
out the ground state contribution and using,                                              

 
we have: 

where   . An 
approximated formula for the DOS is given by 
[13]

Where                                                     ,                                                           and 

In Eq.(8) the last term is a constant term, it 
is a function in the oscillator frequencies only. 
However, this term will produce 𝛇 (1) function in 
the condensation fraction  and BEC transition 
temperature To. Since 𝛇 (1)=  then N0 and  are 
undefined at the onset of the condensation. In the 
following, we will drop the contribution from this 
term. For the non- rotating ideal Bose gas trapped 

in an isotropic potential with frequency  the 
calculated DOS in Ref’s [12, 14] is recovered.                                                                   

Expand the logarithm in eq.6 and using 
semiclassical approximation . Substituting Eq.(8) 
in Eq .(7) we have the thermodynamical potential 
for the confined Bose gas in a rotating trap,

where  is the usual 
Bose function.



44

Egypt. J. Phys. Vol. 46 (2018)‎

ALYAA A. MAHMOUD   et al

Superfluidity of condensate boson in a rotating 
harmonic trap

Transition temperature
In order to improve the agreement between the 

superfluid Helium II and the superfluidity nature 

of condensate ultra cold boson gases we calculate 
the condensate transition temperature. However, 
in terms of the q-potential the total number of 
particles is given by [12] 

           

The condensate transition temperature with 
finite size effect is calculated from Eq.(11). At 

theonset of condensation, N0 = 0 and we have,

Where 

is the ideal BEC transition temperature, and 𝛇  
is the Riemann zeta function. The second term in 
Eq.(12) gives the finite size correction to the ideal 
gas result .

superfluid fraction
The definition of superfluid fraction of an atomic 

cloud can be formulated in a formal and quantitative 
way using the cloud’s response to a rotation of the 
external potential , i.e. the moment of inertia [7, 19, 20],

where  is the classical moment of inertia 
for a cloud rotate as a rigid body and  is the 

observed moment of inertia of the condensed 
bosons. For a rigid body rotation, the moment of 
inertia is given by the value

The moment of inertia of the condensate 
bosons (super-fluid phase) is determined from the 

quantum-mechanical arguments. In this case  is 
given by [21],

where the average here is taken over  the state 
perturbed by Hext. Following Dalvofo et al. [34],

the moment of inertia , relative to the z-axis, 

can be defined as the linear response of the system 
to a rotational field , according to 
the formula

                  
(17)
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Equations (15,17) are exact results for the 
Hamiltonian (2) and could be applied to any value 
of particle number N. For the explicit evaluation 
of the moment of inertia in a Bose gas it is useful 
to evaluate the average In situ radii  and 

 in the semiclassical approximation [5]. 
Within this approximation we have to separate the 
contribution arising from the condensate from the 
one of the other excited states, i.e.

                 
And

 
with and  are 

the condensate and non-condensate in situ radii 
in the redial direction respectively. The non-

condensate atoms (thermal atoms) for ideal non-
rotating atoms can be extracted from Eq.(11) and 
given by

Where   is the deformation parameter of the condensate.

However, this description is appropriate for 
temperatures kBT much larger than the oscillator 
energies ,  and In Eq.(19), and 

are eigenstates of the unperturbed Hamiltonian, 
are the corresponding eigenvalues and 

Ƶ is the partition function . The indices  and 
  in Eqs.(18) and (19) means that the average 

was taken over the densities of the Bose condensed 
and non condensed components in situ, respectively.

In situ radii
The square radii of the condensate boson, i.e. 

in situ radii, can be calculated using the Hellmann-
Feynman theorem. This theorem relates the 
derivative of the energy eigenvalue with respect 
to a parameter, to the expectation value of the 
derivative of the Hamiltonian with respect to that 
same parameter,

where is the energy eigenvalue for H. The 
parameter  can be any quantity that appears in 

the Hamiltonian of the system, even physical 
constants such as ħ.

With . This Hamiltonian is characterized by a single particle energy eignvalue 
given by

with i is non-negative integer. For  =   Eq.(22) gives

 Thus  the effective in situ radius of a single particle state j n⟩ is given by its expectation value in this state, i.e.
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 However, the effective in situ radius of N 
atoms can be parameterized from Bose-Einstein Distribution Thus 

  
Finally, we reach to the main results of this 

work. Substituting from Eq.(10), after setting
=  =  =  for non-rotating 

condensate we have

Here  , and 
 are used here. The required 

T-derivative of the fugacity z above T0 can be 
obtained from Eq.(11),

Generalization of the above treatment to a trap with three different frequencies, (   and  ) is 
straightforward,

(30)

The first term in the curly brackets give 
the contribution arising from the particles in 
the condensate, while the second one is the 
contribution from the non condensed atoms. 
Result in  Eq.(30) is a complementary to the 

Stringari [5] results. In fact, this result constitute 
the main result which enables us to immediately 
calculate the finite size effect for the moment of 
inertia. Now we have

Finally, gathering Eqs.(18), (19), (20), (21) and (31) in terms of  we have,
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(32)                  

Where 

(34)

The physical interpretation of Eq. (33) is very 
clear. The first term in the moment of inertia 
arises from the atoms in the condensate, which 
contribute with their rotational flow and can hence 
be interpreted as the superfluid component. While 
the second term arises instead from the particles 

out of the condensate which rotate in a rigid way 
(normal fluid). These two distinct contributions 
are at the origin of an interesting T dependence 
of  Substituting Eqs.(32) and (33) in Eq.(14) 
we have,

   This equation shows that, at  ,  i. 
e .  , the superfluid  fraction 
equial to zero This behavior is in agreement 
with the experiment of liquid He II for which at 
temperature greater than  the liquid He is in 
the normal fluid phase. While at T = 0 it reduce 
to the rotational form, where 
, when the superfluid fraction approach unity, all 
the boson atoms are in the condensate.  

The calculated .results from Eq.(35) are 
represented graphically in Figure (1). This figure 
shows that the superfluid fraction for a finite-sized 

approaches unity at zero temperature. Moreover, 
the superfluid fraction goes smoothly to unity 
as temperature increases. These behavior is in 
agreement with the results of Sindzingre et ai. [22] 
and Pollock et al. [23]. As well as the superfluidity 
nature of the condensate bosons is a microscopic 
property that can be defined in a finite system or 
infinite system (the thermodynamic limit). Finite 
size effect is pronounced at temperature close 
to the transition temperature. Moreover leads to 
shift of the transition temperature. The effect of 
Bose statistics in a Bose liquid is to reduce the 
number of excited states and hence the coupling 
to an external potential. This can happen in a finite 
system As well as an infinite system

Fig.1. Superfluid fraction   of an ideal Bose gas of finite size as a function of temperature   The size is set by the number of 
particles. Black circles is the experimental data for [23] and open circles is the experimental data for Sindzinger [22].



48

Egypt. J. Phys. Vol. 46 (2018)‎

ALYAA A. MAHMOUD   et al

Heat capacity
In superfluidity, measurement of the heat 

capacity have played an exceptionally important 
role in determining phase transitions and in 
characterizing the nature of bosonic excitations. 
We report on the calculation of the heat capacity 
for a rotating BEC .Unfortunately it is difficult 
to find a reliable analytical approximation for 
the heat capacity which allows to study whether 
it has a maximum value (peak) or not, and if it 
does, at what temperature it occurs. In the DOS 

approach, the heat capacity can be calculated by 
differentiating the internal energy U with respect 
to the temperature, i.e. , with 

 . However, the treatment of 
the heat capacity is slightly more complicated 
because the energy has to be differentiated while 
keeping N, and V fixed. Moreover, one has to 
take into account two different regimes, which 
are T less or greater than T0. For T < T0, the heat 
capacity is given by

While for T > To 

We first recall that the temperature dependence 
of the heat capacity of bosons goes as   
for  dependence of the DOS.

For non rotating condensation, i.e.
, (or  T =  To  ) the results previously obtained by 
Crossmann and Holthaus [18] are recovered. While 
in the thermodynamic limit 
Eq’s .(36) and (37) are considerably simplify to,

It is clear that at  the heat capacity 
is discontinuous, there is a jump in the heat 
capacity.Moreover, using  as an indicator, we 
can identified the magnitude of the jump and the 
order of the phase transition. The magnitude of the 
jump increases with the rotation rate according to 

 This discontinuity characterizes the phase 
transition to be of second order according to the 
Ehrenfest definition. Furthermore, one observe 
that the heat capacity, Eq.(38), obeys the third law 
of thermodynamics, which demands a vanishing 
of the heat capacity at zero ( absolute) temperature 
and corresponds to the Dulong-Petit law in the 
very high temperature limit    

Keesom and Clusius [24] obtained data points 
which appeared to rise to a finite maximum value 

and then jump to a much lower value about one 
third that of the maximum [25]. They accordingly 
assigned a discontinuous curve to the data (see 
Figure 3). Because its shape resembled the Greek 
letter 𝛌 this new transition was called the 𝛌 
transition. In Figures (2) and (3), a comparison of 
the temperature dependence of the heat capacity 
for rotating bosons in harmonic trap and the 
specific heat of superfluid He II is given. We claim 
that the qualitative correspondence between the 
curves for the BEC specific heat capacity and the 
specific heat experimental data of liquid 4He are 
sufficient to suggest that BEC is a good simulator 
for the superfluid 4He. In this respect, the heat 
capacity of rotating condensate can be used to 
investigate the effect of finite size N  and rotation 
speed Ω on the superfluid He II
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Indeed, the results calculated from Eq’s.
(36) and (37) are represented in figure (4,5) 
for different values of N (finite size effect) and 
different values of Ω (rotation speed effect). The 
experimental values of Sindzinger et al. [22] and 
Pollock et al. [23] are shown for qualitatively 
comparison. This figures show that the BEC heat 
capacity is accompanied by a peak at the onset of 
the condensation, i.e. T / T0 = 1. Increases of N 
or Ω shifted to slightly lower temperature range 
than . Moreover, for ,   is 

Fig. 2. The calculated. heat capacity The character 
of the lambda transition of heat capacity of 
BEC appear clearly.                          

Fig. 3. The data of Keesom and co- workers from 
which heat capacity curves can be drawn.

vanishing, this behavior is agreement with the 
third law  of thermodynamics.  Increases  leads 
to smoothly increasing nature for  .

At   = 1  is discontinuous, it  has a 
jump, with magnitude  At  > 1,   
drops suddenly to its asymptotic value. The 
discontinuity at  = 1 characterizes the phase 
transition to be 2nd order. Finite size effect 
decreases the transition temperature. As well the 
rotation rate .

Fig. 4 . Relation between Cv/NKB and (Effect of finite 
size  N  in heat capacity )                 

Fig. 5.  relation between Cv/NKB   and  (Effect of 
rotation speed Ω in heat   Capacity)                          

shifted the transition temperature. The most 
remarkable point here is that, the heat capacity 

still have its ideal gas behavior. Thus it can be 
provided the same effects for the superfluid He II.
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Conclusion                                                                

In this work, we presented a theoretical 
investigation of the superfluidity of rotating 
alkali boson in harmonic trap as a simulator. The 
superfluid fraction and the heat capacity were 
calculated. We found that the system shows a 
qualitatively corresponds with the superfluid He 
II. In contrast to the complex microscopic structure 
of liquid helium, the simplicity of the theoretical 
description of dilute atomic gases allows a 
deep understanding of the basic mechanisms 
underlying superfluidity phenomena in simple 
terms. In conclusion, obviously, the phenomena 
of superfluid can be safely explained on the basis 
of the BEC phenomenon. At T =0,

BEC has a perfect superfluid behavior. Finite 
size effect leads to a shift for the 𝛌 transition. 
This shift is propositional to Rotation effect 
leads to a shift for the 𝛌-transition. This shift is 
propositional to , with  being the rotation rate. 
Finally, our method can be extended to investigate 
the superfluidity of interacting condensate boson.
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طبيعة السائل الفوقي لعدد محدد من تكثيفات بوز-اينشتين الدوارة

علياء عادل محمود و محمود محمد صلاح وشيمي شعراوي محمد سليمان
قسم الفيزياء - كلية العلوم - جامعة المنيا - المنيا – مصر

تتطابق خواص عدد محدد من تكثيفات بوز- اينشتين  الدوار مع خواص السائل الفوقي للهيليوم . بناءا علي ذلك 
يستخدم الفيزيائيين تكثيفات بوز-اينشتين لاستنباط  محاكي كمي لدراسة خواص سائل الهيليوم الفوقي.	

اختص هذا البحث بحساب جزء السائل الفوقي للتكثيفات وكذلك سعته الحرارية. تمت هذه الحسابات في اطار 
التقريب الشبه كلاسيكي حيث يتم تحويل المجموع علي الارقام الكمية للكميات الفيزيائية الي تكامل علي الطاقة 
ان  النتائج  بينت  الدراسة.  هذه  لعمل  المناسبة  المستويات  كثافة  دالة  استنبطت  المستويات.  كثافة  دالة  باستخدام 
محدودية عدد ذرات التكثيف توثر علي البارومترات الثيرموديناميكية لهذا النظام . وبناءا عليه يجب اخذ هذا 
التاثير عند اجراء اي قياس غير مباشر لهذا النظام )القياس الغير مباشر هو قياس كميات فيزيائية عمليا واستخدام 

هذه القيم في حسابات بارومترات النظام قيد الدراسة(


