
Menoufia J. of Electronic Engineering Research (MJEER), Vol. 29, No. 2, Jul. 2020

 41

The Single Bit Request Grant (SBRG) Scheduling Algorithm for Input-Queued

ATM Switches

Mervat Said

Computer Science and Engineering

Dept., Faculty of Electronic

Engineering, Menoufia University,

Egypt.

 mervat.arafa@el-eng.menofia.edu.eg

Zeiad El-Saghir

Computer Science and Engineering

Dept., Faculty of Electronic

Engineering, Menoufia University,

Egypt.

ziad.abdoun@el-eng.menofia.edu.eg

Nawal EL-Fishawy

Computer Science and Engineering

Dept., Faculty of Electronic

Engineering, Menoufia University,

Egypt.

nelfishawy@hotmail.com

Abstract— In this paper, we propose an efficient single-

iteration single-bit request scheduling algorithm for

input-queued ATM switches that based on a new

arbitration technique called the Single Bit Request

Grant (SBRG) algorithm. The operation of the SBRG

depends on the concept known as “the preferred input-

output pairs first”, and the arbitration requests starts

from switch output ports to reduce the number of issued

request signals. Compared to other single-iteration

algorithms, simulation results show that the SBRG

maximizes the match size and improves the switch

delay/throughput performance, especially when the load

increases. Also, the proposed algorithm reduces the

complexity of some of the existing algorithms by

decreasing the number of input-output transferred

messages, and by the absence of any encoding/decoding

mechanism that can be used in some existing algorithms

to reduce the size of request signals to one bit.

Keywords— Input-queued ATM switch, single iteration

scheduling algorithm, single-bit request scheduling

algorithm.

11.. IInnttrroodduuccttiioonn

Cloud computing architectures provide users with

access to applications and services stay in shared server

domains through the Internet [1], [2]. IP traffic is

transferred in huge amounts between users and server

domains, and among too many servers in each domain.

Most server domains have storage area networks. These

networks facilitate data transfer among disk matrices and

the hundreds of servers within different data centers.

Networks within data centers have many types, and they

must use switches that are characterized by their high

speed and low latency to achieve efficient data

communication among the elements of these networks

[3], [4].

There are many types of switch architectures that are

used for data communications in ATM networks. The

traditional output queuing switches can achieve a 100%

throughput under any traffic load, but it requires high

internal speed, which makes it impractical to be built in

hardware, especially for large port numbers. In contrast,

the switches that based on input queuing operates with an

external link speed equals the internal speed of the

switch, so it is more proper for fast implementation

because it minimizes prerequisite for memory data

transmission, where at most one packet is sent or

received by an input/output port per a time slot [5], [6].

Iterative algorithms are widely used for the switches that

use input queuing [7], [8].

The switch performance is affected significantly by the

algorithm of scheduling that can be used for switch

arbitration. Many of these algorithms have studied in the

literature. They can be classified into two categories:

maximal size matching (MSM) and maximal weight

matching (MWM). Although the MWM algorithms can

achieve a throughput of 100% under any traffic load [9],

[10], its implementation is difficult due to its complexity,

and also it has a high execution time [O (N
3
logN)].

For MSM category of scheduling algorithms, there are a

large number of traditional cell-based algorithms [10] -

[14] that remains grips the industrial area due to their

simplicity and ease of implementation in hardware. Also,

another MSM single iteration class of algorithms is

introduced in [15], [16], which depend on the scheduling

of packets rather than cells. Cell scheduling is simpler to

be implemented than packet scheduling.

For a switch that has N inputs and N outputs, the

execution of an iterative scheduling algorithm may be

repeated up to N iterations to achieve the maximal match

size, where each of these N iterations contains three

phases: request phase, grant phase and accept phase, as

these three phases contribute to increasing the scheduling

overhead. The scheduling overhead increases also by

increasing the iterations number, which is almost

unachievable in high-speed switches.

With a single-iteration algorithm, no acknowledge

messages exist in the accept phase. Despite the

improvements that have occurred, existing single-

iteration algorithms need further improvements. So, a

new category of single-iteration algorithms that depend

on the idea known as “Highest Rank First” (HRF) and

used for the switches with input queues are proposed in

[4].

A disadvantage of this new category is the need to an

encoding/decoding hardware to produce single-bit

requests, which in turn increases the switch complexity.

mailto:%20mervat.arafa@el-eng.menofia.edu.eg
mailto:z.abdoun@el-eng.menofia.edu.eg
mailto:nelfishawy@hotmail.com

 42

In this paper, our focus is on some of existing efficient

algorithms that depend on the pointer updating schema,

including PIM [7], iSLIP [11], SSRR [12], SRRR [14],

and CHRF [4] algorithms. We evaluate their

performances and compare them to the proposed new

algorithm called the “Single Bit Request Grant” (SBRG)

algorithm. The proposed SBRG algorithm falls within the

category known as “single iteration with single bit

request scheduling algorithms”. Compared to other

single-iteration algorithms, simulation results clearly

show that the SBRG algorithm maximizes the match size

and improves the switch delay/throughput performance,

especially when the load increases. Also, the proposed

algorithm reduces the complexity of some existing

single-iteration single-bit request algorithms by

decreasing the number of arbitration messages that

transferred between inputs and outputs, and by not

having to use a special encoding/decoding hardware that

used in some algorithms to decrease the size of requests

to be with a single bit.

The remaining of this paper as follows. In section II, we

provide the related work, which is a background study for

some MSM scheduling algorithms with an explanation of

the effect of the pointer DE synchronization. We

introduce the new SBRG algorithm in Section III.

Simulation results and comparisons are introduced in

Section IV. Finally, the conclusion is introduced in

Section V.

22.. RReellaatteedd WWoorrkk

Over the past three decades, numerous algorithms

have been introduced that fall under a category known as

the “iterative scheduling algorithms”. These algorithms

differ from others in the information that is sent during

the request phase and in the arbitration mechanisms that

are used in the remaining phases: grant and accept.

 A group of practical iterative algorithms is widely

accepted due to the use of massively parallel processing,

that calculates the matching in an iterative fashion,

making the scheduling decision to consider if VOQs at

input ports are occupied or not.

In general, in each iteration of iterative

scheduling algorithms, there are many steps, considering

only the unmatched inputs and outputs. STEP 1: If an

input has a cell waiting on its VOQs for a specific output,

the input sends a notification request signal to this output.

STEP 2: at each output port, if more than one request-

signal arrived from inputs, it selects one of these

requests, then this output tells the input if its request is

granted or not. STEP 3: if more than one notification

grant-signal are received by the input, it accepts one of

them.

Parallel Iterative Matching (PIM) [7] and Round

Robin Matching (RRM) [13] do not work well. Both

achieves a throughput does not exceed 65%. PIM is

based on the random selection at the arbiters of input or

output ports, which requires more calculations to reach to

the maximum matching, so it is difficult to be

implemented. iSLIP (iterative round robin algorithm with

SLIP) [11] is a modified version of RRM. It provides a

100% throughput for a uniform traffic load and it is

simple enough to be implemented in hardware. iSLIP

operates in the same manner as RRM, except that

updating the grant pointers occurs only if the grant is

accepted.

In iSLIP, The RRM step of Grant is as follows:

Step 2: Grant. If a request is received by an output, the

output chooses the next one using Round-robin

scheduling, starting from the element which has the

highest priority. The input is notified by the output

whether its request is granted or not. If the grant is

accepted in Step 3, then the pointer to the element with

the highest priority is incremented (modulo N) to one

location next to the granted input. This little change leads

to the following properties of one-iteration iSLIP

algorithm: Property 1: Lowest priority is given to the

most recently made connection. Property 2: No starvation

for any connection. The main drawback of iSLIP is the

need to synchronize arbiter pointers, so it is impractical

when the load increases. Also, iSLIP requires at least 4

iterations to reach to the maximum matching, which

leads to increasing the delay time.

SSRR is another scheduling algorithm for the

switches with VOQs [4], [5]. In SSRR, all input pointers

are initially set to zeros, and all output pointers are

initialized with input port addresses without duplication.

This leads to more fairness when choosing inputs,

leading to improved speed of arbiters and reduced

execution time. The steps in SSRR iteration are as

follows: Step 1. Each input sends a request to each output

that has a cell at the queue of this input.

Step 2. If an output receives more than one

request, it accepts the one that appears very next in the

round-robin schedule, beginning from the highest priority

element. Each input is notified by the output whether its

request was granted or not. The pointer is incremented to

one location beyond the granted one whether the grant is

accepted or not.

Step 3. If an input receives more than one grant,

it accepts the one that appears very next in the priority

table. The pointer is then incremented to one location

beyond the accepted location. The pointer unchanged if

no grant is received. The main drawback of SSRR is that

it requires O (log N) time complexity.

The Selective Request Round Robin (SRRR) is

another Scheduling algorithm proposed in [14]. The

SRRR iteration has 4 steps as follows: Step1. Pointer

transmission: a request is sent from every output to its

input that has the highest priority, where the preferred

input is selected in the same manner as iSLIP and IRRM.

Several signals may be sent to an input from different

outputs. Step2. Each input checks the VOQ of the output

that sent a signal to this input in step 1. If there is a

waiting packet for each such VOQ, a request will be sent

for the corresponding output. If no packet is waiting for

all such VOQs, the input will send requests to all outputs.

Step3. Grant. SRRR works in the same manner as iSLIP.

 43

Step4: Accept. SRRR works in the same manner as

iSLIP.

The main difference between the above four

algorithms is in the pointer updating schemas at the

arbiters of the inputs and the outputs as shown in Table 1.

The significant impact of pointer updating schemas on

the performance of a scheduling algorithm is obvious

from the table. We also notice that the studied algorithms

in Table 1 are similar at the input side, but they differ at

the output side.

33.. OOuurr PPrrooppoosseedd

33..11 SSBBRRGG SSwwiittcchh FFaabbrriicc

A general description of a switch with VOQs with

distributed output arbiters is shown in Fig 1 [16]. This

architecture describes an N×N single-stage crossbar

switch, where N is the number of input/output ports. An

incoming traffic (small fixed size cells with 53 bytes’

length that is easier to synchronize and schedule) are

buffered in separated virtual queues at input ports, where

every input has N of VOQs (one VOQ for each output

port). There is one arbiter for each output port to keep

track of input ports those have packets destined to it and

their arrival order. These arbiters can be located on the

input ports’ side. No memory required for arbitration at

output ports. The output arbiters are independent of each

other and distributed on output ports. These output

arbiters are independent of each other and can be

implemented using simple FIFO buffers. All output

arbiters can be implemented in hardware on a single chip.

33..22 SSBBRRGG SSppeecciiffiiccaattiioonn

Initially, the pointer of each output arbiter is set to its

highest priority output without duplication, and then the

steps of SBRG will be as follows:

Step 1: Request selection. Each output sends a signal to

the input that currently has the highest priority. At this

point, each input knows which output considers this

input as its highest priority one. By this way, no

synchronization is required between pointers because

each input receives only one signal from the output that

considers this input as its highest priority input.

Step 2: Request. Each input checks it’s VOQs, and if

there is a cell waiting for its preferred output (the output

that sent a signal to this input in step 1), the input sends a

request bit to this output. Otherwise, the input sends a

single-bit request to each output that has a waiting cell in

its VOQ at this input. This request bit is binary 1 if a cell

is queued to this output or binary 0 if output’s VOQ is

empty.

Step 3: Grant. At each output port, it checks the

incoming requests, and if received from its highest

priority input, the output grants it by sending a single bit

to this input. Otherwise, the output selects the next input

from its FIFO buffer.

Step 4: Accept. If a grant is received by an input, this

input accepts the one that appears next in a fixed round-

robin schedule starting from the element with the highest

priority, then all the pointers are incremented by one

regardless of whether there is a grant or not.

Algorithm 1 describes the SBRG pseudo code. It should

be noted that:

(a) At input ports, all Request and Accept procedures run

in parallel with no messages need to be sent in accept

procedures.

(b) At output ports, Grant procedures run in parallel.

Algorithm 1: The SBRG Algorithm.

Initialization:

1: // M: switch size

2: // outp: output port

3: // inp: input port

4: for outp = 0 to M-1 do

5: // calculate the highest priority

input at time slot ti

6: inp = (outp + M - ti modM) modM
7: pc [outp] = inp // pc: priority

calculation

8: end for

9: Procedure Request (inp, outp)

 10: // L[inp]: is the length of VOQ at

input inp

 11: If pc [inp] ==1 and L[outp] > 0 then

 12: send 1 to the output outp

 13: send zero to other outputs

 14: else

 15: // qstate [inp] is the status of VOQ

at input inp

 16: send each qstate [inp] to the

crossponding output

 17: end if

 18: end Procedure

 19: Procedure Grant (outp, ti)

 20: // Req [inp] is the request from

VOQ at input inp

 21: inp = (outp + M - ti modM) modM

 22: If Req [inp] == 1 then

 23: send 1 to input inp

 24: else

 25: k = get inp at the head of qstate

[outp]

 26: send 1 to input = k

 27: send zero other inputs

 28: end if

 29: end Procedure

 30: Procedure Accept (inp, ti)

 31: // Gra [outp] is the grant from

output outp to input inp

 32: outp = (inp + ti) modM

 33: If Gra [outp] == 1 then

 34: accept the grant from output outp

 35: end if

 36: end Procedure

 44

Table 1. Pointer updating schemas for the studied scheduling algorithms.

Algorithm

Input Output

No confer

(No grant)

Conferred

(Granted)

No

request

Acceptance of

grant

Non-

Acceptance of

grant

SSRR

Pointer

remains at the

same location

without any

change.

Pointer

update to

one location

following

the accepted
one.

Pointer

remains

at the

same

location

without

any
change

Pointer update to one place
beyond the granted one

RRM

Pointer update

to one place

behind the
granted one

Pointer update

to one place

beyond the
granted one

iSLIP

Pointer remains

at the same

location without

any change

SRRR

Pointer

increme

nt by
one

Pointer update

to the granted
one

Fig 1. A General Description of an IQ Switch Fabric with distributed output arbiters [16].

Table 2. Pointer updating schemas for SBRG.

Algorithm

Input Output

No-grant Granted
No

request

Grant

accepted

Grant not

accepted

SBRG

Pointer

remains at

the same

location

without any

change.

Pointer

update to one

location

following the

accepted one.

Increment Pointer by one

 45

Table 2 shows the pointer updating schema for the SBRG

algorithm. Pointer updating is as follows: At each input

port: If no grant is received from an output, the Pointer

doesn’t change. If a grant received, the Pointer is updated to

one location following the accepted one. At the output port:

If no request is received from an input, the highest priority

pointer at the round-robin arbiters updated by 1 to give

another input the chance to be served. The output pointer is

incremented by one whether the grant is accepted or not.

33..33 SSBBRRGG TThhrroouugghhppuutt

The proposed SBRG algorithm achieves a 100% throughput

and compared to other single iteration switches that achieve a

100% throughput the SBRG is more distinguished in terms of

stability especially when the load increases, as shown in

Figure 2. To find the achieved throughput by the SBRG

algorithm, let's assume that each input port has M VOQs. let's

assume also that all the VOQs have cells need to be

transferred to the same destination output port outp. Where

the VOQs at inputs try to transfer their cells in certain time

slot ti.

Assume that TH is the throughput of input ports VOQs, so

TH represents the overall throughput of the switch. Moutp

represents the total number of HOL cells destined to an

output outp in certain time slot ti. At all the VOQs, the

overall number of HOL cells blocked at the input ports in ti

is:

MB = Moutp – X(Moutp) (1)

where X(Moutp) = min (1, Moutp), is the minimum

number of blocked cells. When SBRG sends up to M cells

out and tries to transfer these M cells to the preferred

output ports at a time slot ti, and at the steady state

S[X(Moutp)] = TH, so by substituting in (1) gives

TH = S[Moutp] – S[MB] (2)

Let L is the all unblocked VOQs at time slot ti. So

L = M − MB (3)

With keeping the flow, and let Y be the possibility of one

of the L unblocked VOQs at input ports gets a new cell at a

time ti. We found that

S[L]Y = TH (4)

From (3) and the compensation in (4), we obtain

S[MB] = M − TH/Y (5)

Where the HOL cells number that destines to an output

outp in a time ti + 1 is M'outp. Let Voutp is the total

number of HOL cells destined to the output outp and

arrived at the L VOQs. So

M'outp = Moutp − X(Moutp) + Voutp (6)

Using the equation of the mean value in Appendix A of

[17] we obtain:

S[Moutp] = S[Voutp]

 + S[Voutp(Voutp – 1)] ∕ 2(1 – S[Voutp]) (7)

For large M, and by using a Poisson distributed random

variable, Voutp can be simplified.

Using the proof in Appendix A of [5], where at the steady

state. When M → ∞, the overall number of HOL cells at

the VOQs with the destination outp at every time slot

becomes Poisson.

So, we found that

S[Voutp] = S[X(Moutp)] = TH (8)

and

S[Voutp(Voutp − 1)] = TH
2
 (9)

From (8) and (9) and commute (5) and (7) into (2), and

setting Y = 1:

TH = 1 + M – √ (1+M
2
) (10)

When M→∞, the throughput is 1. In fact, when M is finite,

the equation remain gives a result that is very close to the

maximum throughput value.

33..44 SSBBRRGG CCoommpplleexxiittyy

SBRG achieves a maximum matching in only one iteration,

and all of its operations take the same time to be finished, so it

provides fast scheduling. The time complexity of SBRG is

O(1), in contrast to iterative algorithms that perform multiple

iterations to reach the maximum matching, making them to be

too slow to support high line rates.

SBRG needs fewer messages to work than iterative matching

algorithms. For each matching, an output arbiter sends only

one message as a request and only one grant message. For

each input, it can send up to N one-bit request messages

depending on the VOQs status (one request for every output

having a cell in its VOQ). Over the entire switch fabric, there

are a maximum of 2N messages that may be exchanged

between the inputs and the outputs. Unlike SBRG, iSLIP

needs a number of requests equals N
2
, a number of grant

notifications equals N
2
, and a number of accepts equals N for

each iteration. Also, iSLIP needs at least a number of

iterations equals log N to achieve the maximum matching. So,

iSLIP needs a number of messages equals (2N
2
+N) log N.

Also, PIM and SSRR algorithms need a number of messages

like the case of iSLIP. For SBRG, N selection requests are

sent from output to input ports and only N grants are sent

from output ports to input ports, so a total of N+N bits are

exchanged. In contrast, in iSLIP and other iterative algorithms,

a number of bits equal to 2N
2
+N are required to be exchanged

for only one iteration. Also, and compared to the single

iteration HRF rank-based algorithm given in [9], HRF time

complexity is O(log N). Also, compared to the CHRF as a

single iteration rank-based algorithm given in [9], the CHRF

 46

time complexity is O(1), but it increases the complexity of the

hardware implementation, which is very high and considered

as a main drawback of the CHRF.

44.. SSIIMMUULLAATTIIOONN RREESSUULLTTSS

44..11 SSiimmuullaattiioonn SSeettuupp

A performance comparison is done for our SBRG

algorithm to some of the best performance and widely

used single-bit-single-iteration algorithms, namely CHRF,

SSRR, SRRR, PIM-1, and iSLIP-1 algorithms.

Simulations are performed and the results are obtained

using 16×16, 32×32, and 64×64 switches. The considered

performance metrics are the cell delay time and the

average throughput under normalized traffic load, where

the cell delay is the time that a cell waits in a VOQ until

being scheduled to its preferred output, and the traffic

load is the cells number per time slot for each input. The

used switch fabric is a single-stage crossbar one (the use

of crossbar for building the connection between input

ports and output ports is more preferred due to the simple

design of crossbar and its non-blocking property). An

incoming traffic (small fixed size cells 53-bytes each) are

buffered in separated virtual queues at input ports. The

access rate of the SBRG switch is identical to the access

rate of the connection links outside the switch, so switch

speedup is not required. Simulation results are obtained

using a uniform traffic in one iteration (when cells arrive

at the input it destines to each output with equal

probability).

44..22 EEvvaalluuaattiioonn MMeettrriiccss

(i) Throughput: The algorithm should provide a good
performance of throughput. Throughput defined as the ratio of
the actual number of cells enters the switch successfully to the
maximum possible number of cell arrivals during the
simulation.
(ii) Delay (average cell delay): The algorithm should
provide a good performance of delay, defined as the total
time the cell spend inside the buffer until it arrives at its
output.
(iii) Fairness: The algorithm must serve all the input ports in
a fair manner.
(iv) No Starvation: the algorithms should be starvation-free.
(v) Implementation and time complexity: the hardware
implementation of
(vi) the algorithm must be simple.
(vii) Scalability: The algorithm should be scalable if the
number of ports increases.

44..33 RReessuullttss
From throughput simulation results shown in Fig. 2,

and under a light traffic load, all the algorithms have

almost the same performance until the load value 0.6 is

reached. Beyond this point, the performance of PIM

algorithm becomes unstable, and the maximum

throughput that can be offered using PIM is 0.65.

Also, the SSRR performance degrades after the point in

which the incoming traffic load with the value 0.7, but it

still better than iSLIP under all load conditions.

For SBRG algorithm, simulation results show that its

throughput is the best among all the studied algorithms,

and it is the more stable and the closest one to the 100%

throughput under all load conditions.

Cell-delay simulation results are shown in figures 3-a, 3-b,

and 3-c. From the results, and under a light traffic load, it

is clear that all the algorithms have almost the same cell-

delay time until the load reaches the value 0.6. Beyond this

point, the performance varies significantly depending on

the algorithm used as follows: beyond a 0.6 load value, the

performance of PIM algorithm becomes unstable and the

cell-delay time increases significantly.

The same situation is applicable to SRRR algorithm

beyond a 0.7 load value. Also, simulation results show

that SSRR works much better than iSLIP under all load

conditions. For the SBRG and compared to the other

studied algorithms, a significant performance gain is

achieved as the traffic load increases.

The SBRG distinction is clearly noticed with increasing

the load. Table 3 shows the performance gain of the SBRG

algorithm compared to the studied algorithms as the traffic

load increases. For example, if the applied load is 0.8, the

cell delay time for the SBRG for a 64×64 switch compared

to the studied switches will be as follows: SBRG = 10.239,

CHRF = 28.7, PIM = 10050, SRRR = 2321.987, iSLIP =

177.34, and SSRR = 79.421.

Fig 4 shows the SBRG performance as a function of the

switch size. The simulation results show that the SBRG

performance has a slight change with the increased size of

the switch. For example, if the applied load is 0.8, the cell

delay time for the SBRG for a 64×64 switch is 10.239, for

a 32×32 switch is 9.9293, and for a 16×16 switch is

8.4239. These results prove that the SBRG is a scalable

algorithm.

55.. CCoonncclluussiioonn

In this paper, an efficient scheduling algorithm for switch

architectures with VOQs – Single Bit Request Grant (SBRG)

is introduced. SBRG achieves a distinct performance

compared to other widely used single iteration algorithms,

especially when the load increases. Also, the proposed

algorithm reduces the complexity of some existing single-

iteration single-bit request algorithms by decreasing the

number of input-output transferred messages, and by the

absence of a request encoding/decoding hardware which can

be used by some algorithms to reduce the size of the request to

be a single bit. SBRG meets the criterion of a distinct

scheduling algorithm: distinct performance, and fast and

simple to be implemented.

 47

Fig. 2: Average Throughput for a 64×64 switch. Fig. 3-a: Average cell delay for a 16×16 switch.

Fig. 3-b: Average cell delay for a 32×32 switch. Fig. 3-c: Average cell delay for a 64×64 switch.

Fig. 4: The performance of SBRG as a function of switch size.

 48

RReeffeerreenncceess

[1] E. Zahavi, I. Keslassy, and A. Kolodny, “Distributed adaptive

routing Convergence to non-blocking DCN routing assignments,”
IEEE J. Sel. Areas Commun., vol. 32, no. 1, pp. 88-101, Jan. 2014.

[2] Z. Cao and S. S. Panwar, “Efficient buffering and scheduling for a

single chip crosspoint-queued switch,” IEEE Trans. Commun., vol.

62, no. 6, pp. 2034-2050, Jun. 2014.

[3] A. Singh et al., “Jupiter rising: A decade of clos topologies and

centralized control in Google's datacenter network,” ACM
SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, pp. 183-197,

2015.

[4] BING HU, FUJIE FAN, KWAN L. YEUNG, SUGIH JAMIN,
“Highest Rank First: A New Class of Single-Iteration Scheduling
Algorithms for Input-Queued Switches” IEEE/ ACM Transactions

on Networking, Vol. VOLUME 6, pp.11046-11062, 2018.

[5] M. J. Karol, M. G. Hluchyj, and S. P. Morgan, “Input versus output
queueing on a space-division packet switch,” IEEE Transactions

on Communications, COM- 35(12), pp.1347–1356, December
1987 .

[6] Tamir, Yuval, and Gregory L. Frazier. “High-performance multi-
queue buffers for VLSI communications switches”. IEEE

Computer Society Press, Vol. 16. No. 2. 1988 .

[7] Yun, Z., Peng, L. & Zhao, W., RR-LQD:” A novel scheduling
algorithm for CICQ switching fabrics”, Proc. 15th Asia-Pacific
Conference on Communications (APCC), 2009, pp. 846-849.

[8] X.T. Wang, Y.W. Wang, S.C. Li, P. Li,”A Novel High-
Performance Scheduling Algorithm for Crosspoint Buffered

Crossbar Switches” International Conference on Computer

Information Systems and Industrial Applications (CISIA 2015), pp.
2105-2115.

[9]

[10] Mekkittikul, Adisak, and Nick McKeown. “A practical scheduling
algorithm to achieve 100% throughput in input-queued switches.”

INFOCOM'98. Seventeenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE.

IEEE, 1998. p. 792-799.

[11] Anderson, Thomas E., et al. “High-speed switch scheduling for
local-area networks.” ACM Transactions on Computer Systems

(TOCS), Vol. 27. No. 9. ACM, 1992.

[12] N. McKeown, “The iSLIP: A Scheduling Algorithm for Input-
Queued Switches,” IEEE Transactions on Networking, Vol 7,

No.2, April 1999.

[13] Afridi, Sharjeel et al. “The Quantitative Analysis of Round Robin
Matching Scheduling Algorithms for VOQ Packet Switch

Architecture.” International Journal of Electronics Communication
and Computer Engineering (2012).

[14] McKeown, Nick. “Scheduling Cells in Input-Queued Cell
Switches”. Diss. PhD. Thesis, University of California, Berkeley,

1995 .

[15] D Lin, Y Jiang, M Hamdi, “Selective Request Round-Robin

Scheduling for VOQ Packet Switch Architecture”, IEEE
International Conference on. IEEE, 2011. p. 1-5.

[16] Jie Xiao and Kwan L. Yeung, “Iterative Multicast Scheduling
Algorithm for Input-Queued Switch with Variable Packet Size”

IEEE 30th Canadian Conference on. IEEE, 2017. p. 1-4.

[17] Gao, Ya, WeiTao Pan, and Ling Zheng. “Improved analytical
model for performance evaluation of crosspoint-queued switch
under uniform traffic.” IET Networks, 2017, 6.4: 81-86.

[18] H. Kim and K. Kim, “Performance analysis of the multiple input-
queued packet switch with the restricted rule,” IEEE/ ACM

Transactions on Networking, Vol. 11, No. 3, pp. 478-487, June

2003 .

Table 3. Average Cell Delay Comparison under Heavy Load Conditions.

Load Size
Average Cell Delay

SBRG CHRF SSRR SRRR PIM-1 iSLIP-1

0.7

16*16 5.859 6.52 17.14 14.01 2033.6 27.1214

32*32 7.245 7.845 22.893 18.23 3160.68 83.31

64*64 7.8201 8.459 35 28.789 4393.8 95.98

0.8

16*16 8.4239 17.63 30.47 1182.1 7500.57 48.301

32*32 9.9293 25.7 42.723 2098.01 9050.75 66.53

64*64 10.239 28.7 79.421 2321.987 10050 177.34

0.9

16*16 13.378 32.1 61.542 1999.4 9324.1 89.757

32*32 16.678 48.1 134.23 2976.94 12400.3 150.894

64*64 17.379 50 230 3124.7 14589.6 413.08

0.95

16*16 24.574 98.5 172.92 2197.3 10731.8 222.896

32*32 28.754 105 340.1 3794 14280 462.7

64*64 32.564 110 550 4276.45 16388.8 743.1

