
Menoufia J. of Electronic Engineering Research (MJEER), Vol. 29, No. 2, Jul. 2020 

 

    41 

The Single Bit Request Grant (SBRG) Scheduling Algorithm for Input-Queued 

ATM Switches 
 

Mervat Said 

Computer Science and Engineering 

Dept., Faculty of Electronic 

Engineering, Menoufia University, 

Egypt. 

 mervat.arafa@el-eng.menofia.edu.eg 

Zeiad El-Saghir 

Computer Science and Engineering 

Dept., Faculty of Electronic 

Engineering, Menoufia University, 

Egypt. 

ziad.abdoun@el-eng.menofia.edu.eg 

 

Nawal EL-Fishawy 

Computer Science and Engineering 

Dept., Faculty of Electronic 

Engineering, Menoufia University, 

Egypt. 

nelfishawy@hotmail.com 

 
 

Abstract— In this paper, we propose an efficient single-

iteration single-bit request scheduling algorithm for 

input-queued ATM switches that based on a new 

arbitration technique called the Single Bit Request 

Grant (SBRG) algorithm. The operation of the SBRG 

depends on the concept known as “the preferred input-

output pairs first”, and the arbitration requests starts 

from switch output ports to reduce the number of issued 

request signals. Compared to other single-iteration 

algorithms, simulation results show that the SBRG 

maximizes the match size and improves the switch 

delay/throughput performance, especially when the load 

increases. Also, the proposed algorithm reduces the 

complexity of some of the existing algorithms by 

decreasing the number of input-output transferred 

messages, and by the absence of any encoding/decoding 

mechanism that can be used in some existing algorithms 

to reduce the size of request signals to one bit. 

 

Keywords— Input-queued ATM switch, single iteration 

scheduling algorithm, single-bit request scheduling 

algorithm.  

 

11..  IInnttrroodduuccttiioonn  

Cloud computing architectures provide users with 

access to applications and services stay in shared server 

domains through the Internet [1], [2]. IP traffic is 

transferred in huge amounts between users and server 

domains, and among too many servers in each domain. 

Most server domains have storage area networks. These 

networks facilitate data transfer among disk matrices and 

the hundreds of servers within different data centers. 

Networks within data centers have many types, and they 

must use switches that are characterized by their high 

speed and low latency to achieve efficient data 

communication among the elements of these networks 

[3], [4]. 

There are many types of switch architectures that are 

used for data communications in ATM networks. The 

traditional output queuing switches can achieve a 100% 

throughput under any traffic load, but it requires high 

internal speed, which makes it impractical to be built in 

hardware, especially for large port numbers. In contrast, 

the switches that based on input queuing operates with an 

external link speed equals the internal speed of the 

switch, so it is more proper for fast implementation 

because it minimizes prerequisite for memory data 

transmission, where at most one packet is sent or 

received by an input/output port per a time slot [5], [6]. 

Iterative algorithms are widely used for the switches that 

use input queuing [7], [8]. 

The switch performance is affected significantly by the 

algorithm of scheduling that can be used for switch 

arbitration. Many of these algorithms have studied in the 

literature. They can be classified into two categories: 

maximal size matching (MSM) and maximal weight 

matching (MWM). Although the MWM algorithms can 

achieve a throughput of 100% under any traffic load [9], 

[10], its implementation is difficult due to its complexity, 

and also it has a high execution time [O (N
3
logN)].  

For MSM category of scheduling algorithms, there are a 

large number of traditional cell-based algorithms [10] - 

[14] that remains grips the industrial area due to their 

simplicity and ease of implementation in hardware. Also, 

another MSM single iteration class of algorithms is 

introduced in [15], [16], which depend on the scheduling 

of packets rather than cells. Cell scheduling is simpler to 

be implemented than packet scheduling.  

For a switch that has N inputs and N outputs, the 

execution of an iterative scheduling algorithm may be 

repeated up to N iterations to achieve the maximal match 

size, where each of these N iterations contains three 

phases: request phase, grant phase and accept phase, as 

these three phases contribute to increasing the scheduling 

overhead. The scheduling overhead increases also by 

increasing the iterations number, which is almost 

unachievable in high-speed switches.  

With a single-iteration algorithm, no acknowledge 

messages exist in the accept phase. Despite the 

improvements that have occurred, existing single-

iteration algorithms need further improvements. So, a 

new category of single-iteration algorithms that depend 

on the idea known as “Highest Rank First” (HRF) and 

used for the switches with input queues are proposed in 

[4].  

A disadvantage of this new category is the need to an 

encoding/decoding hardware to produce single-bit 

requests, which in turn increases the switch complexity. 
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In this paper, our focus is on some of existing efficient 

algorithms that depend on the pointer updating schema, 

including PIM [7], iSLIP [11], SSRR [12], SRRR [14], 

and CHRF [4] algorithms. We evaluate their 

performances and compare them to the proposed new 

algorithm called the “Single Bit Request Grant” (SBRG) 

algorithm. The proposed SBRG algorithm falls within the 

category known as “single iteration with single bit 

request scheduling algorithms”. Compared to other 

single-iteration algorithms, simulation results clearly 

show that the SBRG algorithm maximizes the match size 

and improves the switch delay/throughput performance, 

especially when the load increases. Also, the proposed 

algorithm reduces the complexity of some existing 

single-iteration single-bit request algorithms by 

decreasing the number of arbitration messages that 

transferred between inputs and outputs, and by not 

having to use a special encoding/decoding hardware that 

used in some algorithms to decrease the size of requests 

to be with a single bit. 

The remaining of this paper as follows. In section II, we 

provide the related work, which is a background study for 

some MSM scheduling algorithms with an explanation of 

the effect of the pointer DE synchronization. We 

introduce the new SBRG algorithm in Section III. 

Simulation results and comparisons are introduced in 

Section IV. Finally, the conclusion is introduced in 

Section V. 

22..  RReellaatteedd  WWoorrkk  

Over the past three decades, numerous algorithms 

have been introduced that fall under a category known as 

the “iterative scheduling algorithms”. These algorithms 

differ from others in the information that is sent during 

the request phase and in the arbitration mechanisms that 

are used in the remaining phases: grant and accept. 

 A group of practical iterative algorithms is widely 

accepted due to the use of massively parallel processing, 

that calculates the matching in an iterative fashion, 

making the scheduling decision to consider if VOQs at 

input ports are occupied or not.  

In general, in each iteration of iterative 

scheduling algorithms, there are many steps, considering 

only the unmatched inputs and outputs. STEP 1: If an 

input has a cell waiting on its VOQs for a specific output, 

the input sends a notification request signal to this output. 

STEP 2: at each output port, if more than one request-

signal arrived from inputs, it selects one of these 

requests, then this output tells the input if its request is 

granted or not. STEP 3: if more than one notification 

grant-signal are received by the input, it accepts one of 

them. 

Parallel Iterative Matching (PIM) [7] and Round 

Robin Matching (RRM) [13] do not work well. Both 

achieves a throughput does not exceed 65%. PIM is 

based on the random selection at the arbiters of input or 

output ports, which requires more calculations to reach to 

the maximum matching, so it is difficult to be 

implemented. iSLIP (iterative round robin algorithm with 

SLIP) [11] is a modified version of RRM. It provides a 

100% throughput for a uniform traffic load and it is 

simple enough to be implemented in hardware. iSLIP 

operates in the same manner as RRM, except that 

updating the grant pointers occurs only if the grant is 

accepted.  

In iSLIP, The RRM step of Grant is as follows: 

Step 2: Grant. If a request is received by an output, the 

output chooses the next one using Round-robin 

scheduling, starting from the element which has the 

highest priority. The input is notified by the output 

whether its request is granted or not. If the grant is 

accepted in Step 3, then the pointer to the element with 

the highest priority is incremented (modulo N) to one 

location next to the granted input. This little change leads 

to the following properties of one-iteration iSLIP 

algorithm: Property 1: Lowest priority is given to the 

most recently made connection. Property 2: No starvation 

for any connection. The main drawback of iSLIP is the 

need to synchronize arbiter pointers, so it is impractical 

when the load increases. Also, iSLIP requires at least 4 

iterations to reach to the maximum matching, which 

leads to increasing the delay time.  

SSRR is another scheduling algorithm for the 

switches with VOQs [4], [5]. In SSRR, all input pointers 

are initially set to zeros, and all  output pointers are 

initialized with input port addresses without duplication. 

This leads to more fairness when choosing inputs, 

leading to improved speed of arbiters and reduced 

execution time. The steps in SSRR iteration are as 

follows: Step 1. Each input sends a request to each output 

that has a cell at the queue of this input.  

Step 2. If an output receives more than one 

request, it  accepts the one that appears very next in the 

round-robin schedule, beginning from the highest priority 

element.  Each input is notified by the output whether its 

request was granted or not. The pointer is incremented to 

one location beyond the granted one whether the grant is 

accepted or not.  

Step 3. If an input receives more than one grant, 

it  accepts the one that appears very next in the priority 

table.  The pointer is then incremented to one location 

beyond the accepted location. The pointer unchanged if 

no grant is received. The main drawback of SSRR is that 

it requires O (log N) time complexity. 

The Selective Request Round Robin (SRRR) is 

another Scheduling algorithm proposed in [14]. The 

SRRR iteration has 4 steps as follows: Step1. Pointer 

transmission: a request is sent from every output to its 

input that has the highest priority, where the preferred 

input is selected in the same manner as iSLIP and IRRM. 

Several signals may be sent to an input from different 

outputs. Step2. Each input checks the VOQ of the output 

that sent a signal to this input in step 1. If there is a 

waiting packet for each such VOQ, a request will be sent 

for the corresponding output. If no packet is waiting for 

all such VOQs, the input will send requests to all outputs. 

Step3. Grant. SRRR works in the same manner as iSLIP. 
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Step4: Accept. SRRR works in the same manner as 

iSLIP.  

The main difference between the above four 

algorithms is in the pointer updating schemas at the 

arbiters of the inputs and the outputs as shown in Table 1. 

The significant impact of pointer updating schemas on 

the performance of a scheduling algorithm is obvious 

from the table. We also notice that the studied algorithms 

in Table 1 are similar at the input side, but they differ at 

the output side. 

 

33..  OOuurr  PPrrooppoosseedd  

33..11  SSBBRRGG  SSwwiittcchh  FFaabbrriicc  

A  general description of a switch with VOQs with 

distributed output arbiters is shown in Fig 1 [16]. This 

architecture describes an N×N single-stage crossbar 

switch, where N is the number of input/output ports. An 

incoming traffic (small fixed size cells with 53 bytes’ 

length that is easier to synchronize and schedule) are 

buffered in separated virtual queues at input ports, where 

every input has N of VOQs (one VOQ for each output 

port). There is one arbiter for each output port to keep 

track of input ports those have packets destined to it and 

their arrival order. These arbiters can be located on the 

input ports’ side. No memory required for arbitration at 

output ports. The output arbiters are independent of each 

other and distributed on output ports. These output 

arbiters are independent of each other and can be 

implemented using simple FIFO buffers. All output 

arbiters can be implemented in hardware on a single chip. 

33..22  SSBBRRGG  SSppeecciiffiiccaattiioonn  

 

Initially, the pointer of each output arbiter is set to its 

highest priority output without duplication, and then the 

steps of SBRG will be as follows: 

 

Step 1: Request selection. Each output sends a signal to 

the input that currently has the highest priority. At this 

point, each input knows which output considers this 

input as its highest priority one. By this way, no 

synchronization is required between pointers because 

each input receives only one signal from the output that 

considers this input as its highest priority input. 

 

Step 2: Request. Each input checks it’s VOQs, and if 

there is a cell waiting for its preferred output (the output 

that sent a signal to this input in step 1), the input sends a 

request bit to this output. Otherwise, the input sends a 

single-bit request to each output that has a waiting cell in 

its VOQ at this input. This request bit is binary 1 if a cell 

is queued to this output or binary 0 if output’s VOQ is 

empty. 

 

Step 3: Grant. At each output port, it checks the 

incoming requests, and if received from its highest 

priority input, the output grants it by sending a single bit 

to this input. Otherwise, the output selects the next input 

from its FIFO buffer. 

 

Step 4: Accept. If a grant is received by an input, this 

input accepts the one that appears next in a fixed round-

robin schedule starting from the element with the highest 

priority, then all the pointers are incremented by one 

regardless of whether there is a grant or not. 

Algorithm 1 describes the SBRG pseudo code. It should 

be noted that: 

(a) At input ports, all Request and Accept procedures run 

in parallel with no messages need to be sent in accept 

procedures. 

(b) At output ports, Grant procedures run in parallel. 

 

Algorithm 1: The SBRG Algorithm. 

 

Initialization: 

1:       // M: switch size 

2:       // outp: output port 

3:      // inp: input port 

4:  for outp = 0 to M-1 do 

5:      // calculate the highest priority 

input at time slot ti 

6:     inp = (outp + M - ti modM) modM  
7:     pc [outp] = inp // pc: priority 

calculation  

8:  end for 

9:  Procedure Request (inp, outp) 

  10:      // L[inp]: is the length of VOQ at 

input inp 

  11:  If pc [inp] ==1 and L[outp] > 0 then 

  12:     send 1 to the output outp  

  13:     send zero to other outputs 

  14:  else  

  15:      // qstate [inp] is the status of VOQ 

at input inp  

  16:     send each qstate [inp] to the 

crossponding output 

  17:  end if  

  18:  end Procedure 

  19:  Procedure Grant (outp, ti) 

  20:      // Req [inp] is the request from 

VOQ at input inp  

  21:      inp = (outp + M - ti modM) modM  

  22:  If Req [inp] == 1 then  

  23:     send 1 to input inp 

  24:  else 

  25:     k = get inp at the head of qstate 

[outp] 

  26:     send 1 to input = k 

  27:     send zero other inputs 

  28:  end if 

  29:  end Procedure 

  30:  Procedure Accept (inp, ti) 

  31:      // Gra [outp] is the grant from 

output outp to input inp  

  32:     outp = (inp + ti) modM 

  33:  If Gra [outp] == 1 then 

  34:     accept the grant from output outp  

  35:  end if 

  36:  end Procedure 
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Table 1. Pointer updating schemas for the studied scheduling algorithms. 

 

Algorithm 

 

Input Output 

No confer 

(No grant) 

Conferred 

(Granted) 

No 

request 

Acceptance of 

grant 

Non-

Acceptance of 

grant 

SSRR 

Pointer 

remains at the 

same location 

without any 

change. 

 

Pointer 

update to 

one location 

following 

the accepted 
one. 

 

Pointer 

remains 

at the 

same 

location 

without 

any 
change 

 

Pointer update to one place 
beyond the granted one 

RRM 

Pointer update 

to one place 

behind the 
granted one 

 

Pointer update 

to one place 

beyond the 
granted one 

iSLIP 

Pointer remains 

at the same 

location without 

any change 

SRRR 

Pointer 

increme

nt by 
one 

Pointer update 

to the granted 
one 

 

 

Fig 1. A General Description of an IQ Switch Fabric with distributed output arbiters [16]. 

Table 2. Pointer updating schemas for SBRG. 

Algorithm 

Input Output 

No-grant Granted 
No 

request 

Grant 

accepted 

Grant not 

accepted 

SBRG 

Pointer 

remains at 

the same 

location 

without any 

change. 

Pointer 

update to one 

location 

following the 

accepted one. 

 

Increment  Pointer by one 
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Table 2 shows the pointer updating schema for the SBRG 

algorithm. Pointer updating is as follows: At each input 

port: If no grant is received from an output, the Pointer 

doesn’t change. If a grant received, the Pointer is updated to 

one location following the accepted one. At the output port: 

If no request is received from an input, the highest priority 

pointer at the round-robin arbiters updated by 1 to give 

another input the chance to be served. The output pointer is 

incremented by one whether the grant is accepted or not.  

 

33..33  SSBBRRGG  TThhrroouugghhppuutt  

The proposed SBRG algorithm achieves a 100% throughput 

and compared to other single iteration switches that achieve a 

100% throughput the SBRG is more distinguished in terms of 

stability especially when the load increases, as shown in 

Figure 2. To find the achieved throughput by the SBRG 

algorithm, let's assume that each input port has M VOQs. let's 

assume also that all the VOQs have cells need to be 

transferred to the same destination output port outp. Where 

the VOQs at inputs try to transfer their cells in certain time 

slot ti. 

 

Assume that TH is the throughput of input ports VOQs, so 

TH represents the overall throughput of the switch. Moutp 

represents the total number of HOL cells destined to an 

output outp in certain time slot ti. At all the VOQs, the 

overall number of HOL cells blocked at the input ports in ti 

is: 

 

MB = Moutp – X(Moutp)    (1) 

 

where X(Moutp) = min (1, Moutp), is the minimum 

number of blocked cells. When SBRG sends up to M cells 

out and tries to transfer these M cells to the preferred 

output ports at a time slot ti, and at the steady state 

S[X(Moutp)] = TH, so by substituting in (1) gives 

     

TH = S[Moutp] – S[MB]       (2) 

Let L is the all unblocked VOQs at time slot ti. So  

L = M − MB      (3) 

 

With keeping the flow, and let Y be the possibility of one 

of the L unblocked VOQs at input ports gets a new cell at a 

time ti. We found that 

S[L]Y = TH   (4) 

From (3) and the compensation in (4), we obtain 

S[MB] = M − TH/Y                (5) 

 

Where the HOL cells number that destines to an output 

outp in a time ti + 1 is M'outp. Let Voutp is the total 

number of HOL cells destined to the output outp and 

arrived at the L VOQs.  So 

  

M'outp = Moutp − X(Moutp) + Voutp   (6) 

 

Using the equation of the mean value in Appendix A of 

[17] we obtain:  

 

S[Moutp] = S[Voutp]  

    + S[Voutp(Voutp – 1)] ∕ 2(1 – S[Voutp])     (7) 

 

For large M, and by using a Poisson distributed random 

variable, Voutp can be simplified.  

Using the proof in Appendix A of [5], where at the steady 

state. When M → ∞, the overall number of HOL cells at 

the VOQs with the destination outp at every time slot 

becomes Poisson.  

 

So, we found that  

S[Voutp] = S[X(Moutp)] = TH     (8) 

 

 

and  

 

S[Voutp(Voutp − 1)] = TH
2
 (9) 

 

From (8) and (9) and commute (5) and (7) into (2), and 

setting Y = 1: 

 

TH = 1 + M – √ (1+M
2
)  (10) 

 

When M→∞, the throughput is 1. In fact, when M is finite, 

the equation remain gives a result that is very close to the 

maximum throughput value. 

 

33..44  SSBBRRGG  CCoommpplleexxiittyy  

SBRG achieves a maximum matching in only one iteration, 

and all of its operations take the same time to be finished, so it 

provides fast scheduling. The time complexity of SBRG is 

O(1), in contrast to iterative algorithms that perform multiple 

iterations to reach the maximum matching, making them to be 

too slow to support high line rates. 

SBRG needs fewer messages to work than iterative matching 

algorithms. For each matching, an output arbiter sends only 

one message as a request and only one grant message. For 

each input, it can send up to N one-bit request messages 

depending on the VOQs status (one request for every output 

having a cell in its VOQ). Over the entire switch fabric, there 

are a maximum of 2N messages that may be exchanged 

between the inputs and the outputs. Unlike SBRG, iSLIP 

needs a number of requests equals N
2
, a number of grant 

notifications equals N
2
, and a number of accepts equals N for 

each iteration. Also, iSLIP needs at least a number of 

iterations equals log N to achieve the maximum matching. So, 

iSLIP needs a number of messages equals (2N
2
+N) log N. 

Also, PIM and SSRR algorithms need a number of messages 

like the case of iSLIP. For SBRG, N selection requests are 

sent from output to input ports and only N grants are sent 

from output ports to input ports, so a total of N+N bits are 

exchanged. In contrast, in iSLIP and other iterative algorithms, 

a number of bits equal to 2N
2
+N are required to be exchanged 

for only one iteration. Also, and compared to the single 

iteration HRF rank-based algorithm given in [9], HRF time 

complexity is O(log N). Also, compared to the CHRF as a 

single iteration rank-based algorithm given in [9], the CHRF 
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time complexity is O(1), but it increases the complexity of the 

hardware implementation, which is very high and considered 

as a main drawback of the CHRF. 

  

  

44..  SSIIMMUULLAATTIIOONN  RREESSUULLTTSS  

44..11  SSiimmuullaattiioonn  SSeettuupp  

A performance comparison is done for our SBRG 

algorithm to some of the best performance and widely 

used single-bit-single-iteration algorithms, namely CHRF, 

SSRR, SRRR, PIM-1, and iSLIP-1 algorithms. 

Simulations are performed and the results are obtained 

using 16×16, 32×32, and 64×64 switches. The considered 

performance metrics are the cell delay time and the 

average throughput under normalized traffic load, where 

the cell delay is the time that a cell waits in a VOQ until 

being scheduled to its preferred output, and the traffic 

load is the cells number per time slot for each input. The 

used switch fabric is a single-stage crossbar one (the use 

of crossbar for building the connection between input 

ports and output ports is more preferred due to the simple 

design of crossbar and its non-blocking property). An 

incoming traffic (small fixed size cells 53-bytes each) are 

buffered in separated virtual queues at input ports. The 

access rate of the SBRG switch is identical to the access 

rate of the connection links outside the switch, so switch 

speedup is not required. Simulation results are obtained 

using a uniform traffic in one iteration (when cells arrive 

at the input it destines to each output with equal 

probability). 

 

44..22  EEvvaalluuaattiioonn  MMeettrriiccss  

  
(i) Throughput: The algorithm should provide a good 
performance of throughput. Throughput defined as the ratio of 
the actual number of cells enters the switch successfully to the 
maximum possible number of cell arrivals during the 
simulation. 
(ii) Delay (average cell delay): The algorithm should 
provide a good      performance of delay, defined as the total 
time the cell spend inside the buffer until it arrives at its 
output. 
(iii) Fairness: The algorithm must serve all the input ports in 
a fair manner.  
(iv) No Starvation: the algorithms should be starvation-free. 
(v) Implementation and time complexity: the hardware 
implementation of  
(vi) the algorithm must be simple.  
(vii) Scalability: The algorithm should be scalable if the 
number of ports increases. 

 

  

44..33  RReessuullttss 
From throughput simulation results shown in Fig. 2, 

and under a light traffic load, all the algorithms have 

almost the same performance until the load value 0.6 is 

reached. Beyond this point, the performance of PIM 

algorithm becomes unstable, and the maximum 

throughput that can be offered using PIM is 0.65. 

  

 

 

Also, the SSRR performance degrades after the point in 

which the incoming traffic load with the value 0.7, but it 

still better than iSLIP under all load conditions. 

 

For SBRG algorithm, simulation results show that its 

throughput is the best among all the studied algorithms, 

and it is the more stable and the closest one to the 100% 

throughput under all load conditions. 

 

Cell-delay simulation results are shown in figures 3-a, 3-b, 

and 3-c. From the results, and under a light traffic load, it 

is clear that all the algorithms have almost the same cell-

delay time until the load reaches the value 0.6. Beyond this 

point, the performance varies significantly depending on 

the algorithm used as follows: beyond a 0.6 load value, the 

performance of PIM algorithm becomes unstable and the 

cell-delay time increases significantly.  

 

The same situation is applicable to SRRR algorithm 

beyond a 0.7 load value.  Also, simulation results show 

that SSRR works much better than iSLIP under all load 

conditions. For the SBRG and compared to the other 

studied algorithms, a significant performance gain is 

achieved as the traffic load increases.  

 

The SBRG distinction is clearly noticed with increasing 

the load. Table 3 shows the performance gain of the SBRG 

algorithm compared to the studied algorithms as the traffic 

load increases. For example, if the applied load is 0.8, the 

cell delay time for the SBRG for a 64×64 switch compared 

to the studied switches will be as follows: SBRG = 10.239, 

CHRF = 28.7, PIM = 10050, SRRR = 2321.987, iSLIP = 

177.34, and SSRR = 79.421. 

 

Fig 4 shows the SBRG performance as a function of the 

switch size. The simulation results show that the SBRG 

performance has a slight change with the increased size of 

the switch. For example, if the applied load is 0.8, the cell 

delay time for the SBRG for a 64×64 switch is 10.239, for 

a 32×32 switch is 9.9293, and for a 16×16 switch is 

8.4239. These results prove that the SBRG is a scalable 

algorithm.   

55..  CCoonncclluussiioonn    

  

In this paper, an efficient scheduling algorithm for switch 

architectures with VOQs – Single Bit Request Grant (SBRG) 

is introduced. SBRG achieves a distinct performance 

compared to other widely used single iteration algorithms, 

especially when the load increases. Also, the proposed 

algorithm reduces the complexity of some existing single-

iteration single-bit request algorithms by decreasing the 

number of input-output transferred messages, and by the 

absence of a request encoding/decoding hardware which can 

be used by some algorithms to reduce the size of the request to 

be a single bit. SBRG meets the criterion of a distinct 

scheduling algorithm: distinct performance, and fast and 

simple to be implemented. 

 

 

 

 

 



 47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                    
 

Fig. 2: Average Throughput for a 64×64 switch.                       Fig. 3-a: Average cell delay for a 16×16 switch. 

 

                              
 

Fig. 3-b: Average cell delay for a 32×32 switch.                   Fig. 3-c: Average cell delay for a 64×64 switch. 

 

 
 

Fig. 4: The performance of SBRG as a function of switch size. 
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Table 3. Average Cell Delay Comparison under Heavy Load Conditions. 

Load Size 
Average Cell Delay 

SBRG CHRF SSRR SRRR PIM-1 iSLIP-1 

0.7 

16*16 5.859 6.52 17.14 14.01 2033.6 27.1214 

32*32 7.245 7.845 22.893 18.23 3160.68 83.31 

64*64 7.8201 8.459 35 28.789 4393.8 95.98 

0.8 

16*16 8.4239 17.63 30.47 1182.1 7500.57 48.301 

32*32 9.9293 25.7 42.723 2098.01 9050.75 66.53 

64*64 10.239 28.7 79.421 2321.987 10050 177.34 

0.9 

16*16 13.378 32.1 61.542 1999.4 9324.1 89.757 

32*32 16.678 48.1 134.23 2976.94 12400.3 150.894 

64*64 17.379 50 230 3124.7 14589.6 413.08 

0.95 

16*16 24.574 98.5 172.92 2197.3 10731.8 222.896 

32*32 28.754 105 340.1 3794 14280 462.7 

64*64 32.564 110 550 4276.45 16388.8 743.1 

 


