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A B S T R A C T 

Recently, number of applications including social networks, stock market trading and sensor network 

devices generate a massive amount of data in the streaming form. Streaming data have characteristics 

different from static data, such as streaming data arrives continuously at high speed with huge amount. 

Mining and discovering information from these data is a non-trivial issue. Most of traditional algorithms 

have limitations to deal with streaming data, so there are new issues raised and need to be taken into 

consideration while developing techniques for mining association rules from such data. In this paper, a 

technique to mine an association rules from streaming data efficiently is proposed. The proposed technique 

develops a tree structure called Fast Update Frequent Pattern Tree (FUFP-Tree) that reduce the number of 

traversing between tree nodes in both inserting a new transaction and extracting an association rules between 

items. Also, to avoid congestion during inserting incoming streaming data to FUFP-Tree, a sliding window 

approach is used to divide incoming data equally to all available windows. The complexity and the 

performance of this technique are investigated, and a dataset of storehouse is used to test the proposed 

technique and measure its efficiency. The efficiency of the proposed technique is compared with other most 

related algorithms. 

    

 

 

1. Introduction 

Over the past years, some applications, for example, social networks, stock 

market trading and sensor network devices need to process data as they are 

generated, in other words, as they stream. These types of applications are 

called streaming data applications. The term of streaming data refers to data 

that is generated continuously with unbounded size and arrives in high 

speed, as opposed to static data. Stream data mining is a process of 

extracting knowledge from rapid and continuous incoming data, it portrays 

the next era of data mining systems that will enable the intelligent and time-

critical information requirements of portable users and will ease "anytime, 

anywhere" data mining [1]. Association rule mining technique is aiming to 

discover a frequent patterns, correlations or associations from a given 

dataset. It is termed as “market basket dataset”, where each attribute is 

termed as an item and the frequencies of different itemsets are transformed 

in the form of if-then rules based on support-confidence framework and 

then the relationships between seemingly unrelated data in given dataset 

can be found out [2]. Streaming data applications require association rule 

mining to discover the major associations among items. Some of related 

algorithms are discussed, there are limitations for these algorithms to deal 

with streaming data and mining an association rules in high performance 

and in acceptance time.  The proposed technique tackles the discussed 

algorithms limitations and uses a sliding window to build an enhanced FP-

Tree called FUFP-Tree. Also, the proposed technique allows fault tolerance 

layer that aims to save the resulted tree after a period of time to retrieve it 

in the case of any error or damage to the system rather than rebuild the 

whole tree again from scratch. Saved tree can be used to apply user query 

for generating the association rules using both minimum support and 

minimum confidence thresholds. The proposed technique is applied for a 

dataset and the experimental results proved that it is efficient compared to 

other similar algorithms. In this paper, the related works are discussed 

declaring the limitations of each algorithm in section II, then the proposed 

technique is developed based on the discussed limitations in section III. The 

algorithm complexity is discussed in section IV. Moreover, the 
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experimental results and querying the proposed tree are discussed in section 

V. Finally, the conclusions and future trends are discussed in section VI. 

2. Related Works 

The main issue in mining the frequent itemsets in streaming data is to 

determine the frequency of them at a suitable rate that is well-suited with 

the speed at which the transactions are provided. This objective needs 

algorithms featured with in-memory data structures and a minimal dataset 

scan. According to [2-3], the approaches of stream mining can be 

categorized into four main classes: bottom-up, top-down, landmark and 

sliding-window based mining. 

2.1. Bottom-Up approach 

In this approach, the individual transactions itemsets of the given dataset 

are specified in detail firstly. Then these itemsets are linked together to form 

larger sub-transactions in many levels and so on until complete top-level 

sub-transactions are formed. The common association rules algorithms in 

this approach are Apriori Algorithm and Partitioning Approach. 

2.1.1. Apriori algorithm 

Apriori algorithm is one of the most common association rule algorithms 

[4]. It can be used to derive all possible frequent itemsets from a given 

dataset and generate association rules subject to support and confidence 

values that are not less than a predefined minimum support value and 

minimum confidence value. In spite of the fact that it is powerful as the 

noisy data can't influence the result of the algorithm, but it has limitations 

when dealing with streaming data. The major limitation of this algorithm is 

the several scanning of the dataset when there is a new record is inserted. 

Also, it's a costly waste of time to generate a number of candidate sets with 

much frequent itemsets, so that it will be very slow and inefficient when 

memory capacity is limited. 

2.1.2. Partitioning approach 

It can be observed that during the frequent itemset generation, maximum 

time is consumed while reading the data from the disk. To execute faster, 

the dataset need to be loaded to the memory. But in most of the cases the 

dataset is too big to load into the memory. The partitioning approach uses 

the Apriori algorithm for memory resident data [2]. In this approach, the 

whole dataset is splitted into some smaller partitions, so that each partition 

is individually loaded in the memory. Then for each partition, a frequent 

itemsets are generated using the Apriori algorithm. After the generation of 

frequent itemsets for all the partitions, they are combined together, and 

redundancies are removed. Then for all the remaining itemsets the support 

is counted by reading the dataset again. This approach practically requires 

two scans of the whole dataset. This approach still suffers from limitations 

such as it isn't sensitive to noisy data. This approach also scans the dataset 

only twice. Moreover, in the final phase, joining of frequent itemsets of 

individual partitions results in a huge number of itemsets and hence 

consumes a significant amount of time. 

2.2. Top-Down approach 

In this approach, an overview of the given dataset is formulated, then 

breaking down to gain insight from given dataset. The most popular 

association rules algorithm in this approach is FP-tree algorithm. 

 Frequent-Pattern growth (FP-Growth) algorithm 

It is an efficient tree-based algorithm to discover the required association 
rules. This algorithm firstly scans the dataset to count frequencies of 
different items, then it reorders the items based on the frequency of each 
item in the decreasing order. By utilizing the frequency descending list, the 
dataset is compacted into a Frequent-Pattern tree, which keeps the 
information about the association of the transaction itemsets. Next, for each 
item starting with the highest support, a conditional pattern base is 
constructed and represented as its conditional FP-tree. The growth pattern 
is realized via the chain of the suffix pattern with the generated frequent 
patterns from the conditional FP-tree. After the construction of the FP-tree, 
for every frequent item one conditional FP tree is constructed. However, a 
major limitation of FP-growth is that, this algorithm needs to scan the given 
dataset twice [5]: First scan to get frequency of occurrence for each item, 
second scan to reorder the dataset transaction items according to the 
frequency of occurrence of each item.  

2.3. Landmark approach 

In landmark techniques, the itemsets of incoming transactions are 

calculated among a specific timestamp, the landmark, and the present. 

Therefore, in such landmark techniques, transactions are continuing in the 

frame of interest. Landmark techniques are based on a single pass support 

count of streaming data as well as on prefix tree-based pattern 

representation [3]. DSM-FI algorithm is a popular algorithm that is based 

on landmark approach. 

 Data Stream Mining for Frequent Itemsets (DSM-FI) 

algorithm 

In this algorithm, it constructs and maintains an in-memory prefix-tree 

based data structure summary, called summary frequent itemset forest (SFI-

forest). A DSM-FI algorithm prunes infrequent itemsets from the current 

SFI-forest. Finally, the frequent itemsets from the current SFI-forest are 

generated [6]. The major limitation of this algorithm is that it needs more 

tree traversals for the frequency count, so that it consumes more time in 

both inserting and generating an association rules. 

2.4. Sliding-window based mining 

The major issues are escaping several scans because the streaming data 

come from one source or multiple sources in a high speed. So that this 

technique is based on the sliding window model, which entirely ignore old 

data and attention is focused on recent data, thus saving memory storage 

and simplifying the discovery of the distribution drift [7]. There are many 

algorithms that using sliding window-based mining such as Weighted 

Sliding Window (WSW) algorithm. 

 Weighted Sliding Window (WSW) algorithm 

This algorithm depends on the number of windows for mining, the window 

size and the given weight for each window, which are predefined. The 

incoming transactions are split into equal number of windows, and then 

compute the weight of every transaction in every window. Hence, the 

highest weight has been assigned to the most recent transaction. If the  

Table 1 – Comparative analysis of frequent pattern algorithms. 
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Algorithm Name Category Advantages Limitations 

Apriori Algorithm Bottom-Up Can derive all possible 

frequent itemsets from a given 

dataset and generate 

association rules subject to 

minimum support and 

minimum confidence values 

Multiple scanning of the 

dataset when there is a new 

record is inserted 

Partitioning Approach Bottom-Up Generate frequent itemsets 

faster without burden on the 

memory 

Not sensitive to noisy data 

Frequent-Pattern growth (FP-Growth) 

algorithm 

Top-Down Find out frequencies of 

different itemsets, then order 

the itemsets descending into a 

compressed frequent pattern 

tree 

Needs to scan the given 

dataset twice 

Data Stream Mining For Frequent 

Itemsets (DSM-FI) Algorithm 

Landmark Compact tree structure has 

been designed to store the 

frequent patterns 

It needs more tree traversals 

for the frequency count 

Weighted Sliding Window (WSW) 

Algorithm 

Sliding window based mining A single pass algorithm was 

developed to discover the 

frequent itemsets 

Weights of each window 

affected the mining results. 

So, user should specify the 

reasonable weight for each 

window 

 

weighted support value count of a specific item is not less than the 

minimum weighted value, it is called as frequent itemset. There is a tradeoff 

between the window size and the execution time of WSW, since when the 

window size is small, the number of transactions involving frequent 

itemsets in every window is also small. The main limitation of this 

algorithm is that weights of each window influenced the results of the 

mining process, so that user should determine the well-suited weight for 

every window and adjust the weights values for different windows 

depending on the significance of the data. All discussed related works are 

summarized and compared in Table 1. 

3. Efficient Association Rules Mining With A Fault 

Tolerance 

In this section, a proposed technique is discussed. The main purpose of the 

proposed technique is improving a tree structure which can accommodate 

streaming data and change continuously, so that, a Fast-Updated Frequent 

Pattern Tree (FUFP-Tree) is proposed. Furthermore, a Sliding-Window 

technique is used to speed up preprocessing of incoming streaming data 

before sending it to FUFP-Tree in a parallelism form with a fault tolerance 

level. Finally, the association rules between items can be extracted easily 

from the built FUFP-Tree according to given parameters such as minimum 

support value, maximum support value and confidence value. All these 

issues are detailed in the following sections. 

3.1. Streaming data preprocessing using sliding-window 

With the exponential growth of streaming, an unprecedented amount of 

structured, semi-structured, and unstructured data is available. So that, data 

preprocessing is a major phase to solve incoming data problems before 

insertion in a tree such as inconsistencies, missing values and noise data to 

provide a high quality data to improve the performance of used algorithms 

to extract the association rules. To handle continuous data streams, a model 

based on sliding window is utilized for parallel preprocessing entry data. 

Typically, the incoming data will be split into equal chunks according to 

the window slide size. Given a parallelism degree in the system, each 

window slide will act as a separate part and apply a set of data preprocessing 

operations such as data cleaning, data integration, data transformation…etc. 

A common sliding window technique called "Pane-based Partitioning" is 

used which based on the panes [9]. The main idea of this technique is to 

split overlapping windows internally into individual panes, over which sub-

aggregates can be calculated whose results can be merged into the final 

aggregate. The panes technique has been originally introduced to minimize 

both computation cost and the space of sliding window by sub-aggregating 

computation. The number of sliding windows, sliding window size and 

sliding window pane size must be identified firstly before receiving data 

from sources. In "Pane-based Partitioning" technique each window acts as 

a shared-nothing cluster of commodity hardware in which each window is 

independent, self-sufficient according to the window size. There is no 

shared memory or disk storage, so that if there is any failure in any sliding 

window, other sliding windows will continue their work and not affected 

by the existing failure. A sliding window can become out of service due to 

a common failure called "Fail-Stop Failure". 

 Fail-stop failure 

This failure means that if the sliding window gets out of services during a 

computation, it requires an external impact to bring the sliding window 

back to working state again. For instance, a system administrator checks for 

the status of sliding window components and solve the problem or retires 

the broken sliding window and reconfigure the system such as reinitializing 

the number of sliding windows. 
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Fig 1 – Sliding window fault tolerance. 

3.2. Sliding-window fault tolerance 

Fault tolerance is the property that enables systems to remain operating 

correctly in the case of the failure of some of their portions due to one or 

more faults. As mentioned previously, the streaming data comes in 

continuously and with high speed rate, so that there is no ability to hold 

longer until the faults are processed from system administrator. In the statue 

of Fail-Stop Failure, the proposed solution is that the system will 

automatically disable and ignore the connection to the failure sliding 

window, so that all incoming transactions will be split directly to other 

working sliding windows without change the initial configuration of the 

sliding windows until the system admin interferes to resolve the issue with 

an appropriate solution. For instance, assume there is a system consist of n 

sliding window and each window can handle m transaction (i.e., window 

size = m), if one sliding window became out of service, that means there 

are n-1 working sliding window rather than n working sliding window and 

the transactions of the crashed sliding window will be redirect 

automatically to the other working sliding windows, see Fig 1. 

3.3. Fast Updated Frequent Pattern Tree (FUFP-Tree) 

The FUFP-tree building algorithm is depend on the FP-tree algorithm. The 

connections between parent nodes and their children nodes are bi-

directional linking that help to speed up the maintenance process such as 

reorder the tree elements rather than rebuild the tree from scratch. The 

FUFP-tree structure depends on that the itemsets with the most frequent 

values will be in the top nodes as a descending order, so that, the value of 

bi-directional linking appears here when the itemsets frequencies values are 

changing and there is needing to reorder the tree rather than rebuild it [13]. 

Moreover, the frequent items are arranged in descending order and kept in 

the top nodes. Also, FUFP-Tree saves the last path that eases moving from 

and to nodes. For example, if last inserted transaction is {B, D, A, E}, then 

the saved path is {B:5, D:3, A:2, E:1} as shown in Fig 2. If there is a new 

transaction {B, D, A, E, C}, there is no need to return to Null node and start 

from scratch to search for the header node, i.e., {B}, the saved path can be 

used as its items are found in the new incoming transaction, so the support 

of each item in the current saved path will be incremented as {B:6, D:4, 

A:3, E:2}. Then after adding a new item node {C} with its frequency, now 

the current saved path is updated to {B:6, D:4, A:3, E:2, C:1} as illustrated 

in Fig 3. If the new transaction starts with an item that doesn’t match the 

first saved path item, the return to Null node and search for header node 

that match the first transaction item is inevitable. If new incoming 

transactions are inserted, the FUFP-tree maintenance algorithm will 

manipulate them to keep up the FUFP-tree. The top nodes of FUFP-tree are 

refreshed whenever needed. If an originally item with large value turn out 

to be smaller, it is directly transferred from top level node to lower level 

node with respect to its frequency value and its parent and child nodes are 

then linked together. The FUFP-tree can be updated, and the performance 

of the FUFP-tree algorithm can be incredibly enhanced. The whole FUFP 

tree can then be re-built in a batch manner when an adequately extensive 

number of incoming transactions have been inserted. 

 

 

 

Fig 2 – FUFP-Tree before inserting {B, D, A, E, C} transaction. 

 

Fig 3 – FUFP-Tree after inserting {B, D, A, E, C} transaction. 

Current saved path 

{B:5, D:3, A:2, E:1} 

 

Current saved path 

{B:6, D:4, A:3, 

E:2, C:1} 
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3.4. Extracting association rules 

Association rule is a data mining method for discovering interesting 

relations between different items. After constructing the FUFP-Tree, 

Algorithm A.1 is used to generate the entire set of correct frequent patterns 

from the current window [1]. Firstly, a minimum support threshold value 

must be identified to extract a frequent pattern list. In FUFP-Tree, the nodes 

are ordered in descending order, so that if the top node is not greater than 

or equal to the minimum support threshold value, this node and its children 

will be ignored from frequent pattern list. For example, from the same 

FUFP-Tree which shown in Fig 3, if the minimum support threshold value 

is 4, the resulted frequent pattern list will be {B, D}. After generating all 

possible frequent patterns, association rules are derived by a specific 

confidence threshold using Algorithm A.2. 

 

Input: FUFP-Tree, Predefined minimum support threshold min_sup 

Output: The frequent patterns list Lfp 

Begin 

1- For each node N in first level of FUFP-Tree  

2-    If frequency(N) >= min_sup   Then 

3- Extend the Node N  

4-     For each item I in Node N  

5-        If frequency(I) >= min_sup   Then 

6-           Add item I to Lfp , Then goto next level  

7-        Else  

8-           Break  

9-        End If  

10-     End For  

11- End If 

12-  End For 

A.1 – Extract frequent patterns. 

Input : Lfp list, Predefined confidence (Conf)  

Output: The association rule list Lar 

Begin  

1- For each item Li in Lfp 

2-    For each item Lj in Lfp    

3-       Rule_val = Sup(Li U Lj)/Sup(Li)  

4-          If (Rule_val  >=  Conf)   Then 

5-             Add Li and Lj to Lar list 

6-          End If  

7-    End For  

8- End For 

A.2. – Deduce association rules. 

4. Complexity Of Algorithm 

In this section, the algorithm complexity is analyzed. Runtime complexity 

is divided into two steps. 

 Data preprocessing step which is depending on the number of sliding 

windows and the number of transactions per a sliding window (n),so 

that the complexity of sliding windows is O(n). 

 Generating frequent patterns list from FUFP-Tree step which its 

complexity is O(log n). 

5. Experimental Results 

To evaluate the validity of the proposed technique, an experiment is 

conducted. A sample of a retail market basket dataset of a retail supermarket 

store is used. The number of transactions is 88163 and the number of unique 

stock keeping unit products is 16470 [10]. 

5.1. Sliding windows configuration 

The main parameters for sliding windows are: number of windows (nw), 

window size (ws), number of panes per window (wp), size of pane per each 

pane in window (ps). All of these parameters are determined based on 

machine capabilities such as the machine operating system, hard drive type, 

hard drive capacity, processor and memory capabilities. In this experiment, 

the used machine specifications are as follow; Ubuntu 18.10 OS, solid state 

drive (SSD) with 100GB available capacity, processor is Intel core i5, 2.40 

GHz and 4 GB RAM. Sliding windows configuration must be done quite 

ideally, because these sliding windows have a major role as they receive a 

raw data from sources and then apply a preprocessing function to be ready 

to be inserted into the FUFP-Tree. So that one of the best tools that is used 

during this experimental is called “Apache Kafka”. Kafka is an open source 

tool that is used for building streaming applications. This tool is scalable, 

fault-tolerant and allows executing operations fast. In this experiment, the 

parameters are configured with different values in proportion to the 

capability of the machine and deduce the execution time as shown in Table 

2. 

5.2. Building FUFP-Tree using pane-based partitioning VS. 

building FUFP-Tree using weighted sliding window 

In this experiment the FUFP-Tree building time is measured by applying 

the proposed technique and applying weighted sliding window (WSW) 

algorithm. As mentioned previously, WSW algorithm needs to identify 

number of windows for mining, the size of the window as well as the weight 

for every window firstly. The major limitation is that the weights of every 

window influence the mining results. It requires very reasonable weight for 

each window and adjusts the weights values each time for each window, so 

that it takes more time to construct FUFP-Tree than using pane based 

partitioning approach. In pane-based partitioning approach, there is no need 

to adjust the configurations that are identified before starting, so that the 

FUFP-Tree is constructed faster as shown in Fig 4. 

Table 2 – Total runtime with different sliding window configuration. 

Number of 

windows 

(nw) 

Window 

size (ws) 

Number 

of panes 

per 

window 

(wp) 

Size of 

pane per 

each 

pane in 

window 

(ps) 

Total 

Runtime 

(sec) 

10 8800 80 110 20.5 

20 4400 50 88 12.9 

30 2930 10 293 8.7 

40 2200 20 110 7.4 

50 1760 10 176 4.2 
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Fig. 4 - Average time for building FUFP-Tree. 

Table 3 – Top 5 frequent patterns list. 

Product Barcode Frequency 

39 4321 

48 3436 

41 2024 

32 1397 

38 1348 

5.3. Extracting frequent patterns list 

After the construction of FUFP-Tree with pane-based partitioning sliding 

window approach, the association rules technique has been performed to 

discover the frequent patterns list. There are more than 8000 frequent 

patters are extracted. The top 5 frequent itemsets are listed in Table 3. 

5.4. Results analysis 

The results of the proposed algorithm to construct the FUFP-Tree are 

exhibited. The results demonstrate that FUFP-Tree is very effective in 

terms of memory storage when finding correct frequent patterns from a 

streaming data. The runtime changes based on sliding windows 

configurations. As shown in Table 2,  if there are more sliding windows, 

high number of incoming streaming data are processed in the same time, 

the runtime is reduced and the FUFP-Tree is built in short time. 

6. Conclusion And Future Work 

In this paper, the characteristics of streaming data have been discussed and 

presented some related algorithms for generating association rules from a 

dataset. The proposed technique works on speeding up streaming data 

mining using a sliding window technique to build FUFP-Tree with fault 

tolerance for any failure in the system. In the future, the proposed technique 

will be improved to adjust the number of needed sliding window and the 

pane size for each window dynamically according to the rate of streaming 

data. Such improvement results in memory usage reduction and speed up 

building FUFP-Tree. 
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