
3rd. International Conference for Computing and Informatics, Ubiquitous Computing and Engineering (ICCI, 2018)

* Corresponding author. Tel.: 0201113531165.

E-mail address: amraly_267@yahoo.com

Peer review under responsibility of Dr. Rashed Salem.

Efficient streaming data association rule mining

Amr Aly Abd Elatya*, Rashed Salemb, Hatem Abd Elkaderc

a Faculty of Computer and Information, Information Systems Department, Menoufia University, Menoufia, Egypt,
b Faculty of Computer and Information, Information Systems Department, Menoufia University, Menoufia, Egypt,
c Faculty of Computer and Information, Information Systems Department, Menoufia University, Menoufia, Egypt.

KEYWORDS

Data Mining,

Association Rules,

Streaming Data,

FUFP Tree.

A B S T R A C T

Recently, number of applications including social networks, stock market trading and sensor network

devices generate a massive amount of data in the streaming form. Streaming data have characteristics

different from static data, such as streaming data arrives continuously at high speed with huge amount.

Mining and discovering information from these data is a non-trivial issue. Most of traditional algorithms

have limitations to deal with streaming data, so there are new issues raised and need to be taken into

consideration while developing techniques for mining association rules from such data. In this paper, a

technique to mine an association rules from streaming data efficiently is proposed. The proposed technique

develops a tree structure called Fast Update Frequent Pattern Tree (FUFP-Tree) that reduce the number of

traversing between tree nodes in both inserting a new transaction and extracting an association rules between

items. Also, to avoid congestion during inserting incoming streaming data to FUFP-Tree, a sliding window

approach is used to divide incoming data equally to all available windows. The complexity and the

performance of this technique are investigated, and a dataset of storehouse is used to test the proposed

technique and measure its efficiency. The efficiency of the proposed technique is compared with other most

related algorithms.

1. Introduction

Over the past years, some applications, for example, social networks, stock

market trading and sensor network devices need to process data as they are

generated, in other words, as they stream. These types of applications are

called streaming data applications. The term of streaming data refers to data

that is generated continuously with unbounded size and arrives in high

speed, as opposed to static data. Stream data mining is a process of

extracting knowledge from rapid and continuous incoming data, it portrays

the next era of data mining systems that will enable the intelligent and time-

critical information requirements of portable users and will ease "anytime,

anywhere" data mining [1]. Association rule mining technique is aiming to

discover a frequent patterns, correlations or associations from a given

dataset. It is termed as “market basket dataset”, where each attribute is

termed as an item and the frequencies of different itemsets are transformed

in the form of if-then rules based on support-confidence framework and

then the relationships between seemingly unrelated data in given dataset

can be found out [2]. Streaming data applications require association rule

mining to discover the major associations among items. Some of related

algorithms are discussed, there are limitations for these algorithms to deal

with streaming data and mining an association rules in high performance

and in acceptance time. The proposed technique tackles the discussed

algorithms limitations and uses a sliding window to build an enhanced FP-

Tree called FUFP-Tree. Also, the proposed technique allows fault tolerance

layer that aims to save the resulted tree after a period of time to retrieve it

in the case of any error or damage to the system rather than rebuild the

whole tree again from scratch. Saved tree can be used to apply user query

for generating the association rules using both minimum support and

minimum confidence thresholds. The proposed technique is applied for a

dataset and the experimental results proved that it is efficient compared to

other similar algorithms. In this paper, the related works are discussed

declaring the limitations of each algorithm in section II, then the proposed

technique is developed based on the discussed limitations in section III. The

algorithm complexity is discussed in section IV. Moreover, the

Informatics Bulletin, Faculty of Computers and Information, Helwan University

2

experimental results and querying the proposed tree are discussed in section

V. Finally, the conclusions and future trends are discussed in section VI.

2. Related Works

The main issue in mining the frequent itemsets in streaming data is to

determine the frequency of them at a suitable rate that is well-suited with

the speed at which the transactions are provided. This objective needs

algorithms featured with in-memory data structures and a minimal dataset

scan. According to [2-3], the approaches of stream mining can be

categorized into four main classes: bottom-up, top-down, landmark and

sliding-window based mining.

2.1. Bottom-Up approach

In this approach, the individual transactions itemsets of the given dataset

are specified in detail firstly. Then these itemsets are linked together to form

larger sub-transactions in many levels and so on until complete top-level

sub-transactions are formed. The common association rules algorithms in

this approach are Apriori Algorithm and Partitioning Approach.

2.1.1. Apriori algorithm

Apriori algorithm is one of the most common association rule algorithms

[4]. It can be used to derive all possible frequent itemsets from a given

dataset and generate association rules subject to support and confidence

values that are not less than a predefined minimum support value and

minimum confidence value. In spite of the fact that it is powerful as the

noisy data can't influence the result of the algorithm, but it has limitations

when dealing with streaming data. The major limitation of this algorithm is

the several scanning of the dataset when there is a new record is inserted.

Also, it's a costly waste of time to generate a number of candidate sets with

much frequent itemsets, so that it will be very slow and inefficient when

memory capacity is limited.

2.1.2. Partitioning approach

It can be observed that during the frequent itemset generation, maximum

time is consumed while reading the data from the disk. To execute faster,

the dataset need to be loaded to the memory. But in most of the cases the

dataset is too big to load into the memory. The partitioning approach uses

the Apriori algorithm for memory resident data [2]. In this approach, the

whole dataset is splitted into some smaller partitions, so that each partition

is individually loaded in the memory. Then for each partition, a frequent

itemsets are generated using the Apriori algorithm. After the generation of

frequent itemsets for all the partitions, they are combined together, and

redundancies are removed. Then for all the remaining itemsets the support

is counted by reading the dataset again. This approach practically requires

two scans of the whole dataset. This approach still suffers from limitations

such as it isn't sensitive to noisy data. This approach also scans the dataset

only twice. Moreover, in the final phase, joining of frequent itemsets of

individual partitions results in a huge number of itemsets and hence

consumes a significant amount of time.

2.2. Top-Down approach

In this approach, an overview of the given dataset is formulated, then

breaking down to gain insight from given dataset. The most popular

association rules algorithm in this approach is FP-tree algorithm.

 Frequent-Pattern growth (FP-Growth) algorithm

It is an efficient tree-based algorithm to discover the required association
rules. This algorithm firstly scans the dataset to count frequencies of
different items, then it reorders the items based on the frequency of each
item in the decreasing order. By utilizing the frequency descending list, the
dataset is compacted into a Frequent-Pattern tree, which keeps the
information about the association of the transaction itemsets. Next, for each
item starting with the highest support, a conditional pattern base is
constructed and represented as its conditional FP-tree. The growth pattern
is realized via the chain of the suffix pattern with the generated frequent
patterns from the conditional FP-tree. After the construction of the FP-tree,
for every frequent item one conditional FP tree is constructed. However, a
major limitation of FP-growth is that, this algorithm needs to scan the given
dataset twice [5]: First scan to get frequency of occurrence for each item,
second scan to reorder the dataset transaction items according to the
frequency of occurrence of each item.

2.3. Landmark approach

In landmark techniques, the itemsets of incoming transactions are

calculated among a specific timestamp, the landmark, and the present.

Therefore, in such landmark techniques, transactions are continuing in the

frame of interest. Landmark techniques are based on a single pass support

count of streaming data as well as on prefix tree-based pattern

representation [3]. DSM-FI algorithm is a popular algorithm that is based

on landmark approach.

 Data Stream Mining for Frequent Itemsets (DSM-FI)

algorithm

In this algorithm, it constructs and maintains an in-memory prefix-tree

based data structure summary, called summary frequent itemset forest (SFI-

forest). A DSM-FI algorithm prunes infrequent itemsets from the current

SFI-forest. Finally, the frequent itemsets from the current SFI-forest are

generated [6]. The major limitation of this algorithm is that it needs more

tree traversals for the frequency count, so that it consumes more time in

both inserting and generating an association rules.

2.4. Sliding-window based mining

The major issues are escaping several scans because the streaming data

come from one source or multiple sources in a high speed. So that this

technique is based on the sliding window model, which entirely ignore old

data and attention is focused on recent data, thus saving memory storage

and simplifying the discovery of the distribution drift [7]. There are many

algorithms that using sliding window-based mining such as Weighted

Sliding Window (WSW) algorithm.

 Weighted Sliding Window (WSW) algorithm

This algorithm depends on the number of windows for mining, the window

size and the given weight for each window, which are predefined. The

incoming transactions are split into equal number of windows, and then

compute the weight of every transaction in every window. Hence, the

highest weight has been assigned to the most recent transaction. If the

Table 1 – Comparative analysis of frequent pattern algorithms.

Informatics Bulletin, Faculty of Computers and Information, Helwan University

3

Algorithm Name Category Advantages Limitations

Apriori Algorithm Bottom-Up Can derive all possible

frequent itemsets from a given

dataset and generate

association rules subject to

minimum support and

minimum confidence values

Multiple scanning of the

dataset when there is a new

record is inserted

Partitioning Approach Bottom-Up Generate frequent itemsets

faster without burden on the

memory

Not sensitive to noisy data

Frequent-Pattern growth (FP-Growth)

algorithm

Top-Down Find out frequencies of

different itemsets, then order

the itemsets descending into a

compressed frequent pattern

tree

Needs to scan the given

dataset twice

Data Stream Mining For Frequent

Itemsets (DSM-FI) Algorithm

Landmark Compact tree structure has

been designed to store the

frequent patterns

It needs more tree traversals

for the frequency count

Weighted Sliding Window (WSW)

Algorithm

Sliding window based mining A single pass algorithm was

developed to discover the

frequent itemsets

Weights of each window

affected the mining results.

So, user should specify the

reasonable weight for each

window

weighted support value count of a specific item is not less than the

minimum weighted value, it is called as frequent itemset. There is a tradeoff

between the window size and the execution time of WSW, since when the

window size is small, the number of transactions involving frequent

itemsets in every window is also small. The main limitation of this

algorithm is that weights of each window influenced the results of the

mining process, so that user should determine the well-suited weight for

every window and adjust the weights values for different windows

depending on the significance of the data. All discussed related works are

summarized and compared in Table 1.

3. Efficient Association Rules Mining With A Fault

Tolerance

In this section, a proposed technique is discussed. The main purpose of the

proposed technique is improving a tree structure which can accommodate

streaming data and change continuously, so that, a Fast-Updated Frequent

Pattern Tree (FUFP-Tree) is proposed. Furthermore, a Sliding-Window

technique is used to speed up preprocessing of incoming streaming data

before sending it to FUFP-Tree in a parallelism form with a fault tolerance

level. Finally, the association rules between items can be extracted easily

from the built FUFP-Tree according to given parameters such as minimum

support value, maximum support value and confidence value. All these

issues are detailed in the following sections.

3.1. Streaming data preprocessing using sliding-window

With the exponential growth of streaming, an unprecedented amount of

structured, semi-structured, and unstructured data is available. So that, data

preprocessing is a major phase to solve incoming data problems before

insertion in a tree such as inconsistencies, missing values and noise data to

provide a high quality data to improve the performance of used algorithms

to extract the association rules. To handle continuous data streams, a model

based on sliding window is utilized for parallel preprocessing entry data.

Typically, the incoming data will be split into equal chunks according to

the window slide size. Given a parallelism degree in the system, each

window slide will act as a separate part and apply a set of data preprocessing

operations such as data cleaning, data integration, data transformation…etc.

A common sliding window technique called "Pane-based Partitioning" is

used which based on the panes [9]. The main idea of this technique is to

split overlapping windows internally into individual panes, over which sub-

aggregates can be calculated whose results can be merged into the final

aggregate. The panes technique has been originally introduced to minimize

both computation cost and the space of sliding window by sub-aggregating

computation. The number of sliding windows, sliding window size and

sliding window pane size must be identified firstly before receiving data

from sources. In "Pane-based Partitioning" technique each window acts as

a shared-nothing cluster of commodity hardware in which each window is

independent, self-sufficient according to the window size. There is no

shared memory or disk storage, so that if there is any failure in any sliding

window, other sliding windows will continue their work and not affected

by the existing failure. A sliding window can become out of service due to

a common failure called "Fail-Stop Failure".

 Fail-stop failure

This failure means that if the sliding window gets out of services during a

computation, it requires an external impact to bring the sliding window

back to working state again. For instance, a system administrator checks for

the status of sliding window components and solve the problem or retires

the broken sliding window and reconfigure the system such as reinitializing

the number of sliding windows.

Informatics Bulletin, Faculty of Computers and Information, Helwan University

4

Fig 1 – Sliding window fault tolerance.

3.2. Sliding-window fault tolerance

Fault tolerance is the property that enables systems to remain operating

correctly in the case of the failure of some of their portions due to one or

more faults. As mentioned previously, the streaming data comes in

continuously and with high speed rate, so that there is no ability to hold

longer until the faults are processed from system administrator. In the statue

of Fail-Stop Failure, the proposed solution is that the system will

automatically disable and ignore the connection to the failure sliding

window, so that all incoming transactions will be split directly to other

working sliding windows without change the initial configuration of the

sliding windows until the system admin interferes to resolve the issue with

an appropriate solution. For instance, assume there is a system consist of n

sliding window and each window can handle m transaction (i.e., window

size = m), if one sliding window became out of service, that means there

are n-1 working sliding window rather than n working sliding window and

the transactions of the crashed sliding window will be redirect

automatically to the other working sliding windows, see Fig 1.

3.3. Fast Updated Frequent Pattern Tree (FUFP-Tree)

The FUFP-tree building algorithm is depend on the FP-tree algorithm. The

connections between parent nodes and their children nodes are bi-

directional linking that help to speed up the maintenance process such as

reorder the tree elements rather than rebuild the tree from scratch. The

FUFP-tree structure depends on that the itemsets with the most frequent

values will be in the top nodes as a descending order, so that, the value of

bi-directional linking appears here when the itemsets frequencies values are

changing and there is needing to reorder the tree rather than rebuild it [13].

Moreover, the frequent items are arranged in descending order and kept in

the top nodes. Also, FUFP-Tree saves the last path that eases moving from

and to nodes. For example, if last inserted transaction is {B, D, A, E}, then

the saved path is {B:5, D:3, A:2, E:1} as shown in Fig 2. If there is a new

transaction {B, D, A, E, C}, there is no need to return to Null node and start

from scratch to search for the header node, i.e., {B}, the saved path can be

used as its items are found in the new incoming transaction, so the support

of each item in the current saved path will be incremented as {B:6, D:4,

A:3, E:2}. Then after adding a new item node {C} with its frequency, now

the current saved path is updated to {B:6, D:4, A:3, E:2, C:1} as illustrated

in Fig 3. If the new transaction starts with an item that doesn’t match the

first saved path item, the return to Null node and search for header node

that match the first transaction item is inevitable. If new incoming

transactions are inserted, the FUFP-tree maintenance algorithm will

manipulate them to keep up the FUFP-tree. The top nodes of FUFP-tree are

refreshed whenever needed. If an originally item with large value turn out

to be smaller, it is directly transferred from top level node to lower level

node with respect to its frequency value and its parent and child nodes are

then linked together. The FUFP-tree can be updated, and the performance

of the FUFP-tree algorithm can be incredibly enhanced. The whole FUFP

tree can then be re-built in a batch manner when an adequately extensive

number of incoming transactions have been inserted.

Fig 2 – FUFP-Tree before inserting {B, D, A, E, C} transaction.

Fig 3 – FUFP-Tree after inserting {B, D, A, E, C} transaction.

Current saved path

{B:5, D:3, A:2, E:1}

Current saved path

{B:6, D:4, A:3,

E:2, C:1}

Informatics Bulletin, Faculty of Computers and Information, Helwan University

5

3.4. Extracting association rules

Association rule is a data mining method for discovering interesting

relations between different items. After constructing the FUFP-Tree,

Algorithm A.1 is used to generate the entire set of correct frequent patterns

from the current window [1]. Firstly, a minimum support threshold value

must be identified to extract a frequent pattern list. In FUFP-Tree, the nodes

are ordered in descending order, so that if the top node is not greater than

or equal to the minimum support threshold value, this node and its children

will be ignored from frequent pattern list. For example, from the same

FUFP-Tree which shown in Fig 3, if the minimum support threshold value

is 4, the resulted frequent pattern list will be {B, D}. After generating all

possible frequent patterns, association rules are derived by a specific

confidence threshold using Algorithm A.2.

Input: FUFP-Tree, Predefined minimum support threshold min_sup

Output: The frequent patterns list Lfp

Begin

1- For each node N in first level of FUFP-Tree

2- If frequency(N) >= min_sup Then

3- Extend the Node N

4- For each item I in Node N

5- If frequency(I) >= min_sup Then

6- Add item I to Lfp , Then goto next level

7- Else

8- Break

9- End If

10- End For

11- End If

12- End For

A.1 – Extract frequent patterns.

Input : Lfp list, Predefined confidence (Conf)

Output: The association rule list Lar

Begin

1- For each item Li in Lfp

2- For each item Lj in Lfp

3- Rule_val = Sup(Li U Lj)/Sup(Li)

4- If (Rule_val >= Conf) Then

5- Add Li and Lj to Lar list

6- End If

7- End For

8- End For

A.2. – Deduce association rules.

4. Complexity Of Algorithm

In this section, the algorithm complexity is analyzed. Runtime complexity

is divided into two steps.

 Data preprocessing step which is depending on the number of sliding

windows and the number of transactions per a sliding window (n),so

that the complexity of sliding windows is O(n).

 Generating frequent patterns list from FUFP-Tree step which its

complexity is O(log n).

5. Experimental Results

To evaluate the validity of the proposed technique, an experiment is

conducted. A sample of a retail market basket dataset of a retail supermarket

store is used. The number of transactions is 88163 and the number of unique

stock keeping unit products is 16470 [10].

5.1. Sliding windows configuration

The main parameters for sliding windows are: number of windows (nw),

window size (ws), number of panes per window (wp), size of pane per each

pane in window (ps). All of these parameters are determined based on

machine capabilities such as the machine operating system, hard drive type,

hard drive capacity, processor and memory capabilities. In this experiment,

the used machine specifications are as follow; Ubuntu 18.10 OS, solid state

drive (SSD) with 100GB available capacity, processor is Intel core i5, 2.40

GHz and 4 GB RAM. Sliding windows configuration must be done quite

ideally, because these sliding windows have a major role as they receive a

raw data from sources and then apply a preprocessing function to be ready

to be inserted into the FUFP-Tree. So that one of the best tools that is used

during this experimental is called “Apache Kafka”. Kafka is an open source

tool that is used for building streaming applications. This tool is scalable,

fault-tolerant and allows executing operations fast. In this experiment, the

parameters are configured with different values in proportion to the

capability of the machine and deduce the execution time as shown in Table

2.

5.2. Building FUFP-Tree using pane-based partitioning VS.

building FUFP-Tree using weighted sliding window

In this experiment the FUFP-Tree building time is measured by applying

the proposed technique and applying weighted sliding window (WSW)

algorithm. As mentioned previously, WSW algorithm needs to identify

number of windows for mining, the size of the window as well as the weight

for every window firstly. The major limitation is that the weights of every

window influence the mining results. It requires very reasonable weight for

each window and adjusts the weights values each time for each window, so

that it takes more time to construct FUFP-Tree than using pane based

partitioning approach. In pane-based partitioning approach, there is no need

to adjust the configurations that are identified before starting, so that the

FUFP-Tree is constructed faster as shown in Fig 4.

Table 2 – Total runtime with different sliding window configuration.

Number of

windows

(nw)

Window

size (ws)

Number

of panes

per

window

(wp)

Size of

pane per

each

pane in

window

(ps)

Total

Runtime

(sec)

10 8800 80 110 20.5

20 4400 50 88 12.9

30 2930 10 293 8.7

40 2200 20 110 7.4

50 1760 10 176 4.2

Informatics Bulletin, Faculty of Computers and Information, Helwan University

6

Fig. 4 - Average time for building FUFP-Tree.

Table 3 – Top 5 frequent patterns list.

Product Barcode Frequency

39 4321

48 3436

41 2024

32 1397

38 1348

5.3. Extracting frequent patterns list

After the construction of FUFP-Tree with pane-based partitioning sliding

window approach, the association rules technique has been performed to

discover the frequent patterns list. There are more than 8000 frequent

patters are extracted. The top 5 frequent itemsets are listed in Table 3.

5.4. Results analysis

The results of the proposed algorithm to construct the FUFP-Tree are

exhibited. The results demonstrate that FUFP-Tree is very effective in

terms of memory storage when finding correct frequent patterns from a

streaming data. The runtime changes based on sliding windows

configurations. As shown in Table 2, if there are more sliding windows,

high number of incoming streaming data are processed in the same time,

the runtime is reduced and the FUFP-Tree is built in short time.

6. Conclusion And Future Work

In this paper, the characteristics of streaming data have been discussed and

presented some related algorithms for generating association rules from a

dataset. The proposed technique works on speeding up streaming data

mining using a sliding window technique to build FUFP-Tree with fault

tolerance for any failure in the system. In the future, the proposed technique

will be improved to adjust the number of needed sliding window and the

pane size for each window dynamically according to the rate of streaming

data. Such improvement results in memory usage reduction and speed up

building FUFP-Tree.

REFERENCES

[1] A. Moustafa, Badr Abuelnasr, and Mohamed Said Abougabal, “Efficient

mining fuzzy association rules from ubiquitous data streams”, published in

Alexandria Engineering Journal, vol. 54, pp. 163-174, June. 2015.

[2] B. Nath, D K Bhattacharyya, and A Ghosh, “Incremental Association Rule

Mining: A Survey”, published online in Wiley InterScience, vol. 3,pp. 157-169,

February 2013.

[3] LuigiTroiano and GiacomoScibelli, “Mining frequent itemsets in data

streams within a time horizon”, published online in ELSEVIER, vol. 89, pp. 21-

37, January 2014.

[4] Akshita Bhandari, AshutoshGupta, and DebasisDas, “Improvised apriori

algorithm using frequent pattern tree for real time applications in data mining”,

published online in ELSEVIER, vol. 46, pp. 644-651, 2015.

[5] Jagrati Malviya, Anju Singh, and Divakar Singh, “An FP Tree based

Approach for Extracting Frequent Pattern from Large Database by Applying

Parallel and Partition Projection”, published in International Journal of

Computer Applications (0975 – 8887), vol. 114, pp. 1-5, March 2015.

[6] Hua-Fu Li, Man-Kwan Shan and Suh-Yin Lee, “DSM-FI: an efficient

algorithm for mining frequent itemsets in data streams”, published in Spriner

Knowledge and Information Systems, vol. 17, pp. 79-97, October 2008.

[7] Fabio Fumarola, Anna Ciampi, Annalisa Appice, and Donato Malerba “A

Sliding Window Algorithm for Relational Frequent Patterns Mining from Data

Streams”, published in Springer International Conference on Discovery Science,

vol. 5808, pp. 385-392, 2009.

[8] R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer and A. Swami, “An Interval

Classifier for Database Mining Applications,”Proceedings of the VLDB

Conference, pp.560-573, 1992.

[9] J. Li et al. Semantics and Evaluation Techniques for Window Aggregates in

Data Streams. In ACM SIGMOD Conference, Baltimore, MD, USA, June 2005.

[10] T. Brijs, Retail market basket data set, Workshop on Frequent Itemset

Mining Implementations (FIMI’03), 2003.

[11] Philippe Fournier-Viger, Espérance Mwamikazi, Ted Gueniche1 and Usef

Faghihi, “MEIT: Memory Efficient Itemset Tree for Targeted Association Rule

Mining”, published in Spriner.

[12] International Conference on Advanced Data Mining and Applications, vol.

8347, pp. 95-106, 2013.

[13] Chun-Wei LIN, Tzung-Pei HONG and Wen-Hsiang LU, “Using the

Structure of Prelarge Trees to Incrementally Mine Frequent Itemsets”, published

in Springer New Generation Computing, vol. 28, pp 5–20, January 2010.

[14] Nataliya Shakhovska, Roman Kaminskyy, Eugen Zasoba and Mykola

Tsiutsiura, “Association rules mining in big data”, published in International

Journal of Computing, vol. 17, pp. 25-32, 2018.

[15] David del Rio Astorga, Manuel F. Dolz, Javier Fernández and J. Daniel

García, ”A generic parallel pattern interface for stream and data

processing”, published online in Wiley InterScience, vol. 29, pp. 1-12, May

2017.

0

2

4

6

8

10

12

14

16

18

20

10 20 30 40 50

Average

building

FUFP-Tree
time (sec)

Num of sliding window

WSW

Pane-Based

Partitioning

Informatics Bulletin, Faculty of Computers and Information, Helwan University

7

[16] Rashed Salem, Jérôme Darmont and Omar Boussaïd, “Efficient

incremental breadth-depth XML event mining”, published in 15th

International Database Engineering & Applications Symposium, pp. 197-

203, September 2011.

[17] Xiuli Yuan, “An improved Apriori algorithm for mining association

rules”, published in AIP Conference Proceedings, vol. 1820, pp. 080005-

1–080005-6, March 2017.

[18] S.Alagukumar, R.Lawrance, “A selective analysis of microarray data

using association rule mining”, published online in ELSEVIER, vol. 47, pp.

3-12, 2015.

[19] Min Chen, Shiwen Mao and Yunhao Liu, “Big Data: A Survey”,

published in Springer Mobile Networks and Applications, vol. 19, pp. 171-

209, April 2014.

