
Identification and Assessment of Software Design Pattern Violations

Tamer Abdelaziz1, Aya Sedky Adly1, Bruno Rossi2 and Mostafa-Sami M. Mostafa1

Abstract— The validation of design pattern implementations
to identify pattern violations has gained more relevance as
part of re-engineering processes in order to preserve, extend,
reuse software projects in rapid development environments.
If design pattern implementations do not conform to their
definitions, they are considered a violation. Software aging and
the lack of experience of developers are the origins of design
pattern violations. It is important to check the correctness of
the design pattern implementations against some predefined
characteristics to detect and to correct violations, thus, to
reduce costs. Currently, several tools have been developed to
detect design pattern instances, but there has been little work
done in creating an automated tool to identify and validate
design pattern violations. In this paper we propose a Design
Pattern Violations Identification and Assessment (DPVIA)
tool, which has the ability to identify software design pattern
violations and report the conformance score of pattern instance
implementations towards a set of predefined characteristics
for any design pattern definition whether Gang of Four (GoF)
design patterns by Gamma et al[1] or custom pattern by
software developer. Moreover, we have verified the validity of
the proposed DPVIA tool using two evaluation experiments
and the results were manually checked. Finally, in order
to assess the functionality of the proposed tool, DPVIA is
evaluated with a dataset containing 5,679,964 Lines of Code
(LoC) among 28,669 Java files in 15 open-source projects, with
a large and small size of open-source projects that extensively
and systematically employing design patterns, to determine
design pattern violations and suggest refactoring solutions,
thus keeping costs of software evolution. The results can be
used by software architects to develop best practices while
using design patterns.

Index Terms— re-engineering, GoF pattern, design pattern
assessment, software design pattern decay, rot, violations.

I. INTRODUCTION

Software design patterns, as first formalized by Gamma et
al.[1], are general reusable solutions to commonly occurring
design problems within a given context, that lead to the
construction of well-structured, maintainable, and reusable
software systems. In some Java applications, approximately
20% of system classes participate in at least one GoF design
pattern occurrence and those classes can represent from 15%
to 65% of total classes [2][3]. In addition, program efficiency
and productivity of development is increased 25-30 % by
applying correct patterns [4], this leading to a considerable
impact on the overall system design.

1Tamer Abdelaziz, Aya Sedky Adly and Mostafa-Sami M. Mostafa
are with the Department of Computer Science, Faculty of Computers
and Information, Helwan University, Cairo, Egypt tamer.a.yassen,
aya, mostafa.sami @fci.helwan.edu.eg

2 Bruno Rossi is with the Department of Computer Science,
Faculty of Informatics, Masaryk University, Brno, Czech Republic
brossi@mail.muni.cz

Design patterns are often mentioned as double-edged
sword, applying the right pattern can be the system saviour
[5] while applying a wrong one makes it disastrous and create
many problems for system design. There are alternative de-
sign solution might produce better results than design pattern
[6]. Alternative design solutions are functionally equivalent
to design patterns and can be used when a design pattern
is not the right solution for a specific design problem, they
have been introduced for at least 13 out of 23 GoF design
patterns in [7]. Detection design patterns instances from
source code is not too much difficult task with the help of
many approaches of design pattern detection tools. However,
a single design pattern has many different implementations
according to system requirements, the intent would remain
same and this modified form of pattern is known as variant
[8]. So, it is very important to check the correctness of
the applied design patterns to conform with their definition
characteristics.

Lately, identification and assessment of design pattern
violations has attracted the effort of the software engineering
community. Design pattern violation occurs when design
pattern implementations do not conform to their definitions.
Software aging and the lack of experience of developers are
two origins of design pattern violations. Whereas, software
aging is caused by the failure of the product’s owners to
modify it to meet changing customer and business needs,
and software application has been subject to a lot of changes
e.g. modifications of functionalities, of methods, of classes,
etc, these changes may degrade the overall system design
[9]. It has been reported that the classes that participate in
GoF design patterns change more often than the classes that
do not participate in design pattern occurrences [10] [11]. In
addition, novice developers may not have enough knowledge
to build design patterns correctly or simply may not aware
of these good design pattern practices and use alternatives to
solve well-known problems. Therefore, the usage of design
patterns needs to be better supported and automated by a
tool that would automatically provide information about the
applied design pattern aspects.

The aim of this work is to introduce and describe an
automated Design Pattern Violations Identification and As-
sessment (DPVIA) tool in order to detect violations of design
patterns that occur in different project implementations, and
to measure (conformance score) the degree of conformity
of the design pattern implementations compared to their
definition characteristics to provides a valuable insight on
design pattern violations assessment. DPVIA tool helps the
developer to determine design pattern rot and this form of
violations destroys structural integrity of patterns and must

Informatics Bulletin, Faculty of Computers and Information, Helwan University,
Published Online July 2019 in FCIH-IB

(http://fcihib.fci.helwan.edu.eg)
Informatics Bulletin, July 2019 1

be resolved.
The similarity score is calculated by many studies for

different purposes such as Tsantalis DPD [12] that employs a
graph similarity algorithm [13], which takes as input both the
system and the pattern graph and calculates similarity scores
between their vertices to detect design patterns candidates.
In our approach, conformance score is calculated to detect
design pattern violations and the score is reported to the
developer in addition to violation details, and suggested
solutions based on a predefined characteristics.

This paper consists of five major sections. Section 1
describes motivational work and introduction of whole work.
Section 2 is focusing on current state of the art work related
our approach. Section 3 discusses phases of the proposed
DPVIA tool. Section 4 gives detail of our approach imple-
mentation, practical experiment and results. Finally, Section
5 concludes the paper and provides useful insights for future
work.

II. BACKGROUND AND RELATED WORK

As the focus of this work lies on detecting design pattern
violations and their evaluation, we reviewed the early work of
Izurieta and Bieman [14] on type of design pattern violations
called decay. Decay can involve the design patterns used to
structure a system where classes that participate in design
pattern realizations accumulate non pattern related code.
Izurieta and Bieman investigated the evolution of design
pattern implementations to comprehend how patterns decay
and examined the extent to which software designs actually
decay by studying the aging of design patterns in three
successful object-oriented systems that include the entire
code base of JRefactory, and added two additional open
source systems —ArgoUML and eXist. The results indicate
that pattern grime (non-pattern-related code) that builds up
around design patterns is mostly due to increases in coupling
and it is the main factor for the decay of software design
patterns.

Pattern grime is defined as ”degradation of the instance
due to buildup of unrelated artifacts e.g., methods and
attributes in pattern instances” as a type of decay and
divided the grime in to three categories —class, modular
and organizational grime, and it has been pointed out as one
recurrent reason for the decay of GoF pattern instances. Con-
sequently, Izurieta in his doctoral dissertation [15] studied the
accumulation of pattern decay and recognized another type
of design decay called pattern rot. Furthermore, he noticed
that this form of violations destroys structural integrity of
design patterns. Pattern rot which is either a slow deterio-
ration of software performance over time or its diminishing
responsiveness that will eventually lead to software becom-
ing faulty, unusable and in need of upgrade. Two distinct
categories of design pattern decay were identified:

• Design Pattern Grime: accumulation of unnecessary
or unrelated software artifacts within the classes of a
design pattern instance.

• Design Pattern Rot: violations of the structure or
architecture of a design pattern.

Design pattern realizations can become a rot, when modi-
fications of source code disrupt the structural or functional
integrity of a design pattern. Design pattern rot due to failure
to meet their responsibilities during pattern implementations,
and thus represents a fault. In contrast with grime buildup
does not break the structural integrity of a pattern but can
reduce system testability and adaptability [16].

Furthermore, Naouel Moha et al. [17] defined a taxonomy
of potential design pattern defects and conducted an empir-
ical study to investigate their existence. The authors defined
design pattern defects as errors occurring in the design of
the software that come from the absence or the bad use
of design patterns. The taxonomy includes the following
four types of defects: An approximative or deformed design
pattern is a design pattern that has not been well conforming
with GoF [1] definition but that is not erroneous. A Distorted
or degraded design pattern is a distorted form of a design
motif which is harmful for the quality of the code. A Missing
design pattern is when a design is missing a needed design
pattern. According to GoF [1], missing patterns generates
poor design. Excess design pattern is the over use of design
patterns in a software design. Later on, Izurieta cooperated
with other researchers to obtain better comprehensions of
patterns decay. Afterwards, Dale and Izurieta [18] proposed
study on impacts of design patterns decay on quality of
project.

Design patterns have been studied from various points of
view by many authors. There has been little work done in
creating an automated tool for validating instances of design
patterns and identify violations that can be harmful to the
design pattern instances realization and the overall system
design. Primarily studies targeting design pattern validation
such as Strasser et al. [19] focused on design patterns
scoring where each candidate pattern is given a score, based
on the resemblance with the design pattern definition. The
author’s proposed approach uses the Role-Based Metamodel-
ing Language (RBML) [20] in combination with PlantUML
1 specification to calculate score of patterns conformance
towards pattern definitions. The Role Based Metamodeling
Language is a visually oriented language defined in terms of
a specialization of the UML metamodel that is used to verify
and specify generic or domain specific design patterns. The
authors designed RBML-UML-Visualizer tool2 in order to
inform developers when design patterns no longer conform
to their original intended design. One of the drawbacks
mentioned by the authors is that the algorithm only permits
an UML object to be matched with an RBML model if
the UML satisfies all of the RBML blocks requirements.
Subsequently, some pattern instances cannot be evaluated
without providing both RBML definitions and PlantUML
specifications. In order to overcome those drawbacks the
validation of design pattern instances should be done based
on source code files directly without relying on RBML model

1PlantUML http://plantuml.sourceforge.net/
2Strasser et al. automated tool is free and is available to download at

http://code.google.com/p/rbml-uml-visualizer/

2

Informatics Bulletin, July 2019 2

or UML diagram.
In this paper, the proposed DPVIA tool validates instances

of design patterns which are detected by the work of
Diamantopoulos et al. [21] that proposed an open-source
design pattern detection tool called DP-CoRe. Although
some of software design pattern detection tools are effective
for identifying several types of patterns, they have some
drawbacks. For example, they require the source code to be
compliable at least. As a result, developers cannot detect
design pattern candidates without first resolving the source
code issues and executing them correctly. Another drawback,
most design pattern detection tools are designed as black box
system that do not allow the developer any control over the
detected patterns. Consequently, the proposed design pattern
detection approach by Diamantopoulos et. al., is picked
because it provides a solution for the mention drawbacks
of other tools. DP-CoRe supports both the detection of 6
GoF patterns and offers the ability to add custom pattern
definitions by the software developer. However, DP-CoRe
depends on the latest compiler technology to enhance the
detection of patterns instances in Java applications, DP-CoRe
neither evaluates the conformance of pattern implementations
towards pattern definitions nor focuses on measurement of
their impact on code. The reason is that the tool is designed
to detect pattern instances present in the source code, not
to evaluate the correctness of their implementations. Con-
sequently, we modified the open-source DP-CoRe tool to
be a part of our automated tool DPVIA to identify design
pattern violations and evaluate desired conformance scores
by comparing pattern implementations to their definitions
based on predefined characteristics.

III. DPVIA: SOFTWARE DESIGN PATTERN VIOLATIONS
IDENTIFICATION AND ASSESSMENT TOOL

In this section, we describe the phases of the proposed
tool, is shown in Figure 1. The first phase describes how
DP-CoRe is integrated as part of DPVIA, and how design
pattern detection approach, by Diamantopoulos et al. [21], is
working. The design pattern detection phase receives two
inputs: the examined repository projects and the pattern
abstraction & connections rule files that could be modified by
the software developer. The output is a list of detected pattern
instances, discussed in subsection III-A. Thereafter, the tool
calculates the conformance scores of the detected design pat-
tern instances implementation versus their definitions in or-
der to produce a preliminary identification of violations in the
second phase, discussed in subsection III-B. The last phase
verifies the detected violations by examining relationships
between entities participated in those violations according to
system requirement specifications (SRS) document in format
of IEEE template, this phase is implemented with the help
of Stanford CoreNLP Natural Language Processing Toolkit
[22]. Consequently, the detected violation is considered a
clear violation only if the relationship between violation
entities is found in software business logic, discussed in
subsection III-C. Finally, the proposed DPVIA tool reports
the conformance scores of the detected pattern instances,

and suggests a refactoring recommendations for the software
developer to modify design pattern candidates and resolve
their violations with minimum impact.

A. Design Patterns Detection
We used the proposed design pattern detection ap-

proach by Diamantopoulos et al. [21]. We created rules
of detection for 7 design patterns, at least two pattern
for all categories: the creational patterns Simple Factory
and Factory Method, the structural patterns Adapter and
Decorator, and the behavioral patterns Observer, State and
Strategy. The rules files are created based on two types
of structural representations for source code and design
patterns: the abstraction type of each class (e.g. Normal,
Abstract, Interface, etc.) and the connection between two
classes (e.g. inherits, calls, creates, has, uses and references)
that is shown in Table I. The detection rules files and the
examined repository projects are required as inputs for the
pattern detection phase.

TABLE I: Representing design pattern characteristics

Abstraction
Type

Description

Normal a non-abstracted class
Abstract a Java abstract class
Interface a Java interface
Abstracted an abstract class or an interface
Connection
Type

Description

A calls B a method of class A calls a method of class B
A creates B class A creates an object of type class B
A uses B a method of class A returns an object of type B
A has B class A has one or more objects of type B
A references
B

a method of class A has as parameter an object of type
B

A inherits B class A inherits or implements class B

The approach by Diamantopoulos et al. [21] starts with the
extraction of Abstract Syntax Tree (AST) for each Java file
using the Java Compiler Tree API and extract Java classes
and relationships between them, Pattern candidates are then
detected using the proposed detection algorithm that check
all possible permutations of each class can be matched to
the detection rules of pattern members. This is performed,
as described in [21], by recursively structured algorithm
initialized with depth equal to 0. Iterating over the first class,
it is checked whether its abstraction and its connections
are the same with pattern member 0. If the matching is
done, the detecting function is called recursively on the
remaining classes except the already matched class and the
depth is also incremented, else the recursive function stops.
When all pattern members are matched successfully, then the
Candidate is added to the detected pattern Candidates. An
example output of [21] pattern detection approach is shown
in Figure 2.

B. Design pattern violation identification
Upon having the list of detected design pattern candidates

as output of previous subsection III-A, the second phase of
the proposed automated tool (DPVIA) is starting to evalu-
ate the conformance of pattern candidate implementations

3

Informatics Bulletin, July 2019 3

Fig. 1: Phases of usage of the DPVIA tool

Candidate of Pattern Strategy:
A (Concrete Strategy): FlyRocketPowered
B (Strategy): FlyBehavior
C (Concrete Context): DecoyDuck
D (Context): Duck

Fig. 2: Example output of detection phase

compared to pattern definitions based on a predefined set of
characteristics, in order to understand the violations that can
occur when a design pattern is applied.

The design violations should be detected in early stages
of evolution and based on their severity and overall pattern
performance decide to keep, refactor or discard them. That is
why the paper is centered on the identification of violations
against design pattern definitions at first. Secondly focuses on
measurement of their impact on source code and system de-
sign. Subsequently, the presence or absence of the abstraction
of pattern candidate members and the connections among
pattern members, if they are different from the predefined
pattern characteristics, it is considered as a violation.

1) Design pattern predefined characteristics:: For each of
the seven selected patterns, a set of predefined characteristics
is created to address pattern specifications (e.g. abstraction
of pattern classes and relationships characteristics). As well
as, we arranged them with consideration of programming
language specifications, which shaped the final concrete im-
plementation. For purpose of obtaining characteristics com-
parable with patterns in real projects, which are implemented
in one particular language have to be considered as well.
We have decided to use the Java object oriented language
because there is fairly large amount of pattern definitions
available and easily accessible in open source projects.

For instance, according to GoF [1] pattern definitions,
Strategy predefined characteristics are described in Table II.
All predefined characteristics have the same scoring weight,
all differences are treated equally, we acknowledge that the
scoring weights should be different from one characteristic
to another and are determined by experts. The conforming
of Strategy pattern predefined characteristics are:

• Strategy (Required abstraction conforming)
– declares an interface common to all supported strate-

gies.
– Context uses this interface to call the strategy defined

by a ConcreteStrategy (Required relationship).
• ConcreteStrategy (Required abstraction conforming)

– implements a concrete strategy using the Strategy
interface (Required relationship).

• Context (Required abstraction conforming)
– is configured with a ConcreteStrategy object (Re-

quired relationship).
– maintains a reference to a Strategy object (Required

relationship).
– may define an interface that lets Strategy access its

data (Optional relationship).
• ConcreteContext (Optional abstraction conforming).

– usually inherits the context and creates ConcreteStrat-
egy object (Required relationships if Strategy pattern
contains ConcreteContext as one of it’s members).

Absence of required characteristic is considered a clear
violation, while absence of optional characteristic is not
considered a violation. Nevertheless, presence of optional
characteristics increases percentage of pattern member con-
forming score. Upon having design pattern predefined char-
acteristics, the next step is to check the conformance of

4

Informatics Bulletin, July 2019 4

TABLE II: Strategy Design Pattern Predefined Characteristics

Abstraction Predefined Characteristics
Pattern Name Pattern Members (classes) Abstraction Type Conforming

Strategy
Pattern

ConcreteStrategy Abstraction.Normal required
Strategy Abstraction.Interface required
ConcreteContext Abstraction.Normal optional
Context Abstraction.Normal required

Relationship Predefined Characteristics
Relation Relation From Relation To Connection Type Conforming
Inheritance ConcreteStrategy Strategy Connection.inherits required
Inheritance ConcreteContext Context Connection.inherits required
Composition ConcreteContext ConcreteStrategy Connection.creates required
Association Context Strategy Connection.calls required
Aggregation Context Strategy Connection.has required
Association Context Strategy Connection.references optional
Dependency Context Strategy Connection.uses optional

detected design pattern candidate implementations towards
the predefined characteristics of design pattern.

2) Measurement of conformance scoring:: The similarity
score is the measure of how much alike two data objects are.
Similarity measure in a programming context is a distance
with dimensions representing features of the objects. If this
distance is small, it will be the high degree of similarity
where large distance will be the low degree of similarity.
Similarity are measured in the range 0 to 1 [0,1]. Two main
considerations about similarity:

• Similarity = 1 if X = Y (Where X, Y are two objects)
• Similarity = 0 if X 6= Y

The purpose of measurement is obtaining a conformance
scores between the predefined characteristics of pattern def-
initions and their implementations in source code. For all
detected pattern candidate members, our proposed con-
formance algorithm, is shown in Figure 3, receives two
inputs as parameters for CheckConformance function. The
first input is one of the pattern classes that participates
in the predefined characteristics (e.g. class ConcreteStrat-
egy, Strategy, ConcreteContext or Context characteristics, as
shown in Figure II). The second input is the corresponding
pattern candidate member (e.g.the corresponding class of the
pattern implementations). At first, the algorithm is initialized
with empty scores matrix then iterating over all possible
characteristics, check characteristic type (e.g. abstraction or
connection) then compare it with the corresponding pattern
candidate member and add value to similarity scores matrix
according to the predefined condition. While doing so, we
noticed that only the limited scenarios depicted in Table III
would apply.

Similarity scoring is represented by a matrix of
two vectors, where the first vector refers to absence
or presence (0 or 1) of a characteristic in the pattern
definition characteristics while the second vector serves
the same purpose only for the pattern candidate member
implementation. Consequently, for each characteristic in the
pattern definition characteristics has a complete satisfaction
with the corresponding implementation of pattern candidate
member of source code, the value [1, 1]) will be added

TABLE III: Design pattern characteristics comparing scenar-
ios

Predefined
charac-
teristic

Candidate
member im-
plementation

Explanation Representation

True True The characteristic is
present in predefined
characteristics of pattern
definition as well as in the
implementation of pattern
candidate member source
code

[1, 1]

True False The characteristic is
present in predefined
characteristics of pattern
definition but is not in the
implementation of pattern
candidate member source
code

[1, 0]

False True The characteristic is not
present in predefined char-
acteristics of pattern def-
inition but can be found
in the implementation of
pattern candidate member
source code

[0, 1]

False False The characteristic is not
present in predefined char-
acteristics of pattern defi-
nition and neither is in the
implementation of pattern
candidate member source
code

[0, 0]

in the scoring matrix. While the characteristic is present
in definition but is absent in pattern member indicate
inconsistency and is considered a clear violation by adding
value [1, 0] to scores matrix. However, the absence of a
particular definition characteristic and its presence in pattern
member is not necessarily to be a violation and gives an
equal probability for identification of violation or normal
artifact. Therefore, this situation is considered a violation
for abstraction characteristic types only, because for every
pattern candidate member in source code has only one
abstraction characteristic type (class type), and if it does

5

Informatics Bulletin, July 2019 5

Algorithm 1: The proposed conformance algorithm
Result: PercentageOfPatternMemberScore

CheckConformance(PatternCharacteristics C, PatternCandidateMember M) ScoresMatrix← null, i← 0;
while characteristic in C do

if C.characteristic is AbstractionType then
if C.getAbstraction() and M.getAbstraction() then

Scores[i]← [1, 1]
else if C.getAbstraction() and ! M.getAbstraction() then

Scores[i]← [1, 0]
else if ! C.getAbstraction() and M.getAbstraction() then

Scores[i]← [0, 1]
end
if C.characteristic is ConnectionType then

if C.getConnection() and M.getConnection() then
Scores[i]← [1, 1]

else if C.getConnection() and ! M.getConnection() then
Scores[i]← [1, 0]

end
print violation details and suggested solution
i← i+ 1

end
return
PercentageOfPatternMemberScore ← (1− 1

ScoresSize

∑ScoresSize
k=1 Scores1stvector[k]⊗Scores2ndvector[k])∗100

Fig. 3: The proposed conformance algorithm

not match the corresponding pattern definition abstraction,
it must be defined as violation by adding value [0, 1] to
scores matrix. The awareness of absence of characteristic
from pattern member and also its non existence in definition
characteristics, does not add anything about similarity
score, so that double negative value [0, 0] is recognized
as non-valuable information for similarity measure within
this work. Finally, we use the most straight forward way to
measure the similarity between two vectors of the similarity
matrix and return the conformance score by formula (1):

PercentageOfPatternMemberScore =

(1− 1

N

N∑
i=1

Ci ⊗Mi) ∗ 100 (1)

Where:
PercentageOfPatternMemberScore is the conformance score
percentage, N is the similarity matrix rows (size of character-
istics), Ci is the pattern definition characteristic binary value
representing by the first vector of similarity score matrix, and
Mi is the pattern candidate member binary value representing
by the second vector of similarity score matrix.

3) An illustration of design pattern violation identifica-
tion: : For example, in Strategy design pattern, consider the
following 3 Strategy candidate instances, shown in Table
IV and visualized in Figure 4, are detected by approach
by Diamantopoulos et al. [21] in the first phase of DPVIA
tool. Strategy pattern, in this example, represents a family
of Quack Behaviour strategies, encapsulate each one, and
make them interchangeable. Strategy lets the algorithm vary

TABLE IV: Strategy Candidate Instances

Pattern
Members

Candidate #1 Candidate #2 Candidate #3

ConcreteStrategy Quack Squeak MuteQuack
Strategy QuackBehavior QuackBehavior QuackBehavior
ConcreteContext MallardDuck RubberDuck DecoyDuck
Context Duck Duck Duck

independently from clients that use it. Each candidate has 4
members:

• ConcreteStrategy
• Strategy
• ConcreteContext
• Context

As shown in Table IV, class Duck represents Context mem-
ber of the three Strategy candidates. In this example, we
show how our proposed approach measures the conformance
of Duck class towards Context member of Strategy prede-
fined characteristics described in Table II, using the proposed
conformance algorithm showed in Figure 3, as following in
Table V.

The proposed conformance score formula (1), in the pro-
posed conformance algorithm, uses the Hamming Distance
algorithm, one of the most popular similarity distance mea-
sures, that denote the difference between two binary vectors
of equal length. It is the number of positions at which the
corresponding symbols are different [23]. In this example,
the Hamming Distance of two binary vectors of the scores
matrix that is shown in last column of Table V whereas first
vector: [1, 1, 1, 1, 1] and second vector: [1, 0, 1, 1, 1] is

6

Informatics Bulletin, July 2019 6

Fig. 4: Strategy candidate instances UML class diagram

TABLE V: Measurement of conformance scoring example

Predefined Characteristic Pattern
member
(Con-
text)

Candidate
member
(Duck)

Scores
Matrix

Abstraction.Normal (required) True True [1, 1]

Connection.calls (required) to
Strategy

True False [1, 0]

Connection.has (required) to Strat-
egy

True True [1, 1]

Connection.references (optional) to
Strategy

True True [1, 1]

Connection.uses (optional) to Strat-
egy

True True [1, 1]

calculated as the following steps:

• Step 1 Ensure the two vectors are of equal length. The
Hamming distance can only be calculated between two
vectors of equal length.

• Step 2 Compare the first two bits of both vectors. If
they are the same, record a ”0” for that bit. If they are
different, record a ”1” for that bit. In this example, the
first bit of both vectors is ”1,” so record a ”0” for the
first bit.

• Step 3 Compare each bit in succession and record either
”1” or ”0” as appropriate. For vector 1: [1, 1, 1, 1, 1]
and vector 2: [1, 0, 1, 1, 1], the record [0, 1, 0, 0, 0]
is obtained.

• Step 4 Add all the ones and zeros in the record together
to obtain the Hamming distance. Hamming distance =
0 + 1 + 0 + 0 + 0 = 1.

The two binary vectors have 1 different bit, this is what con-
stitutes the cornerstone of formula (1). So the percentage of
pattern member conformance score (class Duck) = (1 - (1/5))

* 100 = 80 %. Because of class Duck implementation missed
calling quackBehavior.quack(); to perform quack behavior,
it is considered a clear violation. Assume that class Duck
does not define an interface that lets Strategy access its data
(Optional relationships), this absence of optional connections
is not considered a violation but the conformance score will
be (1 - 1/3) * 100 = 66.66 %.

After measuring the conformance scores for all pattern
candidate members, the average is calculated for the pattern
candidate as a whole and the score is reported to the
developer in addition to in order to produce a preliminary
identification of violation details, and suggested solutions
based on previously defined characteristics. The proposed
approach suggests refactoring for all violations. For instance,
the missing of call connection in class Duck to perform
quack behavior that detected as violation could be solved as
following:

Recommendation - Class(Duck) should calls (invoke
function quack) of class QuackBehavior.

Such suggestions help developers to resolve violations
and providing a valuable insight on ”health” of system
under study and possible existence of violations within its
source code. In order to distinguish between code related to
design pattern realization and code that is harmful causes a
decay of system design.

C. Verification of the initial detected violations

Finally, the last phase of DPVIA tool verifies the detected
violations by examining relationships between entities par-
ticipated in those violations based on the presence / absence
of relationship scenarios between those entities, in system
requirement specifications (SRS) document in format of
IEEE template. In order to take business logic constrains into

7

Informatics Bulletin, July 2019 7

Fig. 5: Stanford OpenIE example

consideration before accounting those detected violations in
the total conformance score.

In our proposed approach, the Natural Language Process-
ing Toolkit [22] is required to extract the entities relationship
scenarios of the project under study. We integrated the pro-
posed DPVIA tool with a Java implementation of Stanford
Open Information Extraction (open IE) as described in the
paper of Gabor Angeli et al. [24]. Open IE refers to the
extraction of relation tuples, typically binary relations, from
plain text. The central difference is that the schema for these
relations does not need to be specified in advance; typically
the relation name is just the text linking two arguments.

The open IE first splits each sentence into a set of entailed
clauses. Each clause is then maximally shortened, producing
a set of entailed shorter sentence fragments. These fragments
are then segmented into OpenIE triples, and output by the
system. An illustration of the process is given for an example
sentence below in Figure 5:

”Employee opens the control panel, view all complaints
and solve client problems”

All extracted relationships between subject and object
entities are stored in Java list collection. Consequently, the
detected violation is considered a clear violation only if
the relationship between violation entities is found in the
stored Java list collection, or discard the detected violation,
if there is no relationships in business logic between violation
entities.

Finally, the proposed approach reports the pattern instance
scoring with refactoring suggestion to modify Java applica-
tion with minimum impact. In order to guide the developer
to enhance and extend software applications by supporting
an assessment score of current source code implementations
and recommendation to solve design violations.

IV. IMPLEMENTATION, PRACTICAL EXPERIMENT AND
RESULTS

Practical experiments are done to study, using the proposed
approach, how would design patterns be applied in real
environment of open source projects in order to assess
the implementations of software design patterns, detect
design pattern violations, and offer recommendations for
resolve those violations.

A. Implementation of the proposed approach

Our proposed approach3 DPVIA is implemented in Java
programming language, we have decided to use the Java
object oriented language because it is one of mainstream
programming languages nowadays, thus there is fairly large
amount of pattern definitions available. Consequently, finding

3The automated tool DPVIA is free and is available to download at
https://github.com/TamerAbdElaziz/DPVIA

open source projects with easily accessible source codes is
not an issue.

The DPVIA tool offering a Command Line Interface (CLI)
to obtain the identification of design pattern violations in
Java repository projects then reports the conformance scores
for all pattern candidates and violations details with recom-
mended solutions. In addition, It produces graphs indicating
the percentage of violation that has been committed.

The automated tool is free and available to download
it from Git or checkout with SVN using the web URL:
https://github.com/TamerAbdElaziz/DPVIA.
git, then unzip the downloaded file. There will be
two folders named ”pattern” and ”Repository”, as well
executable Jar file named ”dpvia”, then follow the following
instructions:

• The DPVIA is able to detect pattern violations success-
fully of 7 design patterns as mentioned before, it offers
the ability to define custom patterns by the developer.
Any design pattern characteristics could be defined and
added to folder that named ”pattern”.

• The developer is able to set any Java project source code
files on the folder called ”Repository”. As well, many
projects can be examined at one time.

• Run in batch (command line) mode of Jar file which
called dpvia, and execute using command: java -jar
dpvia.jar

The inputs to DPVIA tool is any set of Java projects source
code. On the other hand, the final output is formatted
as comma-separated values (CSV) file stores tabular data
(numbers and text) in plain text about each design pattern
member assessment and recommendation of solution if there
is violations. In addition to CSV file, the assessment is
visualized using Bar Chart and the recommendations are
written in word document.

B. Practical experiments

DPVIA is evaluated in Java project of Head First Design
Patterns Book code 4 which provides an interesting example
project that has a proper implementations of well-known
design pattern patterns (e.g. Simple Factory, Factory Method,
Adapter, Decorator, Observer, State and Strategy). Note, we
have modified some instances of this project to make them
containing violations. The validation of the proposed tool
(DPVIA) is using two evaluation experiments:

1) The first practical experiment:: Integration of our
approach with DP-CoRe tool (in DPVIA first phase) has
succeeded in determining all design pattern candidates with
accuracy 70.73% of the detection algorithm where 24 of
pattern candidates were detected incorrectly (false positive
29.26%) while 58 of pattern candidates were detected cor-
rectly. Moreover, by reviewing the source code manually, we
found the total number of the correct pattern candidates in
source code is 58 candidates, so no candidates were missed

4Head First Design Patterns Book code is free and available
to download it from Headfirstlabs website using the web
URL: http://www.headfirstlabs.com/books/hfdp/
HeadFirstDesignPatterns_code102507.zip.

8

Informatics Bulletin, July 2019 8

Fig. 6: Stanford Open Information Extraction of relationships
between entities

without detection, but some of the detected instances are
not fully representative of design patterns. Pattern detection
algorithm by DP-CoRe achieved 70.73% precision and 100%
recall.

Then DPVIA (in DPVIA second phase) has measured
the conformance score for each detected pattern candidate
in order to identify pattern violations and report the con-
formance scores average, satisfied and violated instances
of the examined project, the results are shown in Table
VI. The fourth column shows the average of conformance
scoring for each pattern in the range of 92.5% to 100%. The
conformance scoring was verified manually by reviewing the
source code of the satisfied and violated instances, we found
24 instances were identified as violated instances incorrectly
(false positive 29.26% of the proposed conformance scoring
algorithm). The proposed conformance algorithm achieved
70.73% precision and 100% recall.

Consequently, the conformance algorithm has false dis-
closure due to the measurement of conformance score of
some pattern instances were detected in the detection phase
incorrectly and the reliance only on predetermined charac-
teristics of each design pattern while it should not be con-
sidered a violation according to business logic and software
requirements. For this reason, we suggested the verification
phase for the detected violations. Verification phase could
be done by software developers but it needs a lot of time
and effort. If the relationships between system entities in
the SRS document are presented to the software developer,
it will be easy to approve or discard the violations based
on the presence or absence relationships between violation
members or perform the verification phase automatically.

The proposed tool (DPVIA) is integrated with Stanford
Open Information Extraction (open IE) [24] that extracts
open-domain relation triples, representing a subject, a
relation, and the object of the relation from plain text.
Open IE can be accessed through the Stanford CoreNLP
API5 through the standard annotation pipeline to extract
the relations between violation members from SRS plain
text. An illustration of the process is given for an example
sentence below which is written in SRS document and
represented in Figure 6:

”The DecoyDuck should have a MuteQuack behavior, and
fly with FlyRocketPowered”

According to the extraction of relations between entities, the
entity DecoyDuck has only two relations with MuteQuack

5Stanford CoreNLP https://stanfordnlp.github.io/
CoreNLP/

Candidate of Pattern Strategy (29):
A(Concrete Strategy): FlyRocketPowered
B(Strategy): FlyBehavior
C(Concrete Context): DecoyDuck
D(Context): Duck

Design pattern violation identification:

FlyRocketPowered (Evaluation : 100.0 %)

FlyBehavior (Evaluation : 100.0 %)

DecoyDuck (Evaluation : 66.0 %)
Recommendation: Class(DecoyDuck) should creates new
object of class : FlyRocketPowered
Approved: This violation has to be solved according to the
relationship between (decoyduck) and (flyrocketpowered
) in SRS document.

Duck (Evaluation : 100.0 %)

Total score : 91.5 %

Fig. 7: Example Output of DPVIA

behavior and FlyRocketPower. However, during pattern de-
tection and violation identification, DecoyDuck entity par-
ticipates as member class in 7 detected Strategy instances
where 2 instances conformed the predefined characteristics
while other 5 instances did not. The five violated instances,
#4, #9, #14, #24, #29, have a missing connection from
class(DecoyDuck) to class (Squeak), class (FakeQuack), class
(Quack), class (FlyWithWings) or class (FlyRocketPowered)
respectively. So that, the violations of Strategy instances
#4, #9, #14, #24 were discarded due to the absence of
relationships between violation members in the result of open
IE relations extraction. The only instance #29 is considered
as violation where DecoyDuck, in source code, flies with
another flying behavior and does not fly with FlyRocket-
Powered behavior as required. The result of instance #29,
as shown in Figure 7, shows how DPVIA tool is able to
detect design pattern violations and recommend a suitable
refactoring solutions.

One of the most important results of the verification phase
is the reduction of false positive instances scoring and is
changed to be more accurate for the proposed conformance
scoring algorithm. Currently, the verification phase of pattern
violations works successfully only if the source code classes
have the same system entity names in the SRS document.
This issue could be solved by applying more accurate re-
quirements analysis techniques.

2) The second practical experiment:: We repeated the
same previous experiment with different settings of design
pattern detection algorithm. Tsantalis DPD tool, uses simi-
larity algorithms, is used to detect design pattern instances
instead of Diamantopoulos et al. [21] algorithm used in pre-

9

Informatics Bulletin, July 2019 9

TABLE VI: Validating the proposed approach over Head First Design Patterns Book code project

Design Patterns Detection Design pattern violation identification
Pattern name #Instances #Incorrect In-

stances detec-
tion

Conformance
Score %

#Satisfied
Instances

#Violated In-
stances

#Incorrect
Instances
Scoring

Adapter 2 0 100% 2 0 0
Decorator 16 0 96.2% 8 8 0
FactoryM 16 0 100% 16 0 0
SFactory 4 0 100% 4 0 0
Observer 4 0 92.5% 2 2 0
State 5 0 96% 3 2 0
Strategy 35 24 93.9% 10 25 24
Total 82 24 45 37 24
% of Total 29.26% 54.87% 45.12% 29.26%

Decorator Espresso A Concrete Component
Decorator Beverage B Component
Decorator Soy C Concrete Decorator
Decorator CondimentDecorator D Decorator
End
FactoryMethod NYStyleClamPizza A Concrete Product
FactoryMethod Pizza C Adapter B Product
FactoryMethod NYPizzaStore C Concrete Creator
FactoryMethod PizzaStore D Creator
End
.
.
.
End

Fig. 8: Formats of pattern instances detected by any detection
tool

vious experiment, then apply the same conformance scoring
algorithm and running over the same project of Head First
Design Patterns Book code.

We got a set of detected pattern instances by Tsantalis
DPD tool, and wrote the instances in a file named ”Pat-
ternsDetectedByOtherTools.txt” in the main path of DPVIA
tool. The pattern instances are written in the following
formats shown in Figure 8. In addition, using these formats
allows any developer has detected the pattern classes by
other detection approaches to measure the conformance score
easily and detect pattern violations.

As it is obvious in Table VII, Tsantalis DPD tool is
totally missed detection of Simple Factory and Strategy
pattern candidates and 15 of pattern candidates were detected
incorrectly (false positive 65.21%) while 8 candidates were
detected correctly. As noted by the first experience, the total
number of the correct pattern candidates in source code is
58 candidates, so 50 candidates were missed without detec-
tion (false negative 86.20%). Pattern detection algorithm by
Tsantalis DPD achieved 34.78% precision and 13.79% recall.

Then DPVIA (in DPVIA second phase) has measured
the conformance score for each detected pattern candidate.
Note that pattern instances that are detected incorrectly by
Tsantalis DPD might mislead the proposed conformance
scoring algorithm (Fig. 3) to assess of the violations cor-

rectly. The fourth column in Table VII shows the average of
conformance scoring for each pattern. The Simple Factory
and Strategy pattern have not had any conformance scoring
because they were not discovered using Tsantalis DPD. Other
design patterns are in range of conformance scoring between
66.7% to 90% when they are compared to the predefined
characteristics. The conformance scoring was verified manu-
ally by reviewing the source code of the satisfied and violated
instances, we found 6 instances were identified as violated
instances incorrectly (false positive 26.08% of the proposed
conformance scoring algorithm). The proposed conformance
algorithm achieved 73.91% precision and 100% recall.

C. Discussion and Results

The results for the two experiments are shown in Figure
9, where P1, P2, P3, P4, P5, P6, and P7 refer to enumer-
ating patterns Adapter, Decorator, Factory Method, Simple
Factory, Observer, State, and Strategy respectively. In Figure
9 (a), there are large deviations between the detected patterns
of the two experiments for the same project of Head First
Design Patterns Book code, which are mostly due to the
detection algorithm of each experiment. The first experiment
allows developers the flexibility to specify a set of rules
to detect any pattern in contrast to the detection algorithm
by Tsantalis DPD tool [12]. The second experiment uses
similarity algorithms to detect patterns as a black box that
do not allow the developer any control over the detected
patterns. On the other hand, Figure 9 (b) illustrates the
similarity scoring percentage of the two experiments.

As already noted, the conformance scoring correctness
of pattern instances rely on the correct detection of those
pattern instances, the interesting aspect of this finding is
showing the importance of pattern detection algorithm in
evaluation of design pattern violations. Also we observed,
DPVIA tool is quite effective for identifying design pattern
violations, due to the flexibility to use any pattern detection
rules as well as determine a set of characteristics that is
used in measurement of conformance scores. Furthermore,
concerning execution time, our proposed tool is quite
efficient whereas the identification and assessment of 58
design pattern instances in Head First Design Patterns Book
code project that contains 2,063 Lines of Code (LoC),
required almost 2.5 seconds.

10

Informatics Bulletin, July 2019 10

TABLE VII: Validating the conformance algorithm integrated with Tsantalis DPD over Head First Design Patterns Book
code project

Design Patterns Detection Design pattern violation identification
Pattern name #Instances #Incorrect In-

stances detec-
tion

Conformance
Score %

#Satisfied
Instances

#Violated In-
stances

#Incorrect
Instances
Scoring

Adapter 10 8 69% 0 10 2
Decorator 2 0 90% 0 2 2
FactoryM 3 1 66.7% 2 1 0
SFactory - - - - - -
Observer 1 0 87.5% 0 1 1
State 7 6 83% 0 7 1
Strategy - - - - - -
Total 23 15 2 21 6
% of Total 65.21% 8.69% 91.30% 26.08%

P1 P2 P3 P4 P5 P6 P7

0

10

20

30

D
et

ec
te

d
In

st
an

ce
s

#

1st Exp. 2nd Exp. (a)

P1 P2 P3 P4 P5 P6 P7

0

50

100

Si
m

ila
ri

ty
Sc

or
in

g
%

1st Exp. 2nd Exp. (b)

Fig. 9: Comparison between the two evaluation experiments (a) number of detected instances (b) Similarity scoring
percentage.

In order to assess the functionality of the tool on any
open source project, DPVIA is evaluated with a dataset
containing 5,679,964 (LoC) Lines of Code among 28,669
Java files in 15 open-source projects, is shown in Table
VIII, (e.g. apachehadoop

6, apachehive
7, apachephoenix

8, apachepig
9,

apachetomcat
10, apachenutch

11, apacheant core
12, aspectJAspect Oriented Frame-

works
13, jEditProgrammerś Text Editor

14, JFreeChart15, JHotDraw16, JU-
nit417, libgdxJava game development framework

18, openjmsJava Message Service
19, and

scarabIssue Tracking
20).

The DPVIA, as it’s result is shown in Table IX, identified
the conformance scores for 9,238 pattern instances of seven

6Apache hadoop http://hadoop.apache.org/
7Apache hive https://hive.apache.org/
8Apache phoenix https://phoenix.apache.org/
9Apache pig https://pig.apache.org/
10Apache tomcat http://tomcat.apache.org/
11Apache nutch http://nutch.apache.org/
12Apache ant core http://ant.apache.org/
13aspectJ Aspect Oriented Frameworks https://www.eclipse.org/

aspectj/
14jEdit Programmerś Text Editor http://www.jedit.org/
15JFreeChart http://www.jfree.org/jfreechart/
16JHotDraw http://www.jhotdraw.org/
17JUnit4 http://junit.org/junit4/
18libgdx Java game development framework https://libgdx.

badlogicgames.com/
19openjms Java Message Service http://openjms.sourceforge.net/
20scarab Issue Tracking https://java-source.net/open-source/

issue-trackers/scarab

TABLE VIII: Data set of 15 open source projects as input
to DPVIA tool

Project name Lines of
Code

Source
Files

Total
Detected
patterns

apache hadoop 1214896 5519 1093
apache hive 1034094 3766 838
apache phoenix 222353 850 590
apache pig 398403 1765 831
apache tomcat 537724 2240 64
apache nutch 81543 536 50
apache ant core 267028 1233 481
aspectJ Aspect Oriented Frameworks 710700 7048 522
jEditProgrammerś Text Editor 195952 598 41
JFreeChart 297386 993 4045
JHotDraw 6 73421 491 155
JUnit4 43073 443 26
libgdx Java game development frame-

work

384745 2163 175

openjms Java Message Service 112410 576 297
scarab Issue Tracking 106236 448 30

different GoF patterns: Adapter, Decorator, Factory Method,
Simple Factory, Observer, State and Strategy. The similarity
score indicates the conformance for pattern candidates with
pattern definitions characteristics for each project in the
repository, we observed that open source projects have some
instances of design patterns do not have a conformance
between pattern implementations and their predefined char-
acteristics, and this may cause a lack of maintainability.

11

Informatics Bulletin, July 2019 11

In addition, we observed that the proposed approach
is able to assess, validate violations, and recommend a
suitable solutions for small and large scale project of
Java applications, as shown in Table VIII, the DPVIA
tool receives as one input 15 open source Java projects
with different size. For each project, pattern candidates are
detected and the conformance scores are measured for all
candidate members versus the predefined characteristics of
GoF pattern definitions. We argue that validation of design
pattern instances should be done based on source code
files directly by parsing source code to extract the syntax
parse tree (AST) which can be used for deeper analysis of
the source elements.

DPVIA is fully customizable since it allows developers
to configure the definition of the patterns structure and
their behavior, as well the developers are able to specify
the predefined characteristics of any pattern that used in
assessing the pattern implementation.

V. CONCLUSION

The major contribution of this work, to the domain of
design patterns, includes an approach for automated iden-
tification of design pattern violations occurring in different
project implementations and recommend a suitable solutions
for software developer to modify the detected pattern viola-
tions. The detection of design patterns violations is done by
measuring the conformance scoring of the implemented de-
sign patterns towards their definitions characteristics. That’s
why we developed an automated tool named Design Pattern
Violations Identification and Assessment (DPVIA), in order
to detect design patterns occurring in different projects
implementations, and measure the conformance score for
each pattern candidate to identify its violations. In addi-
tion, DPVIA tool reports violation details with appropriate
solution as recommendations based on predefined pattern
characteristics, then visualizes the results in charts for indi-
cating the percentage of violation that has been committed.
The violation is committed after proving the existence of
relationships between its members in business logic (SRS
document), which is detected by the Stanford CoreNLP Nat-
ural Language Processing Toolkit [22] to provide a valuable
insight on design pattern violations assessment.

We sincerely hope that this work will inspire further
researches in this field, for instance the detected pattern
violations would be re-factored or discarded once identified,
but that would added massive amount of work to developers
in order to re-factor those violations. As well, the decision of
applying the recommended solutions for the detected pattern
violations is usually a trade-off, because patterns are not
universally good or bad. Patterns typically improve certain
aspects of software quality, while they might weaken some
others. For these reasons we look forward to build a semi-
automated violations re-factoring module to fix detected
violations in Java project source code. Finally, according to
the efficient execution time and minimum misleading pattern
violations identification, we believe the proposed DPVIA
tool is promising compared to some other existing ones.

REFERENCES

[1] R. J. Erich Gamma, Richard Helm and J. Vlissides, Design Patterns:
Elements of reusable object-oriented software. Addison-Wesley, 1995.

[2] F. Khomh, Y.-G. Gueheneuc, and G. Antoniol, “Playing roles in design
patterns: An empirical descriptive and analytic study,” 2009 IEEE
International Conference on Software Maintenance, Edmonton, AB,
pp. 83–92, 2009.

[3] A. Ampatzoglou, A. Chatzigeorgiou, S. Charalampidou, and P. Avge-
riou, “The effect of gof design patterns on stability: A case study,”
IEEE Transactions on Software Engineering, vol. 41, no. 8, pp. 781–
802, 1 Aug. 2015.

[4] D. Riehle, “Lessons learned from using design patterns in industry
projects.,” In Transactions on Pattern Languages of Programming II,
Springer-Verlag, vol. LNCS 6510, pp. 1–15, 2011.

[5] N. Bautista, “A beginners guide to design patterns.,” Accessed
August 15, 2017., http://code.tutsplus.com/articles/
a-beginners-guide-to-design-patterns--net-12752.

[6] A. Ampatzoglou, S. Charalampidou, and I. Stamelos, “Research state
of the art on gof design patterns: A mapping study.,” Journal of
Systems and Software, Elsevier, vol. 86, no. 7, pp. 1945–1964, July
2013.

[7] A. Ampatzoglou, S. Charalampidou, and I. Stamelos, “Design pattern
alternatives: What to do when a gof pattern fails.,” Proceedings of the
17th Panhellenic Conference on Informatics At: Thessaloniki, Greece,
pp. 1–6, September 2013.

[8] I. Alazzam, B. Abul-Huda, and E. Migdady, “Design patterns detection
based on its domain,” 2017 8th International Conference on Informa-
tion Technology (ICIT), Amman, pp. 304–308, 2017.

[9] D. L. Parnas, “Software aging.,” ICSE ’94 Proceedings of the 16th
international conference on Software engineering, IEEE Computer
Society Press Los Alamitos, CA, USA, pp. 279–287, 1994.

[10] J. M. Bieman, G. Straw, H. Wang, P. W. Munger, and R. T.
Alexander, “Design patterns and change proneness: an examination of
five evolving systems,” Proceedings. 5th International Workshop on
Enterprise Networking and Computing in Healthcare Industry (IEEE
Cat. No.03EX717), Sydney, NSW, Australia, pp. 40–49, 2003.

[11] M. Gatrell, S. Counsell, and T. Hall, “Design patterns and change
proneness: A replication using proprietary c software,” 2009 16th
Working Conference on Reverse Engineering, Lille, pp. 160–164, 2009.

[12] N. Tsantalis, G. S. Alexander Chatzigeorgiou, and S. T. Halkidis,
“Design pattern detection using similarity scoring,” IEEE Transactions
on Software Engineering, vol. 32, no. 11, pp. 896–909, 2006.

[13] V. D. Blondel, A. Gajardo, M. Heymans, P. Senellart, and P. V. Dooren,
“A measure of similarity between graph vertices: Applications to
synonym extraction and web searching,” SIAM Rev., vol. 46, no. 4,
pp. 647–666, 2004.

[14] C. Izurieta and J. M. Bieman, “How software designs decay: A
pilot study of pattern evolution,” First International Symposium on
Empirical Software Engineering and Measurement, pp. ESEM 459–
461, 2007.

[15] C. Izurieta, “Decay and grime buildup in evolving object oriented
design patterns,” Colorado State University Fort Collins, 2009.

[16] C. Izurieta and J. M.Bieman, “A multiple case study of design pattern
decay, grime, and rot in evolving software systems,” in Software
Quality Journal (2013) Springer Science+ Business Media, pp. 289–
323, 2012.

[17] N. Moha, D. loc Huynh, and Y.-G. Gueheneuc, “A taxonomy and a
first study of design pattern defects,” IEEE International Workshop
on Software Technology and Engineering Practice, IEEE Computer
Society, Budapest, Hungary, pp. 225–229, 2005.

[18] M. R. Dale and C. Izurieta, “Impacts of design pattern decay on system
quality,” ESEM 14 Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement,
ACM Press, New York, NY, USA, 2014.

[19] S. Strasser, C. Frederickson, K. Fenger, and C. Izurieta, “An automated
software tool for validating design patterns,” ISCA 24th International
Conference on Computer Applications in Industry and Engineering.
CAINE 11, November 2011.

[20] D.-K. Kim, R. France, S. Ghosh, and E. Song, “Using role-based
modeling language (rbml) to characterize model families,” Eighth
IEEE International Conference on Engineering of Complex Computer
Systems, 2002. Proceedings., Greenbelt, MD, USA, 2002.

[21] T. Diamantopoulos, A. Noutsos, and A. Symeonidis, “Dp-core: A
design pattern detection tool for code reuse,” Proceedings of the Sixth

12

Informatics Bulletin, July 2019 12

TABLE IX: Similarity conformance scores reported by DPVIA tool

GoF design patterns
Project name Adapter Decorator FactoryM SFactory Observer State Strategy
hadoop 100% 99.1% 92.5% 87.9% 85.2% 100% 91.6%
hive 100% 90.5% 93.1% 84.7% 85% 100% 91.7%
phoenix 96.5% 83% 98.7% 99% 91.8% - -
pig 96.1% 94.2% 87.2% 85% 100% 91.6% -
tomcat 99.1% 85% 100% 91.5% - - -
nutch 100% 85% 91.9% - - - -
ant- core 97.2% 100% 83% 85% 91.7% - -
aspectJ 100% 92.5% 91.8% 93.2% 87.2% 100% 91.7%
jEdit 100% 85.7% 100% 91.5% - - -
JFreeChart 100% 94.8% 97.9% 85% 100% 91.5% -
jhotdraw6 100% 95% 88.4% 100% 91.9% - -
junit4 100% 91.5% 87.2% 92% - - -
libgdx 100% 93.4% 93.8% 94% 86.2% 100% 91.5%
openjmsJMS 95% 91.5% 87% 100% 91.8% - -
scarab 83% 90% 91.5% - - - -
Average 97.8% 91.4% 92.3% 91.4% 91.1% 97.2% 91.6%

International Symposium on Business Modeling and Software Design
(BMSD), pp. 160–169, 2016.

[22] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and
D. McClosky, “The stanford corenlp natural language processing
toolkit,” Proceedings of 52nd Annual Meeting of the Association
for Computational Linguistics: System Demonstrations, Baltimore,
Maryland, pp. 55–60, 2014.

[23] R. W. Hamming, “Error detecting and error correcting codes,” The Bell
System Technical Journal, vol. 29, no. 2, pp. 147–160, April 1950.

[24] G. Angeli, M. J. Premkumar, and C. D. Manning., “Leveraging linguis-
tic structure for open domain information extraction,” ACL-IJCNLP
2015 - 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural
Language Processing of the Asian Federation of Natural Language
Processing, Proceedings of the Conference, vol. 1, pp. 344–354, 2015.

13

Informatics Bulletin, July 2019 13

