Al-Azhar Bull. Sci. Vol. 19, No. 2 (Dec.): pp. 135-146, 2008.

SYNTHESIS AND REACTIVITY OF 2-[1-(5-BROMOBENZOFURAN-2-YL)-ETHYLIDENE]MALONONITRILE IN SYNTHESIS OF HETEROCYCLIC SYSTEMS;A CONVENIENT ROUTE FOR SYNTHESIS OF SOME PYRAZOLE, THIOPHENE, THIENOPYRIMIDINE, ISOBENZOFURAN AND BENZENE DERIVATIVES INCORPORATING BENZOFURAN MOIETY

MAHMOUD M. ABDELALL, AHMAD H. BEDAIR, FAWZY M. ALI, AHMAD M. EL-AGRODY, AND AHMAD H. HALAWA

Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt.

Abstract

A facile route to some pyrazole, thiophene, thienopyrimidine, phthalic anhydride and benzene derivatives incorporating benzofuran moiety is reported.

Keyword : allylidene, thiophene, benzofuran, theinopyrimidine

Results and Discussion

Benzofuran derivatives have been associated with diverse pharmacolo-gical activities, such as insecticidal, ${ }^{1}$ anticancer, ${ }^{2}$ antihista-minic, ${ }^{3}$ antiallergic ${ }^{4}$ and antitumor agents, ${ }^{5}$ in addition to their natural occurrence, ${ }^{6-9}$ antimicrobial, ${ }^{\mathbf{1 0 1 1}}$ anticonvulsant and anti-inflammatory activities. ${ }^{12,13}$ Our approach to the target new heterocyclic compounds was achieved by the synthesis of 2-[1-(5-bromo-benzofuran-2-yl)-ethylidene]malononitrile (2) from condensation of 2-acetyl-5bromo benzofuran (1) with malononitrile in boiling benzene containing ammonium acetate and acetic acid . (Scheme 1).

In contrast to the anticipated formation of pyrazoline derivatives ${ }^{14-16}(\mathbf{3} \mathbf{3}, \mathbf{b})$, the reaction of 2 with hydrazine hydrate or phenylhydrazine in boiling ethanol gave the imino compounds $\mathbf{4 a}$ and $\mathbf{4 b}$ respectively, and is assumed to proceed via elimination of malononitrile from the intermediate (A).

A final evidence for the proposed structures comes from synthesizing compounds 4 a and 4 b via another reaction route. Thus, when compound 1 was condensed with hydrazine hydrate or phenyl hydrazine in ethanol under reflux afforded a products identical in all aspects (m.p., mixed m.p. and IR spectrum) with compounds 4a and 4b, respectively, (Scheme 1).

a; $\mathrm{R}=\mathrm{H}$
b; $R=P h$

Scheme 1
The high reactivity of ethylidene malononitrile derivative (2) attracted the author to investigate its chemical uses in organic synthesis, Thus, interaction of 2-[1-(5-bromo-benzo-furan-2-yl)-ethylidene]malononitrile (2) with dimethylformamide dimethylacetal in refluxing benzene afforded 2-[1-(5-bromo-benzofuran-2-yl)-3-dimethylamino-allylidene]-malononitrile (5), (Scheme 2).

On the other hand, Interaction of 2 with benzene diazonium chloride afforded the open chain product $\mathbf{6 b}$ instead of the expected closed product 5-(5-bromo-benzofuran-2-yl)-3-imino-2-phenyl-6-phenylazo-2,3-dihydro-pyridazine-4-carbonitrile ($\mathbf{6 c}$). The proposed open chain structure $\mathbf{6 a}$ was ruled out on the bases of spectroscopic data and the bases of spectroscopic data supported the open chain product $\mathbf{6 b}$, (Scheme 2).

Scheme 2

Also, interaction of compound 2 with sulfur via Gewald reaction ${ }^{17}$ produced 2-amino-4-(5-bromo-benzofuran-2-yl)-thio phene-3-carbonitrile (7), (Scheme 2).

Condensation of 2-[1-(5-bromo-benzofuran-2-yl)-ethylid-ene]-malononitrile (2) with aromatic aldehyde as p-methoxy benzaldehyde gave the corresponding allylidene malononitile derivative 8, (Scheme 3).

Reaction of the allylidene malononitrile (8) with malono-nitrile in ethanol in the presence of piperidine as a catalyst afforded 3-amino-5-(5-bromo-benzofuran-2-yl)-4'-methoxy-bi-phenyl-2,4-dicarbonitrile (9), (Scheme 3).

A final evidence for the proposed structure 9 was obtained through its synthesis via one step synthesis. Thus, the direct condensation of compound 2 with p-methoxy- α-cyanocinnam-onitrile in refluxing ethanol/piperidine afforded a product which was found to be identical with compound 9 (m.p., mixed m.p. and IR spectrum) (Scheme 3).

9

2

$A r^{\prime}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}-\mathrm{p}$

Scheme 3

In contrast to the anticipated formation of pyridine derivative 11, the reaction of 8 with hydrazine hydrate in boiling ethanol afforded 3-(5-bromobenzofuran-2-yl)-5-(4-metho-xyphenyl)-4,5-dihydro-1H-pyrazole (10), which was assumed to proceed
via addition of hydrazine hydrate to the activated double bond in compound $\mathbf{8}$ to give the non isolable intermediate (B) which underwent intramolecular cyclization followed by elimination of malononitrile to afforded the pyrazole derivative (10), (Scheme 3) .

The high reactivity of 2-aminothiophene-3-carbonitrile derivative (7) allows the author to use it as precursor in the synthesis of some new heterocyclic derivatives. Thus, when 2-amino-4-(5-bromo-benzofuran-2-yl)-thiophene-3-carbo-nitrile (7) was refluxed in boiling formic acid it gives N-(4-(5-bromobenzofuran-2-yl)-3-cyanothiophen-2-yl)formamide (12) instead of the thienopyrimidine derivative (13), (Scheme 4).

12

15

Scheme 4

Treatment of 2-aminothiophene-3-carbonitrile derivative (7) with triethyl orthoformate in boiling acetic anhydride afforded the N-acetylamino derivative (14) instead of the N-[4-(5-bromo-benzofuran-2-yl)-3-cyano-thiophen-2-yl]-formimidic acid ethyl ester (15), (Scheme 4).

Also, reaction of 2-aminothiophene-3-carbonitrile deri-vative (7) with boiling acetic anhydride afforded N-acetyl dervative (14) instead of 5-(5-bromobenzofuran-2-yl)-2-methylthieno[2,3-d]pyrimidin-4(3H)-one (16), (Scheme 4).

Interaction of 2-aminothiophene-3-carbonitrile derivative (7) with formamide afforded a product which defined as: 4-amino-5-(5-bromobenzofuran-2-yl)thieno[2,3-d]pyrimidine (17), (Scheme 5).

Also, interaction of 2-aminothiophene-3-carbonitrile deri-vative (7) with maleic anhydride under Diels-Alder reaction conditions afforded the non isolable intermediate (C), which extrude $\mathrm{H}_{2} \mathrm{~S}$ and furnished 4-amino-6-(5-bromobenzofuran-2-yl)-1,3-dihydro-1,3-dioxoisobenzofuran-5-carbonitrile (18), (Scheme 5).

18
Scheme 5

Finally, benzoylation of 2-aminothiophene-3-carbonitrile derivative (7) was easily obtained and afforded N -(4-(5-bromo benzofuran-2-yl)-3-cyanothiophen-2yl)benzamide (19), (Scheme 5).

Experimental

All melting points and antimicrobial activities are uncorrected. IR spectra (KBr) were recorded on FT-IR 5300 spectrometer and Perkin Elmer spectrum RXIFT-IR system ($\mathrm{v}, \mathrm{cm}^{-1}$). The ${ }^{1} \mathrm{HNMR}$ spectra were recorded in $\left(\mathrm{CDCl}_{3} \& \mathrm{DMSO}_{\mathrm{d}}^{6}\right)$ at (300) MHz on a Varian Mercury VX-300 NMR spectrometer (δ, ppm) using TMS as an internal standard. Mass spectra were obtained on GC Ms-QP 1000 EX mass spectrometer at 70 ev . Elemental analyses were carried out by the Microanalytical Research Center, Faculty of Science, Cairo University and Al-Azhar University.

2-[1-(5-Bromo-benzofuran-2-yl)-ethylidene]-malononitrile (2)

A solution of 2-acetyl-5-bromobenzofuran (1) (0.01 mol) in dry benzene (100 $\mathrm{ml})$ was added to a mixture of malononitrile $(0.01 \mathrm{~mol})$, ammonium acetate $(2 \mathrm{~g})$ and acetic acid $(2 \mathrm{ml})$. The reaction mixture was refluxed using a Dean and Stark water separator until water ceased to be collected. The product obtained was recrystallized from EtOH , yield (88%), m. p. 203-204, ir; $2220 \mathrm{~cm}^{-1}(\mathrm{CN}) .{ }^{1} \mathrm{H}$ NMR ($\delta \mathrm{ppm}$) spectrum $\left(\mathrm{CDCl}_{3}\right)$ indicated signals at : $2.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ furan), $7.23-7.76(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), \mathrm{ms}, \mathrm{m} / \mathrm{z}$ (intensity \%) 286 (62.1)288(100). M.F. $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{BrN}_{2} \mathrm{O}$ calculated; C, 54.38, H, 2.46, N, 9.76. Found; C, 54.30, H, 2.40, N, 9.67.

[1-(5-Bromo-benzofuran-2-yl)-ethylidene]-hydrazones (4)

Method (A):

A mixture of 2-[1-(5-Bromo-benzofuran-2-yl)-ethylidene]-malononitrile $(0.01 \mathrm{~mol})$ and hydrazine hydrate $(0.01 \mathrm{~mol})$ in ethanol (30 ml) was refluxed for 3 hrs. the separated solid on heating was filtered off and recrystallized from EtOHbenzene.

Method (B):

A solution of 2-acetyl-5-bromobenzofuran (1) (0.01 mol) in ethanol (30 ml) and hydrazine hydrate $(0.012 \mathrm{~mol})$ was refluxed for 2 hrs . the solid formed was filtered
off and recrystallized from the proper solvent to give the hydrazone (4). m.p. and mixed m.p. determined with authentic sample gave no depression.

4a; recrystallized from EtOH-benzene.(yield 87\%),m.p.164-165, ir; 3364, 3270 $\mathrm{cm}^{-1}\left(\mathrm{NH}_{2}\right), \mathrm{ms}, \mathrm{m} / \mathrm{z}$ (intensity \%) 252 (100.0)254(99.3). M.F. $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{O}$, calculated; C, $47.46 \mathrm{H}, 3.58, \mathrm{~N}, 11.07$ found; C, $47.45, \mathrm{H}, 3.45, \mathrm{~N}, 11.10$.

4b;recrystallized from EtOH-benzene.(yield 78\%),m.p.167-169, ir; $3340 \mathrm{~cm}^{-1}$ $(\mathrm{NH}), \mathrm{ms}, m / z$ (intensity \%) 328 (31.9)330(100). M.F. $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}$ calculated. C, $58.38 \mathrm{H}, 3.98, \mathrm{~N}, 8.51$ found. C $58.33, \mathrm{H}, 3.89, \mathrm{~N}, 8.46$.

2-[1-(5-Bromo-benzofuran-2-yl)-3-dimethylamino-allylidene]-malononitrile (5)

A mixture of (2) (0.01 mol) and N, N-dimethylformamide dimethylacetal (0.01 $\mathrm{mol})$ in benzene (20 ml) was refluxed for 2 hrs . the solvent was removed under reduced pressure the residue was collected and recrystallized from EtOH -benzene .(yield 77%), m.p.230-231,ir; 2924 (CH-aliph.) and $2200 \mathrm{~cm}^{-1}(\mathrm{CN}),{ }^{1} \mathrm{H}$ NMR (δ $\mathrm{ppm})$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ indicated signals at : 3.07 and $3.19\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.73$ and $7.51(\mathrm{dd}, 2 \mathrm{H}$, olefinic $\mathrm{CH}=\mathrm{CH} ; \mathrm{J}=12.6 \mathrm{~Hz}), 7.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ furan), 7.21-7.80 (m, 3H, Ar-H),M.F. $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{BrN}_{3} \mathrm{O}$. calculated; C,56.16 H,3.53, N 12.28 found; C,56.10, H,3.45, N.12.23.

2-[1-(5-Bromo-benzofuran-2-yl)-2-phenylazo-2-(phenyl-hydrazono)-ethylidene]-malononitrile (6b)

To a cold solution of (2) (0.01 mol) in pyridine (20 ml) was added benzenediazonium chloride (0.01 mol) [prepared by diazotization of aniline (0.01 $\mathrm{mol})$ in $\mathrm{HCl}(6 \mathrm{M}, 6 \mathrm{ml})$ with sodium nitrite $(0.7 \mathrm{~g})$ at $\left.0-5^{\circ} \mathrm{C}\right]$ portionwise over 30 min with constant stirring. After complete addition, the reaction mixture was stirred for a further 2 h at $0-5^{\circ} \mathrm{C}$. The solid product was filtered off, washed with water, dried and finally recrystallized from EtOH-benzene.(yield 80\%),m.p210-212,ir; 3306 (NH) and $2232 \mathrm{~cm}^{-1}(\mathrm{CN}),{ }^{1} \mathrm{H}$ NMR ($\delta \mathrm{ppm}$) spectrum (DMSO) indicated signals at : 7.36 (s, 1H, CH furan), 7.47-7.75 (m, 13H, Ar-H), $8.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), \mathrm{ms}, \mathrm{m} / \mathrm{z}$ (intensity \%) 494 (12.9)496(14.5).M.F. $\mathrm{C}_{25} \mathrm{H}_{15} \mathrm{BrN}_{6} \mathrm{O}$ calculated; .C,60.62 H,3.05, $\mathrm{N}, 16.97$ found; $\mathrm{C}, 60.55, \mathrm{H}, 3.00, \mathrm{~N}, 16.92$.

2-Amino-4-(5-bromo-benzofuran-2-yl)-thiophene-3-carbonitrile (7)

A mixture of (2) (0.01 mol) and elemental sulfur in ethanol (40 ml) were treated with a few drops of triethylamine. was refluxed for 3 h . The obtained product was filtered off and recrystallized from dioxane.(yield 85\%), m.p.254-255,ir; 3318, 3214
$\left(\mathrm{NH}_{2}\right)$ and $2206 \mathrm{~cm}^{-1}(\mathrm{CN}),{ }^{1} \mathrm{H}$ NMR ($\delta \mathrm{ppm}$) spectrum (DMSO) indicated a signals at : $7.37(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ furan), $7.44-7.75(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ thiophene), 8.61 (br, $2 \mathrm{H}, \mathrm{NH}_{2}$), ms, m / z (intensity \%) 318 (99.0)320(100) and showed other peaks at : 212 (16.1), 105 (6.8) and 69 (4.3).M.F. $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{BrN}_{2} \mathrm{OS}$. Calculated; .C,48.92 H,2.21 N, 8.78 found; C,48.85, H,2.17, N,8.70.

2-((E)-1-(5-bromobenzofuran-2-yl)-3-(4methoxyphenyl)allylidene)malononitrile (8)

A mixture of (2) (0.01 mol), and p-methoxy benzaldehyde (0.01 mol) in ethanol $(30 \mathrm{ml})$ and few drops of piperidine was refluxed for 3 h , the separated solid on heating was filtered off and recrystallized from EtOH-benzene.(yield 72\%), m.p.235-236,ir; 2924 (CH-aliph.), 3024 (CH-arom.) and $2212 \mathrm{~cm}^{-1}$ (CN), ${ }^{1} \mathrm{H}$ NMR $(\delta \mathrm{ppm})$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ indicated signals at : $3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.94$ and 7.58 (dd, 2 H , olefinic $\mathrm{CH}=\mathrm{CH}$), 7.27 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$ furan), $7.24-7.86$ ($\mathrm{m}, 7 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$),M.F. $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{2}$, calculated; $\mathrm{C}, 62.24 \mathrm{H}, 3.23$, $\mathrm{N}, 6.91$ found; $\mathrm{C}, 62.18, \mathrm{H}, 3.19, \mathrm{~N}, 6.87$.

3-Amino-5-(5-bromo-benzofuran-2-yl)-4'-methoxybiphenyl-2,4-dicarbonitrile (9)

Method (A):

A mixture of (8) $(0.01 \mathrm{~mol})$ and malononitritle $(0.01 \mathrm{~mol})$ in ethanol $(40 \mathrm{ml})$, few drops of piperidine was added as catalyst. The reaction mixture was refluxed for 3 h . The isolated product was collected and recrystallized from dioxane.

Method (B):

A solution of (2) $(0.01 \mathrm{~mol})$ and p -methoxy α-cyano- cinnamonitrile $(0.01 \mathrm{~mol})$ in ethanol (40 ml), few drops of piperidine was added as catalyst. The reaction mixture was refluxed for 3 h . The isolated product was collected and recrystallized from the proper solvent to give the compound (9). m.p. and mixed m.p. determined with authentic sample gave no depression. .(yield 79\%), m.p.333-335,ir; 3460, 3354 $\left(\mathrm{NH}_{2}\right)$ and $2212 \mathrm{~cm}^{-1}(\mathrm{CN}),{ }^{1} \mathrm{H}$ NMR ($\delta \mathrm{ppm}$) spectrum (DMSO) indicated a signals at : $3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) 7.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ furan), 7.54-7.95 (m, 9H, Ar-H, CH thiophene), 8.74 (br, $2 \mathrm{H}, \mathrm{NH}_{2}$), ms, m / z (intensity \%) 443 (100.0)445(91.3).M.F. $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{BrN}_{3} \mathrm{O}_{2}$, calculated; $\mathrm{C}, 62.18 \mathrm{H}, 3.18$, $\mathrm{N}, 9.46$ found; $\mathrm{C}, 62.11, \mathrm{H}, 3.12, \mathrm{~N}, 9.40$.

3-(5-bromobenzofuran-2-yl)-5-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazole (10)

A mixture of (8) $(0.01 \mathrm{~mol})$ in ethanol $(30 \mathrm{ml})$ and hydrazine hydrate $(0.012$ mol) was refluxed for 2 hrs . the separated solid on heating was filtered off and recrystallized from ETOH-benzene.(yield 69%), m.p.155-156,ir; $3428 \mathrm{~cm}^{-1}$
(NH),ms, m / z (intensity \%) 370 (100.0)372(93.2). M.F. $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}_{2}$, calculated; C, $58.56 \mathrm{H}, 3.55, \mathrm{~N}, 7.59$ found; C, $58.49, \mathrm{H}, 3.47$, N, 7.54 .

N -(4-(5-bromobenzofuran-2-yl)-3-cyanothiophen-2-yl) formamide (12)

A mixture of (7) (0.01 mol), with formic acid $(0.01 \mathrm{~mol})(20 \mathrm{ml})$ was heated under reflux for 3 h . The obtained product was filtered off and recrystallized from dioxane.(yield 90\%), m.p.280-282,ir; $3268(\mathrm{NH}), 2214(\mathrm{CN})$ and $1700 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$, ${ }^{1} \mathrm{H}$ NMR ($\delta \mathrm{ppm}$) spectrum (DMSO) indicated a signals at : 7.33 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$ furan), 7.47-7.70 (m, 3H, Ar-H), 7.97 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$ thiophene), 8.51 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CHO}$), 12.25 (s, $1 \mathrm{H}, \mathrm{NH})$, M.F. $\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}$. calculated; C, $48.43, \mathrm{H}, 2.03, \mathrm{~N}, 8.07$ found; C,48.38, H,2.06, N,8.02 .

N -(4-(5-bromobenzofuran-2-yl)-3-cyanothiophen-2-yl) acetamide (14)

A mixture of (7) (0.01 mol), with triethyl orthoformate (0.01 mol) in acetic anhydride (20 ml) and / or acetic anhydride was heated under reflux for 3 h . the solvent was evaporated till dryness, after cooling the obtained product was filtered off and recrystallized from dioxane (yield 78\%), m.p.243-245,ir; 3262 (NH), 2230 (CN) and $1696 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}),{ }^{1} \mathrm{H}$ NMR ($\delta \mathrm{ppm}$) spectrum (DMSO) indicated signals at: $2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ furan), 7.45-7.62 (m, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}$, CH thiophene), $11.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$.M.F. $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}$ calculated; C,49.88, $\mathrm{H}, 2.51, \mathrm{~N}, 7.76$ found; $\mathrm{C}, 49.82, \mathrm{H}, 2.46, \mathrm{~N}, 7.71$

4-amino-5-(5-bromobenzofuran-2-yl)thieno[2,3-d]pyrimidine (17)

A mixture of (7) $(0.01 \mathrm{~mol})$ and formamide (10 ml) was heated under reflux for 8 h. the solvent was removed under vacuum, the solid obtained was filtered off and recrystallized from DMF (yield 82%), m.p.235-236,ir; $3380,3314 \mathrm{~cm}^{-1}\left(\mathrm{NH}_{2}\right), \mathrm{ms}$, m / z (intensity \%) 345 (65.4)347(100).M.F. $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{BrN}_{3} \mathrm{OS}$, calculated; C,48.57, H,2.33, N, 12.14 found; C,48.50, H,2.27, N,12.09.

4-amino-6-(5-bromobenzofuran-2-yl)-1,3-dihydro-1,3-dioxoiso benzofuran-5carbonitrile (18)

A mixture of (7) (0.01 mol), maleic anhydride (0.01 mol) and 1,4-dioxane (30 ml) was heated under reflux for 3 h . after cooling the obtained product was filtered off and recrystallized from EtOH-benzene (yield 72\%), m.p.224-225,ir; $3414,3320\left(\mathrm{NH}_{2}\right), 2208(\mathrm{CN})$ and 1732, $1646 \mathrm{~cm}^{-1}(2 \mathrm{C}=\mathrm{O}),{ }^{1} \mathrm{H} \operatorname{NMR}(\delta \mathrm{ppm})$ spectrum (DMSO) indicated a signals at : $7.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ furan), 7.56-7.87 (m, 4H,

Ar-H), 8.78 (br, $2 \mathrm{H}, \mathrm{NH}_{2}$), ms, m / z (intensity \%) 382 (16.2)384(27.1). M.F. $\mathrm{C}_{17} \mathrm{H}_{7} \mathrm{BrN}_{2} \mathrm{O}_{4}$, calculated; C,53.29, $\mathrm{H}, 1.84, \mathrm{~N}, 7.31$ found; $\mathrm{C}, 53.23, \mathrm{H}, 1.78$, $\mathrm{N}, 7.26$.

N -(4-(5-bromobenzofuran-2-yl)-3-cyanothiophen-2-yl) benzamide (19)

A mixture of (7) $(0.01 \mathrm{~mol})$ and benzoyl chloride (10 ml) was refluxed for 2 hrs . then allowed to cool and treated with petroleum ether $\left(60 \sim 80^{\circ} \mathrm{C}\right)(50 \mathrm{ml})$, the solid product was separated, collected by filtration and washed with petroleum ether ($60 \sim 80^{\circ} \mathrm{C}$) several times, dried and recrystallized from EtOH-benzene (yield 78\%), m.p.230-232,ir;3274 (NH), $2212(\mathrm{CN})$ and $1660 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$,ms, m / z (intensity \%) 422 (100.0)424(88.4).M.F. $\mathrm{C}_{20} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}$, calculated; C,56.75 $\mathrm{H}, 2.62 \quad \mathrm{~N}, 6.62$ found; C,56.70, $\mathrm{H}, 2.57, \mathrm{~N}, 6.55$.

References

1. JOHN, F. A.; SENTSETSA, B.; GUOQIANG, L.; MICHELLE, S.; J Nat Prod (1997), 60, 1214.
2. KAO, C.L.; CHERN, J.W.; A convenient synthesis of naturally occurring benzofuran ailanthoidol, Tetrahedron. Lett. (2001) 42, 1111
3. LEONARDI, A.; NAVA, G.; NARDI, D. Farmaco Ed Sci (1983), 38, 290.
4. MUSSER, J. H.; BROWN, R. E.; LOVE, B.; BAILEY, K.; JONES, H.; KAHEN, R.; hUANG, F. C.; KHANDURALA, A.; LEIBOWITZ, M.; SONNIUA-GOLDMAN, P.; DONIGI-RUZZA, D. J. Med. Chem. (1984), 27, 121 .
5. HAYAKAWA, I.; SHIOYA, R.; AGATSUMA, T.; FURUKAWA, H.; SUGANO, Y. BIOORG. Med. Chem. Lett. (2004), 14, 3411.
6. APERS, S.; PAPER, D.; BURGERMEISTER, J.; BARONIKOVA, S.; VAN DYCK, S.; LEMIERE, G.; VLIETINCK, A.; PIETERS, L. J. Nat Prod (2002), 65, 718.
7. WALKER, J. A.; ROSSEN, K.; REAMER, R. A.; VOLANTE, R. P.; REIDER, P. J.; TETRAHEDRON Lett. (1999), 40, 4917 .
8. GANZALEZ, A. G.; BARRERA, J. B.; YANES, A. C.;DIAZ, J. G.; RODRIGUEZ, E. M.; Phytochemistry (1989), 28 , 2520 .
9. CARVALHO, C. F.; SARGENT, M. V. J. Chem Soc, Perkin Trans I (1984), 1605.
10. DAWOOD, K. M.; FARAG, A. M. AND ABDEL-AZIZ H. A.; Heteroatom Chemistry (2005) 16, 621.
11. DAWOOD, K. M.; FARAG, A. M.; ABDEL-AZIZ, H. A. J. Chem. Res. (2005), 378
12. DAWOOD, K. M.; ABDEL-GAWAD, H.; RAGEB, E. A.; ELLITHEY M. AND MOHAMED H. A.; Bioorganic \& Medicinal Chemistry (2006) 14, 3672 .
13. DAWOOD, K. M.; ABDEL-GAWAD, H.; ELLITHEY M.; MOHAMED H. A. AND HEGAZI B.; ARCH. Pharm. Chem. Life Sci. (2006), 339, 133.
14. ABDOU, S.; FAHMY, M. S.; KHADER, M. M.; ELNAGDI; H. M.; MONATSH. Chem., (1982),113, 985
15. M. R. SELIM, J. Chem. Res (MP), (1998) 84 .
16. A. M. EL-AGRODY, J. Chem. Res (S) (1994)50.
17. GEWALD, K.; J. Chem. Ber., (1965), 98,357.
