Al-Azhar Bull. Sci. Vol. 19, No. 2 (Dec.): pp. 161-170, 2008.

EXTRUSION OF SULFUR IN THE REACTIONS OF HYDRAZINE HYDRATE WITH 5-(2-ARYL-2-OXOETHYLIDENE)-3-(2-METHOXY-PHENYL)-2-THIOXOTHIAZOLIDIN-4-ONES

NADIA K. EL-AASAR
Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt.

Abstract

Reactions of 3-substituted-5-(2-aryl-2-oxoethylidene)-2-thioxothiazolidin-4-ones 2a, b with 2.5 equiv. of hydrazine hydrate were carried out with reflux and/or at room temperature. Both of these conditions gave 4-(3-aryl-4,5-dihydro-1H-pyrazole-5-carbonyl)-4-(2methoxyphenyl)thiosemicarbazides 3a, b and 4-(2-methoxyphenyl) thiosemicarbazide 4. In addition, the 6-(2-oxo-2-phenylethyl)-4-(2-methoxyphenyl)-3-thioxo-1,2,4-triazinan-5-one 5a was obtained from 2a. The successful isolation of sulfur from these reactions was the key to rationalize the above mentioned transformations. The structures of all the products were evidenced by microanalytical and spectral data.

Introduction

Reactions of hydrazine hydrate with the 3 H -5-arylidene-2-oxo/thioxothiazolidin4 -ones and 3 -substituted-2-thioxothiazolidin-4-ones have been previously studied ${ }^{1-3}$. Most of these reactions affected the ring cleavage at the 2 -oxo/thioxo and the 4 -oxo groups, forming variety of heterocycles. The recent work deals with the reactions of hydrazine hydrate with the 5-(2-aryl-2-oxoethylidene)-3-(2-methoxyphenyl)-2-thioxothiazolidin-4-ones $\mathbf{2}$. Owing to the $-\mathrm{CO}-\mathrm{C}=\mathrm{C}-\mathrm{CO}-$ moiety, compound $\mathbf{2}$ was anticipated to serve in such reactions, for synthesis of pyrazole derivatives. However, the ${ }^{1} \mathrm{H}$-NMR spectra of the products $\mathbf{3}$ and $\mathbf{5 a}$ displayed patterns for the -$\mathrm{CH}_{\mathrm{A}}-\mathrm{CH}_{\mathrm{M}} \mathrm{H}_{\mathrm{X}}$ - moiety, similar with the respective 5-(2-aryl-2-oxoethyl) precursors $\mathbf{1}$. Since $\mathbf{2}$ were not subjected to reducing conditions, the way to these products was not easily rationalized.

Results and discussion

The starting 5-[2-(4-bromophenyl)-2-oxoethyl]-3-(2-methoxyphenyl)-2-thioxo-thiazolidin-4-one 1b was synthesized from 3-(4-bromobenzoyl)-2-propenoic acid ${ }^{4}$ and ammonium 2-methoxyphenyldithiocarbamate, following previously reported methods ${ }^{5,6}$. Treatment of $\mathbf{1 b}$ with bromine in acetic acid solution gave the respective 5-[2-(4-bromophenyl)-2-oxoethylidene] derivative $\mathbf{2 b}$. The route of this conversion
has occurred, via two successive steps, involving first bromination at H-5 to provide the respective 5 -bromo homologue, then elimination of hydrogen bromide to give 2b. This transformation has previously discussed for preparing other derivatives of this class ${ }^{5,6}$.

The structure of $\mathbf{1 b}$ and $\mathbf{2 b}$ were substantiated by microanalytical and spectroscopic data. The IR spectra of 1b and/or 2b exhibited two stretching absorption bands for aroyl and cyclic amide carbonyl groups. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{1 b}$ exhibited the expected pattern consistent with the $-\mathrm{CH}_{\mathrm{A}}-\mathrm{CH}_{\mathrm{M}} \mathrm{H}_{\mathrm{X}^{-}}$ moiety, which has collapsed in the spectrum of $\mathbf{2 b}$ into a singlet at 8.15 ppm , corresponding to an olefinic proton, whose integration ratio was 100%, showing that this compound is a pure (E) or (Z)-isomer ${ }^{7,8}$. The EI-MS of $\mathbf{2 b}$ exhibited a correct molecular ion peak $m / z 433$, an abundant peaks $m / z 183$ and $m / z 165$ for the [4$\left.\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CO}\right]^{+}$and $\left[2-\mathrm{OMeC}_{6} \mathrm{H}_{4} \mathrm{NCS}\right]^{+}$fragments and a base peak $m / z 50$ for the stable ion radical $[\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}=\mathrm{CH}]^{+}$(Fig 1).

Reactions of the yellow 2a, b with 1.2 equiv. of hydrazine hydrate was performed in boiled ethanol, affording the white products $\mathbf{3}$ and $\mathbf{4}$ polluted with ca 30% of 2 unreacted. Thus, the reactions were repeated using 2.5 equiv. of the nucleophile with reflux for 30 min . (method \boldsymbol{i}) and/or at room temperature for 24 h (method ii). Each of these methods provided 4-(3-aryl-4,5-dihydro-1H-pyrazole-5-carbonyl)-4-(2-methoxyphenyl)-3-thiosemicarbazides $\mathbf{3 a}, \quad \mathbf{b}$ and 4-(2-methoxyphenyl)-3-thiosemicarbazide 4. In addition, 6-(2-oxo-2-phenylethyl)-4-(2-methoxyphenyl)-3-thioxo-1,2,4-triazinan-5-one 5a was also obtained from 2a, under the conditions of method \boldsymbol{i} (Scheme 1). The structure of $\mathbf{4}$ was confirmed by EI-MS and by matching m.p. with an authentic sample ${ }^{9}$, whereas that of $\mathbf{3}$ was elucidated based on microanalytical and spectroscopic records.

The IR spectrum of 3b showed a broad absorption band for NH_{2} group at 3207 and NH at $3128 \mathrm{~cm}^{-1}$. The spectrum did not exhibit v_{CO} for the aroyl CO which was present in $\mathbf{2 b}$, whilst an absorption band for CO of cyclic amide was displayed at $1670 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$-NMR spectrum in $D M S O$ exhibited two singlet at $9.85,9.41$ ppm for two NH , a broad singlet at 4.36 ppm the for NH_{2} group and a singlet for the MeO protons at 3.89 ppm .

[I]

[II]
$-\mathrm{S} \downarrow$

a) $\mathrm{Br}_{2} \backslash \mathrm{AcOH} \backslash 10 \mathrm{~min} \backslash 90^{\circ} \mathrm{C}$ b)reflux/ $30 \mathrm{~min}, \quad$ c) stirring at r. t/ 24 h

Scheme 1

The EI-MS of 3b (Fig 2) showed a low abundant molecular ion peak $\mathrm{m} / \mathrm{z} 447$, which eliminated the fragment $[\mathrm{B}] \mathrm{m} / \mathrm{z} 224$ to give the base peak $[\mathrm{A}]^{+} \mathrm{m} / \mathrm{z} 223$ or eliminated $[\mathrm{A}]$ to give $[\mathrm{B}]^{+}$. The peak $m / z 224$ was not attributed to the bromofragment $[\mathrm{A}+\mathrm{H}]^{+}$, since the spectrum did not exhibit $\left[\mathrm{M}^{+}+2\right]$ peak for it. The displayed peaks $m / z 165$ and $m / z 149$, corresponding to the [2-OMeC $\left.{ }_{6} \mathrm{H}_{4} \mathrm{NCS}\right]^{+}$and
$\left[2-\mathrm{OMeC}_{6} \mathrm{H}_{4} \mathrm{NCO}\right]^{+}$fragments inferred that the $\left[2-\mathrm{OMeC}_{6} \mathrm{H}_{4} \mathrm{~N}-\right]^{+}$moiety is attached to $\mathrm{C}=\mathrm{S}$ as well as $\mathrm{C}=\mathrm{O}$ groups. Also, the existence of the easily removable $-\mathrm{NH}-\mathrm{NH}_{2}$ group was proved by the exhibited peak m / z 416. In the EI-MS of the thiosemicarbazide 4, the $\left[M^{+}-\mathrm{NH}-\mathrm{NH}_{2}\right]$ fragment $\mathrm{m} / \mathrm{z} 166$ represented the base peak (Fig 1).

Formation of $\mathbf{3}$ was supposed to be achieved by merging of two $\mathrm{N}_{2} \mathrm{H}_{4}$ molecules with elimination of sulfur atom and water molecule (Scheme 1). This suggestion was supported by the successful isolation of sulfur element on chromatography the oily mother liquors. Extrusion of sulfur from 2, on treatment with $\mathrm{N}_{2} \mathrm{H}_{4}$ was only attributed to the presence of the ethylenic bond at C-5, since similar 5-(2-aryl-2oxoethyl) derivatives ${ }^{3}$ did not extrude sulfur, under the same conditions.

Accordingly, cleavage of $\mathbf{2}$ has occurred, most likely at the $-\mathrm{S}-\mathrm{C}=\mathrm{S}$ with $\mathrm{N}_{2} \mathrm{H}_{4}$ molecule (Scheme 1). The thiolate group in [I] attacked the neighboring double bond forming the episulfide ${ }^{10}$ [II], which extruded sulfur affording [III]. Addition of $\mathrm{N}_{2} \mathrm{H}_{4}$ molecule to [III] provided the intermediate [IV] which furnished $\mathbf{3}$ via a cyclo-condensation process with the aroyl CO group. On the other hand, formation of the thiosemicarbazide $\mathbf{4}$ is reasonable in terms of the reactions of $\mathrm{N}_{2} \mathrm{H}_{4}$ with any of the intermediates as well as the product $\mathbf{3}$ at the $-\mathrm{N}-\mathrm{CO}-$ group.

The intramolecular addition in [III] is a plausible way to the cyclic form 5a. The EI-MS of the white product 5a (Fig l) showed a molecular ion peak value $\mathrm{m} / \mathrm{z} 355$, equals that of the yellow starting 2a. Thus, formation of this product gave further support to the proposed mechanism, since it could only be obtained from 2a by the replacement of sulfur atom by $\mathrm{N}_{2} \mathrm{H}_{4}$ molecule. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{5 a}$ displayed a pattern for the $-\mathrm{CH}_{\mathrm{A}}-\mathrm{CH}_{\mathrm{M}} \mathrm{H}_{\mathrm{X}}$ - unity and two doublets of doublet in equal ratios for H-6. The deshielded pattern is supposed to be originated from the form, in which the chiral C-6 attains R configuration. This conformation acquires equatorial H-6, which is deshielded by the 5-oxo- group, compared with the axial counterparts in the S C-6 conformation.

Fig 1

Consulting the software program (ChemOffice-2004) ${ }^{11}$ inferred that, H-6 of the energy optimized R C-6 and S C-6 forms of compound 5 acquires the equatorial configuration in the first form and the axial configuration in the latter, and the dihedral angel with the 5 -oxo group is 26.58°, and 95.33°, respectively.

Detection of sulfur, just five min. after reflux inferred that, extrusion of sulfur during these reactions is a very fast process that rapidly occurred before addition of hydrazine to the olefinic bond. Such an addition would result in the elimination of sulfur, as hydrogen sulfide, providing pyrazole derivatives devoid of the $-\mathrm{CH}-\mathrm{CH}_{2}-$ moiety presented in $\mathbf{3}$.

[I] \uparrow
[I]

$-\mathrm{NH}_{2} \mathrm{NH}-\mathrm{C}=\mathrm{S} /+\mathrm{H}$

\leftarrow
[D] $\downarrow-\mathrm{HAr}^{\prime}$

[G]

$$
\mathrm{Ar}^{\prime}=2-\mathrm{MeOC}_{6} \mathrm{H}_{4}, \mathrm{Ar}=\mathbf{a} ; \mathrm{C}_{6} \mathrm{H}_{5}, \mathbf{b} ; 4-\mathrm{BrC}_{6} \mathrm{H}_{4}
$$

compd.	Fragments m/z(\%)									
	$[\mathrm{M}]^{+}$	$[\mathbf{A}]^{+}$	$[B]^{+}$	$\left[\mathrm{C}^{+}\right.$	$[\mathrm{D}]^{+}$	[E] ${ }^{+}$	$[\mathbf{F}]^{+}$	[G] ${ }^{+}$	$\left[\mathrm{H}^{+}\right.$	[[] ${ }^{+}$
3a	369 (5)	145 (100)	-	338 (21)	295 (9)	-	175 (5)	187 (8)	165 (7)	149 5)
3b	$\begin{aligned} & \hline 447(8) \\ & 449(10)^{*} \end{aligned}$	$\begin{gathered} 223(90) \\ 225(100)^{*} \end{gathered}$	224 (20)	$\begin{aligned} & \hline 416 \text { (16) } \\ & 418(18)^{*} \end{aligned}$	$\begin{aligned} & \hline 373(15) \\ & 275(13)^{*} \end{aligned}$	251 (10)	175 (5)	$\begin{aligned} & \hline 265(3) \\ & 267(3)^{*} \end{aligned}$	165 (29)	149 (5)

* $\left[\mathrm{M}^{+}+2\right]$ peack

Fig 2

Experimental

Light petroleum was referred to the fraction b.p. $=60-80^{\circ} \mathrm{C} . \mathbf{1 a}$ and $\mathbf{2 a}$ previously were prepared ${ }^{6}$. Thin layer chromatography was performed on Merck Kieselgel $60 F_{254}$ aluminum packed plates. Chromatography was carried out with silica gel $S\left(\mathrm{SiO}_{2} ; 0.63-0.1 \mathrm{~mm}\right.$; Riedel-de-Haen; on a column with the following dimensions: $1=17 \mathrm{~cm}, \phi=1.7 \mathrm{~cm}$). All melting points are uncorrected. IR Spectra: on a Unicam SP1200 Spectrometer as KBr discs. Spectra of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (200 MHz) were measured in d_{6}-DMSO solution. on Varian Gemini spectrometers; chemical shifts (δ) are reported in ppm downfield relative to TMS. Mass Spectra: Shimadzu GC-MS-QP 1000X instrument operating at 70 eV .

Synthesis of 1b

Ammonium 2-methoxyphenyldithiocarbamate $(2.3 \mathrm{~g}, 10.75 \mathrm{mmol})$, was added portion wise to a stirred solution of 3-(4-bromobenzoyl)-2-propenoic acid ($2.54 \mathrm{~g}, 10$ mmol) in ethanol (10 ml) and stirred at room temperature for 30 min ., then acidified with concentrated hydrochloric acid (1 ml), boiled for 5 min . and left to cool. The precipitated solid was filtered off, washed successively with water, air dried and the crude product was recrystallized from toluene/ light petroleum to give $\mathbf{1 b}$.

5-[2-(4-Bromophenyl)-2-oxoethyl]-3-(2-methoxyphenyl)-2-thioxothiazolidin-4one (1b)

Yield, 85%; m.p. $183-185^{\circ} \mathrm{C}$; IR, $v=3040(=\mathrm{CH}), 2900,2920(\mathrm{C}-\mathrm{H}), 1750$ ($\mathrm{C}=\mathrm{O}$ aroyl group), $1675\left(\mathrm{C}=\mathrm{O}\right.$ hetero ring), $830 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: 7.85-7.81 ($\mathrm{m}, 3 \mathrm{H}$, $\left.2 \mathrm{H}_{\text {aroyl }}+1 \mathrm{H}_{\text {anisyl }}\right), 7.66\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\text {aroyl }}\right), 7.48\left(\right.$ app.t, $\left.J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {anisyl }}\right)$, $7.23\left(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {anisyl }}\right), 7.10$ (app.t, $J=9.21 \mathrm{H}, \mathrm{H}_{\text {anisyl }}$), 4.80 (dd, $J=9.6,1.2$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}\right), 4.1\left(\mathrm{dd}, J=18.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{M}}\right), 3.81(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO}), 3.76(\mathrm{dd}, J=$ $\left.18.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{X}}\right)$. Anal. calc. for $\left(\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{BrNO}_{3} \mathrm{~S}_{2}\right)$: C, 49.55; H, 3.23; N, 3.21; found: C, 50.51; H, 3.42; N, 3.04%.

Synthesis of 2b

Powdered 1b (5 mmol) was dissolved in hot glacial acetic solution (30 ml), left for few min. The stirred solution was treated with $(1.0 \mathrm{ml})$ of bromine dissolved in acetic acid (5 ml). The mixture was gently warmed until HBr gas evolution ceased (ca. 5 min) and left to cool at room temperature. The precipitated solid was filtered off, washed with $\mathrm{H}_{2} \mathrm{O}$, air dried and crystallized from dioxane/ toluene to give $\mathbf{2 b}$.

(E/Z)-5-[2-(4-Bromophenyl)-2-oxoethylidene]-3-(2-methoxyphenyl)-2-thioxo-thiazolidin-4-one (2b)

Yield, 90; m.p. $246-248^{\circ} \mathrm{C}$; IR, $v=3060(=\mathrm{CH}), 2900,2920(\mathrm{C}-\mathrm{H}), 1753(\mathrm{CO}$ aroyl group), 1665 (CO hetero ring), $830 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $8.18,7.82$ each ($\mathrm{d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}_{\text {aroyl }}$), 8.15 (s, 1H, $\mathrm{H}_{\text {olefinic }}$), $7.55,7.13$ each (app.t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {anisyl }}$), $7.40,7.26$ each ($\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {anisy }}$), $3.76(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO})$. Anal. calc. for $\left(\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{BrNO}_{3} \mathrm{~S}_{2}\right)$: C, $49.78 ; \mathrm{H}, 2.77$; N, 3.23; found: $48.65 ; \mathrm{H}, 3.0 ; \mathrm{N}, 3.44 \%$.

Reactions of 2a, b with hydrazine hydrate

A solution of ethanol (50 ml) containing 3 mmol of $\mathbf{2 a}$ or $\mathbf{2 b}$ and hydrazine hydrate (2.5 mmol) was heated for 30 min . (method \boldsymbol{i}) and/or stirred at room
temperature for 24 h (method $\boldsymbol{i i}$). The solid product of method \boldsymbol{i} (after cooling) and that of method $\boldsymbol{i} \boldsymbol{i}$ was filtered off, air dried and crystallized from EtOH/ dioxan to give 4. After few hours, the mother liquor of 2a from method \boldsymbol{i} afforded a white precipitate, which was filtered off, dried and crystallized from dioxan to give 5a. The filtrate of $\mathbf{2 a}(\operatorname{method} \boldsymbol{i})$ and the rest of the mother liquors were left over night to give 3a and $\mathbf{3 b}$. Sulfur element was separated, on chromatography, the residue of 2b method i and method $i \boldsymbol{i}$, over silica gel with light petroleum/ $\mathrm{CHCl}_{3}(5: 1: \mathrm{V} / \mathrm{V})$.

4-(3-Phenyl-4,5-dihydro-1H-pyrazole-5-carbonyl)-4-(2-methoxyphenyl)thiosemi-carbazide (3a)

Yield, (50%, method $\boldsymbol{i} ; 60 \%$, method ii); m.p. $185-187^{\circ} \mathrm{C} ; \mathrm{IR}, v=3320,3285$ $\left(\mathrm{NH}_{2}, \mathrm{NH}\right), 3050(=\mathrm{CH}), 2937(\mathrm{C}-\mathrm{H}), 1683(\mathrm{C}=\mathrm{O}), 824 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: 9.85, 9.40 each ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), $8.24\left(\mathrm{~d}, J=8.2,1 \mathrm{H}, \mathrm{H}_{\text {anisyl }}\right), 7.94-7.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}\right), 7.60-7.48(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}$), 7.22-7.08 (m, 2H, $\mathrm{H}_{\text {anisyl }}$), 6.97 (app.t, $\left.J=8.21 \mathrm{H}, \mathrm{H}_{\text {anisy }}\right)$, $5.26(\mathrm{dd}, J=$ $12.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}$), 4.22 (br.s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 3.78 (dd, $J=18.2,12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{M}}$), $3.26\left(\mathrm{dd}, J=18.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}\right), 3.91(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO})$. Anal. calc. for $\left(\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}\right)$: C, $58.52 ; \mathrm{H}, 5.18$; N, 18.96; found: C, $55.91 ; \mathrm{H}, 4.57 ; \mathrm{N}, 18.08 \%$.

4-[3-(4-Bromophenyl)-4,5-dihydro-1H-pyrazole-5-carbonyl]-4-(2methoxyphenyl) thiosemicarbazide (3b)

Yield, $(50 \%, \operatorname{method} \boldsymbol{i} ; 60 \%, \operatorname{method} \boldsymbol{i}) ;$ m.p. $222-224^{\circ} \mathrm{C} ; \mathrm{IR}, v=3207\left(\mathrm{NH}_{2}\right)$, $3128(\mathrm{NH}), 3050(=\mathrm{CH}), 2937(\mathrm{C}-\mathrm{H}), 1670(\mathrm{C}=\mathrm{O}), 825 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: 9.85, 9.41 each ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), $8.11\left(\mathrm{~d}, J=8.0, \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {anisy }}\right), 7.84,7.73$ each ($\mathrm{d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}_{\text {aroyl }}$), 7.19 (app.t, $\left.J=8.01 \mathrm{H}, \mathrm{H}_{\text {anisyl }}\right), 7.11\left(\mathrm{~d} J=8.0,1 \mathrm{H}, \mathrm{H}_{\text {anisyl }}\right), 6.96$ (app.t, J $\left.=8.01 \mathrm{H}, \mathrm{H}_{\text {anisyl }}\right), 5.25\left(\mathrm{dd}, J=12.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}\right), 3.89(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO}), 3.81(\mathrm{dd}, J$ $=18.2,12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{M}}$), 4.36 (br.s, $2 \mathrm{H}, \mathrm{NH}_{2}$), $3.24\left(\mathrm{dd}, J=18.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{X}}\right)$. Anal. calc. for $\left(\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{BrN}_{5} \mathrm{O}_{2} \mathrm{~S}\right)$: C, 48.22; H, 4.03; N, 15.62; found: C, $46.10 ; \mathrm{H}$, 4.13; N, 14.85%.

4-(2-Methoxyphenyl)-3-thiosemicarbazide (4)

Yield, (20%, method $\boldsymbol{i} ; 25 \%$, method ii); m.p. $150-152^{\circ} \mathrm{C}$, undepressed on admixture with the sample previously obtained ${ }^{9}$.

6-(2-Oxo-2-phenylethyl)-4-(2-methoxyphenyl)-3-thioxo-1,2,4-triazinan-5-one(5a)

Yield, (20\% from 2a; method ii); m.p. 276-278 ${ }^{\circ} \mathrm{C}$; IR, $v=3120(\mathrm{NH}), 3050$ (=CH), $2937(\mathrm{C}-\mathrm{H}), 1740\left(\mathrm{CO}\right.$ aroyl group), $1675\left(\mathrm{CO}\right.$ hetero ring), 690, $750 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: 8.05 (app.t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}$), 7.76 (br.s, $1 \mathrm{H}, \mathrm{NH}$), 7.72 (d, $J=7.4 \mathrm{~Hz}$,
$\left.1 \mathrm{H}, \mathrm{H}_{\text {anisyl }}\right), 7.60\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}\right), 7.48$ (app.t, $\left.J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {anisyl }}\right), 7.35-$ $7.20\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}+\mathrm{H}_{\text {anisyl }}+\mathrm{NH}\right.$), 7.14 , (app.t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {anisyl }}$), $5.06,5.01$ each (dd, $J=10.4,5.0 \mathrm{~Hz}, 50 \% \mathrm{H}, \mathrm{H}_{\mathrm{A}}$) for $\boldsymbol{R} \boldsymbol{C}-\boldsymbol{6}$, and $\boldsymbol{S} \boldsymbol{C}-\boldsymbol{6}, 4.24(\mathrm{dd}, J=18.2,5.0 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{\mathrm{M}}\right), 4.01\left(\mathrm{dd}, J=18.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{X}}\right) 3.9(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO})$. Anal. calc. for $\left(\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\right)$: C, 60.83; H, 4.78; N, 11.83; found: C, $58.56 ; \mathrm{H}, 3.69 ; \mathrm{N}, 12.41 \%$.

References

1. V. N. ARTEMOV, S. M. BARANOVA, N. A. KOVACH, O. P. SHVAIKA, Odkl. Akad. Nauk SSSR, 211, 1369, 1973; Chem. Abst., 80, 3422b 1974.
2. A. R. A. RAOUF, M. T. OMAR, M. M. El-ATTAL, Acta Chim. Acad. Sci. Hung., 87, 187, 1975; Chem. Abst., 84, 741851976.
3. N. K. EL-AASAR, K. F. SAIED, J. Sulfur Chemistry 29, 43, 2008.
4. D. PAPA, E. SCHWENK, F. VILLANI, E. KLINGSBERG, J. Am. Chem. Soc., 70, 3356, 1948.
5. J. KINUGAWA, H. NAGASE, Takeda Chemical Industries, Ltd. Japan. 11, 342, 1964 ('66), Chem. Abst. 65, 13717e, 1966
6. M. T. OMAR, M. E. SHABAN, N. K. EL-AASAR, K. F. SAIED, Helv. Chim. Acta., 91, 1461, 2008.
7. N. BAUMANN, M.-T. SUNG, E. F. ULLMAN, J. Am. Chem. Soc., 90, 4157, 1968.
8. G. DESIMONI, A. GAMBA, P. P. RIGHETTI, G. TACCONI, Gazz. Chim. Ital., 102, 491, 1972.
9. E. FROMM, M. SOFFNER, M. FREY, Ann. 434, 285, 1923; Chem. Abst., 18, 378, 1942.
10. W. SCHROTH, S. DUNGER, F. BILLIG, R. SPITZNER, R. HERZSCHUH, A. VOGT, T. JENDE, G. ISRAEL, J. BARCHE, D. STROHL, D. SIELE, J. Tetrahedron, 52, 120, 1996.
11. ChemOffice Ultra 2004 (CambridgeSoft, Inc.): Chemical \& Biological Publishing, Modeling, And Database Software.

خروج عنصر الكبريت من تفاعلات الهيدرازين هيدرات مع مشتقات

5-(2-اريل-2-اوكسو ايثيليدين)-3-2(2-ميثوكسي فينيل)-2-ثيوكسوثيازوليدين-
4-اون

تفاعلات مشتقات 5-(2-اريل-2-اوكسوايثيليدين)-3-2-ميثوكسي-فينيل)-2ثيوكسوثيازوليدين (2) مع 2,5 مكافئ من الهيدرازين هيدرات تم اجراؤها بالتنخين لديه نصف الساعه كما تم اجراؤها ايضا في درجه حرا هذه الظروف بكرم نيوكت علا 4 -(3-اريل-5,4-داي هيدروبيرازول-5-كربونيل)-
 ثيوسيميكاربزيد (4) فى كل حاله. هذاوقد د دّ م نكوين 6-(2-فينيل-2-اوكينسوايثيل)-4-(2ميثوكسي فينيل)-3-ثيوكسو -4,2,1-ترايازين-5-اون (4a) من المرين التفاعل فى درجه حراره الغرفه. وقد امكننا فصل عنصر الكبريت من هذه التفاعلات, الامر الذى استطعنا بواسطته تفسير جميع التحولات السابقه.حيث يتكون $\underline{\text { مـن }}$ مِ 2 باضـافه جزيئين من الهيدرازين وخروج جزئ ماء وذره كبريت. كما ان تكوين المركب(5a) يدعم هذه
 المركبات الناتجة باستخدام أنواع النحاليل الطيفية المختلفة.

