Journal of Plant Protection and Pathology

Journal homepage: <u>www.jppp.mans.edu.eg</u> Available online at: <u>www.jppp.journals.ekb.eg</u>

Biological and Physiological Effects on Mulberry Silkworm Fed on Mulberry Leaves Treated with Yeast and Soybean

Sawsan M. Abdelmegeed*

Department of plant protection, Faculty of Agric., Ain Shams University, Cairo, Egypt

ABSTRACT

Silkworm larvae were fed on leaves of mulberry trees(*Morusnigra*) treated with three different concentrations (3%, 6% and 9%) of each yeast *Saccharomyces cerevisiae* and soybean. The highest weight of fifth instar larvae were when larvae fed on leaves treated with yeast than soybean at 9% concentration. The maximum total weights of consumed and digested leaves by larvae of fifth instar when larvae fed on leaves of *M. nigra*, treated with yeast at 9% concentration compared with soybean and control. The maximum efficiency of conversion of ingested and digested food to body substance was also obtained in fifth instar larvae fed onleaves treated with yeast at 9% concentration compared with soybean and control. The highest weights of cocoons and cocoon shells when the larvae fed on leaves of *M. nigra*, treated with yeast at 9% concentration compared with soybean and control. The highest treated with soybean and control. The highest fecundity occurred when larvae fed on mulberry leaves treated with soybean and control. The highest fecundity occurred when larvae fed on mulberry leaves treated with soybean compared with yeast and control. The egg hatch was not affected by different treatments and different concentrations.

Keywords: yeast - Saccharomyces cerevisiae - soybean - consumed-digested-fecundity-silkworm-Bombyxmori

INTRODUCTION

Silkworms are important economic insects that are affected by the external environment in terms of temperature, humidity (Hussain et al, 2011, Khan, 2014 and Sisodia&Gaherwal, 2017) and the type of mulberry leaf that feed on it (Abdelmegeed, 2016). They are very sensitive insects to many diseases such as viral disease (Ganiet al, 2017), bacterial and fungal diseases (Jansirani et al, 2016 and Isaiarasu et al, 2011), Pebrine disease (Chakrabarty & Bindroo, 2012) and different environmental factors. Most researches provide the right environment and regulate the temperature and humidity appropriate for the growth process, as well as use disinfectants to prevent infection (Rasoolet al., 2018). The production of cocoons suitable for solution and eggs with high fertility in large quantities must be interested in the nutrition on the types of leaves of berries with high nutritional value and choose the best varieties (Abdelmegeed 2016). In the absence of these varieties, other varieties can be used these varieties and increase their nutritional value using some food additives such aswheat flour, pollen powder, carrot powder, potato powder, brane, palm pollen, soya flour and starch (Salman et al., 2011).

The current study aims to use some dietary supplements such as yeast *Saccharomyces cerevisiae* (Masthan *et al*, 2017)and soybeans (Mahmoud,2013) on mulberry leaves*Morusnigra* at different concentrations to increase the productivity of silkworm worm cocoons and to study its effect on fecundity and fertility.

MATERIALSAND METHODS

Mulberry silkworm eggs were obtained from the Silk Research Department in Giza, and they are a

monovoltine race and were cultured in a laboratory under optimal conditions (Krishnaswami, 1983).

When the silkworms reached the fifth instar larvae, 90 larvae were divided into two groups to feed on mulberry trees, *Morusnigra* treated with soyabean or yeast (*Saccharomyces cerevisiae*). Each group (45 larvae) divided into three concentrations (3,6 and 9% of soyabean or yeast), each concentration divided into three replicates(each replicate contain 5 larvae)as well as three replicates of control. The experiments were supplied daily with sufficient amount of treated mulberry leaves.First, leaves were cleaned and washed from dust, then treated with different concentrations of soybean and yeast and given to the 5th instar larvae. The larvae were reared under standard rearing conditions.

Estimated the mean weights of fresh consumed and digested food by 5th instar larvae were fed on different concentrations of treated mulberry leaves, according by Waldbauer (1964).

When the larvae reached the pupal stage and the cocoons are formed. The following data were recorded:

- Weight of larvae at the end of 5th instars
- Weight of cocoons and cocoon shells
- Fertility and fecundity

RESULTS AND DISCUSSION

Weight of larvae:

As shown in Table 1 the mean weight of 5^{th} instars larvae were affected with different treatments and different concentrations. The highest weight of larvae when larvae were fed on leaves treated with yeast than soybean and the best concentration was 9% compared with control.

 Table 1. Mean weights of larvae at the end of the fifth instar larvae (g) fed on leaves of *Morus nigra* treated with different concentrations of yeast and soybean.

Concentration	Weight of larva/g			
Concentration –	Soybean	Yeast		
3%	2.86°±0.0163	2.93°±0.0205		
6%	2.97 ^b ±0.0286	2.98 ^b ±0.0124		
9%	3.16 ^a ±0.0432	3.19 ^a ±0.0124		
Control	2.81°±0.0169	2.81 ^d ±0.0169		
F.Value	58.06**	197.74**		
L.S.D.	0.0912	0.0512		

Weight of consumed and digested mulberry leaves by silkworm larvae when fed on leaves treated with yeast and soybean.

The obtained results in Tables 2 showed that the mean weights of consumed and digested leaves by larvae was affected with the different concentrations of mulberry leaves treated with yeast and soybean in fifth instars compared to control.

The maximum total weights of consumed and digested leaves by fifth instars larvae was when larvae fed on leaves of *M. nigra*, treated with yeast at 9% concentration compared with soybean and control.

Table 2. Mean weights of consumed and digested mulberry leaves (g) by the fifth instar larvae fed on leaves of *Morusnigra* treated with different concentrations of yeast and soybean.

Concentration	Weight of consumed leaves/g/larva		Weight of digested leaves/g/larva	
	Soybean	Yeast	Soybean	Yeast
3%	11.23 ^c	11.56 ^c	4.35 ^c	4.55 ^c
	±0.0286	±0.0249	±0.0216	±0.0169
6%	11.81 ^b	12.41 ^b	4.74 ^b	5.03 ^b
	±0.0408	±0.0489	±0.0368	±0.1189
9%	12.47 ^a	13.37 ^a	5.22 ^a	5.35 ^a
	±0.0713	±0.1791	±0.0899	±0.0654
Control	10.91 ^d	10.91 ^d	3.88 ^d	3.88 ^d
	±0.0329	±0.0329	±0.0573	±0.0573
F. Value	434.63**	251.75**	197.92**	148.89**
L.S.D.	0.1491	0.3046	0.184	0.2376

Efficiency of conversion of ingested and digested food (E.C.I. & E.C.D.) to body substance of silkworm larvae.

Data arranged in Tables 3 clearly showed (E.C.I. & E.C.D.) of fifth instar larvae when fed on leaves treated with yeast and soybean. (E.C.I. & E.C.D.) of the larvae was affected by using of mulberry leaves treated with yeast and soybean at different concentrations.

Table 3. Efficiency of conversion of ingested food (E.C.I. & E.C.D.) to body substance of the fifth instar larvae fed on leaves of *Morus nigra* treated with different concentrations of yeast and soybean.

und chi concenti adons or yeast and soybean.				
Concentration	E.C.I. %		E.C.D. %	
	Soybean	Yeast	Soybean	Yeast
3%	15.55 ^c	16.42 ^c	46.60 ^c	48.64 ^c
	±0.0368	±0.0410	±0.0418	±0.0579
6%	16.89 ^b	17.42 ^b	51.33 ^b	54.71 ^b
	±0.0634	±0.0612	±0.0531	±0.0736
9%	17.88^{a}	18.60 ^a	55.82 ^a	60.24 ^a
	±0.0758	±0.0492	±0.0573	±0.5028
Control	14.38 ^d	14.42 ^d	44.62 ^d	44.62 ^d
	±0.1336	±0.0956	±0.2185	±0.2185
F. Value	648.28**	1473.26**	3618.21**	1215.15**
L.S.D.	0.2727	0.2089	0.3776	0.8906

The maximum (E.C.I. & E.C.D.) was obtained when fifth instar larvae fed onleaves treated with yeast at 9% concentration compared with soybean and control.

Mean weights of cocoons and cocoon shells of mulberry silk worm:

The obtained results in Table 4 showed that the mean weights of cocoons and cocoon shells were affected with the different concentrations of treated mulberry leaves with yeast and soybean in fifth instars compared with control.

The highest weights of cocoons and cocoon shells when the larvae fed on leaves of *M. nigra*, treated with yeast at 9% concentration compared with the treatment of soybean and control.

Table 4. Mean weights of cocoons and cocoon shells (g) when the larvae fed on leaves of *Morusnigra* treated with different concentrations of yeast and soybean.

unter ent concenti auons or yeast and soybean.				
Concentration	Weight of cocoons		Weight of cocoon shells	
	Soybean	Yeast	Soybean	Yeast
3%	1.189 ^{bc}	1.221°	0.346 ^c	0.350 ^{bc}
	±0.0094	±0.0159	±0.0071	± 0.0081
6%	1.207 ^b	1.258 ^b	0.369 ^b	0.375 ^b
	±0.0063	±0.0046	±0.0045	±0.0151
9%	1.237 ^a	1.288 ^a	0.386 ^a	0.411ª
	±0.0036	±0.0030	±0.0026	± 0.0069
Control	1.172 ^c	1.172 ^d	0.332°	0.332 ^c
	±0.0054	±0.0054	±0.0041	±0.0041
F. Value	36.05**	64.03**	48.05**	25.75**
L.S.D.	0.021	0.0284	0.0157	0.0304

Fecundity and fertility:

As shown in Table 5, the number of eggs was affected with the different concentrations of treated mulberry leaves with yeast and soybean in fifth instars compared with control.

The highest fecundity occurred when larvae fed on mulberry leaves treated with soybean compared with the treatment of yeast and control.

The egg hatch was not affected with different treatments and different concentrations.

Table 5. Fecundity and fertility of eggs/female of mulberrysilk worm when the larvae fed on leaves ofMorusnigratreatedwithdifferentconcentrations of yeast and soybean.

60	ficenti utio	is of yeast a	iu boy beam	
Concentration-	Fecundity of eggs/female		Fertility of eggs/female	
	Soybean	Yeast	Soybean	Yeast
3%	376.6 ^b	353.0°	99.43	99.48
	±4.9216	±4.0824	±0.3182	±0.1883
6%	394.3 ^a	370.6 ^b	99.73	99.71
	± 3.2998	±2.4944	±0.1283	±0.2298
9%	404.3 ^a	387.0 ^a	99.65	99.56
	±3.2998	± 4.5460	±0.0939	±0.2053
Control	346.0°	346.0°	99.50	99.50
	±4.3204	±4.3204	±0.2098	± 0.2098
F. Value	81.00**	43.64**	0.87	0.51
L.S.D.	12.876	12.63		

The purpose of the nutrition additives is to obtain yield of the cocoons and at the same time increasing the quality of the silk filament and numbers of eggs and fertility. Two types of dietary supplements were selected: yeast *Saccharomyces cerevisiae* and soybeans.

Al-Tawaha (2011) extracted the isoflavone from yeast and soybeans and used it as treatment of soil to increase soil fertility. Mahmoud (2013) found that 100g soybeans are rich in high nutritional value, which is 446 kcal,36.49g protein, 19.94g fat, 30.16g carbohydrate, 704mg phosphor, 277mg calcium, 15.7mg iron and vitamins (B2, C and K), and added that soybeans are very richuseful materials for the living organism.

Present results showed the treatment of mulberry

leaves with soybeans and yeast increased the weight of the larvae. Rahul *et al.*(2017) and Yadav&Bagdi(2016) also found that when the mulberry leaves were treated with the yeast extract, it affected the weight of the larvae, as well as rearing rate. Rathinam& Krishnan(1998) found that soybean also affected the increase in larval weight.

In addition, Esaivaniet al. (2014) found that the yeast increased the activity of the enzyme amylase and invertase in the digestive juice, which helps digestion and thus increased the weight of the larvae and the efficiency of the conversion of digested food to body substance.

Recently, Masthan*et al.*(2011 & 2017) found that the yeast has a role in increasing the weight of the cocoons and the length of the silk filament in addition to the content of the silk filament of the fibroin, which leads to an increase in the quality of the silk filament.

REFERENCES

- Abdelmegeed S. M. (2016). Influence of species and different varieties of Mulberry trees on consumption and nutritional efficiency of the silkworm larvae *BombyxmoriL*. under temperate climate of Egypt. J. Plant Prot. and Path., Mansoura Univ., 7(4): 241-245.
- Al-Tawaha, A.R.M., (2011). Effects of soil type and exogenous application of yeast extract on soybean seed isoflavone concentration. Int. J. Agric. Biol., 13: 275–278.
- Chakrabarty, S. and B. B. Bindroo (2012). Pebrine disease in eri silkworm: A microscopic view. Indian Silk, 2(12):16-17.
- Esaivani, C.; K.Vasanthi1; R. Bharathi1 and K. Chairman. (2014). Impact of probiotic *Saccharomyces cerevisiae* on the enzymatic profile and the economic parameters of silkworm *Bombyxmori* L. Advances in Biology & Biomedicine. 1(1):1-7
- Gani, M.; S. Chouhan; Babulal; R. K. Gupta; G. Khan; N. B. Kumar; P. Saini and M. K. Ghosh (2017). *Bombyxmori*nucleopolyhedrovirus (BmBPV): Its impact on silkworm rearing and management strategies. Journal of Biological Control, 31(4): 189-193.
- Hussain, M.; M. Naeem; S. A. Khan; M. F. Bhatti and M. Munawar (2011). Studies on the influence of temperature and humidity on biological traits of silkworm (*BombyxmoriL.*; Bombycidae). African Journal of Biotechnology, 10 (57):12368-12375.
- Isaiarasu,L.; N. Sakthive; J. Ravikumar and P. Samuthiravelu (2011). Effect of herbal extracts on the microbial pathogens causing flacherie and muscardine diseases in the mulberry silkworm, *Bombyxmori* L. Journal of Biopesticides, 4 (2): 150-155.
- Jansirani, L.; B. Venkadesh and T. Kumaran (2016). Impact of certain herbal extracts against bacterial disease of silkworm *Bombyxmori*L. International Journal of Research in Pharmacy and Pharmaceutical Sciences., 1: 8-10.

- Khan, M. M. (2014). effects of temperature and R.H. % on commercial characters of silkworm (*Bombyxmori*.L) cocoons in Anantapuramu district of AP, India. Res. J. Agriculture and Forestry Sci., 2(11): 1-3.
- Krishnaswami, S. (1983). Evolution of new bivoltine race for traditionally multivoltine areas of south India. Indian Silk, 22, 3-11.
- Masthan k.; T. R.kumar and C.V. N. Murthy (2011). Beneficial effects of blue green algae spirulina and yeast *Saccharomyces cerevisiae* on cocoon quantitative parameters of silkworm *BombyxmoriL*. Asian Journal of Microbiology, Biotechnology & Environmental Sciences Paper., 13(1): 205-208.
- Masthan, K.; T. R. kumar and C.V. N. Murthy (2017). Studies on fortification of mulberry leaves with probiotics for improvement of silk quality. International Journal of Biotechnology and Biochemistry, 13(1):73-80.
- Mahmoud, M. M. (2013). Effect of various kinds ofdietary proteins in semi– artificial diets on the mulberry silkworm *Bombyxmori* L. Acad. J. Biolog. Sci., 6(1): 21-26.
- Rahul K.; G. Roy; Z. Hossain and K.Trivedy (2017). Effect of mulberry leaves enriched with yeast extract on silkworm *Bombyxmori*L.Journal of Research in Science, Technology, Engineering and Management (JoRSTEM). 3(1):14-16
- Rasool, S.; N. A. Ganie; M. Y. O. Wani; K. A. Dar; I. L. Khan and S. Mehraj (2018). Evaluation of a suitable silkworm bed disinfectant against silkworm diseases and survivability under temperate conditions of Kashmir. International Journal of Chemical Studies,6(1):1571-1574.
- Rathinam, S. K. M. and M. Krishnan (1998). Role of soyabean protein in silkworm nutrition. Indian silk, 36(11): 9-10
- Salman, A.M.A.; M.H. Hussein; N.S. Omran and Y. E. Shakl (2014). Influence of certain additives to mulberry leaves to enhance the economic parameters of silkworm, *Bombyxmori* L.(Lepidoptera:Bombycidae). Middle East Journal of Agriculture Research,3(4):962-967.
- Sisodia, N. S. and S. Gaherwal (2017). Effects of temperature and relative humidity on commercial product of silkworm (BombyxmoriL.) in indore region of (M.P.) India, International Journal of Zoology Studies, 2: 52-55.
- Yadav U. and A.Bagdi(2016).Supplementary effect of yeast (*Saccharomyces cerevisiae*) on rearing performance of Eri silkworm (*Philosamiaricini*) in respect of some larval parameter.Environment Conservation Journal. 17(1/2) 95-98.
- Waldbauer, G. P. (1964). The consumption, digestion and utilization of solanaceous and non-solanaceous plants by larvae of the tobacco hornworm, *Protoparcasexta* Johan. (Lepidoptera, Sphingidae).Ent. Exp. Appl., 7: 253-269.

التأثيرات البيولوجية والفسيولوجية على ديدان الحرير التوتية التي تغذت على أوراق توت معاملة بالخميرة والفول الصويا سوسن محمد عبد المجيد* قسم وقلية النبات ـ كلية الزراعة جامعة عين شمس ـ القاهرةـ مصر

تم تغذية ديدان الحرير التوتية على أوراق التوت العماني المعاملة بأحد من الثلاث تركيز ات مختلفة (3% ، 6% و 9%) لكل من الخميرة والفول الصويا وكلت أعلى أوز ان لليرقت في العمر الخامس عنما تغذت على أوراق التوت المعلمة بالخميرة ثم الفول الصويا عد تركيز 9% و 2%) لكل من الخميرة والفول الصويا وكلت أعلى أوز ان لليرقت أوراق التوت العملتي المعاملة بالخميرة عد تركيز 9% مقارنة بالفول الصويا والكنترول وكان أعلى وزن للغاء المتلول والمهضوم للبرقلت في العمر الخامس والتي تغذت على أوراق التوت العملتي المعاملة بالخميرة عد تركيز 9% مقارنة بالفول الصويا والكنترول وكان أعلى وزن للغاء المتلول والمهضوم اللي قل عد تركيز 9% مقارنة بالفول الصويا والكنترول وكان أعلى كوان الغذاء المتلول والمهضوم الى مواد جسمية في العمر تغذت على أوراق التوت المعاملة بالخميرة عد تركيز 9% مقارنة بالفول الصويا والكنترول وكان أعلى كفاءة تحويل الغذاء المتلول والمهضوم الى مواد جسمية في العمر البرقي الخامس والتي تغذت على أوراق التوت المعاملة بالخميرة عد تركيز 9% مقارنة بالفول الصويا والكنترول وكام الحصول على أعلى وزن للشرانق وقشرة الشرنقة للبرقات التي تغذت على العماني المعاملة بالخميرة عد تركيز 9% مقارنة بالفول الصويا والكنترول وتم الحصول على أعلى وزن الشرانق وقشرة الشر نفي التي العماني المعاملة بالخميرة والدول واصويا والكنترول ولما معلم لوضع البيض للحشرات الكاملة عنما تكون يرقتها تغذت على أوراق التوت بالفول الصويا مقارنة بالفول الصويا والكنترول وعلى المعاملات أو التركيزات المختلفة.