Response of *Azadirachta indica* (Neem) seedlings to biofertilizer compared to mineral nutrition

Hammad. H. H. and Al-Atrash, E.E.N. Timber Trees Dep. Hort. Res. Inst., Agric. Res. Centre, Giza, Egypt

Abstract

Growth of *Azadirachta indica* (Neem) transplants was stimulated by inoculation with Plant Growth Promoting Rhizobacteria (PGPR). Results showed that significant increases in the vegetative growth, biomass and chemical constituents per seedling were observed in the seedlings inoculated with mixture of *Azospirillum brasilense, Azotobacter chrococcum and Bacillus polymixa* (PGPR), and received half dose from mineral nutrients (NPK). This treatment gave higher parameters, the percentages of increases as a result of using PGPR with half dose from mineral nutrition as compared to full dose, were 25, 22, 44, 21and 40% for plant height, stem diameter, root length, fresh and dry weight per seedling over the seedling which received full doses of mineral nutrition. It can be also concluded that the previous treatment (PGPR and half mineral fertilizer) exceeded the growth parameters by 75, 43, 47, 86 and 101% respectively over control. Also, the above treatment gave the highest values of NPK up take, total carbohydrate and chlorophyll content. These results suggest that the growth promoting substances provided by PGPR may enhance the growth of *Azadirachta indica* seedlings and consequently produce healthy seedling in short time.

Key words: Azadirachta indica, PGPR, Azospirillum brasilense, Azotobacter chrococcum and Bacillus polymixa.

Introduction

Azadirachta indica_commonly known as Neem belongs to the family of Meliaceae and has been used in medicinal treatments for more than 4000 years ago (Pankaj et al, 2011). Neem tree with deep roots are medium - sized tree (up to a height of 30 meters and 2.5 meters in circumference), leaves broad evergreen vehicle, bark gray color, neem tree has a wide range of beneficial uses medically and chemically, neem tree has hard wood forces used in the wood industries, as well as fuel, in addition to therefore, tree grow well in most environmental conditions and any soil., calcareous soil with PH, up 8.5 (Debashri and Tamal, 2012). Fertilization is one of the major factors that affect on the growth and productivity of plants. Over the past few years, the use of chemical fertilizers or pest control in agriculture has been increasingly criticized, that the chemicals may adversely affect the formation of chemicals for agricultural products that are consumed by humans or animals, in addition to having the effect of unfavorable environment. Many studies have confirmed the use of biofertilizers as an alternative to conventional NPK fertilization in a number of plants. (El-Maadawy and Moursy, 2007).

Gutierrez Manero *et al.*, (1996) reported that influence of native rhizobacteria on the growth of European alder (*Alnus glutinosa* Gaertn). PGPR (Plant Growth promoting Rhizobacteria) has become a new class of biofertilizers and physiological stimulators in recent years. PGPR have been a renewed interest for inoculation of agricultural crops, PGPR hold great promise as potential agricultural and forestry inoculants and could reduce the use of fertilizers and pesticides (Zahir et al., 2004). Inoculation with Plant Growth Promoting Rhizobacteria (PGPR) comparatively enhance the growth of Taxodium distichum transplants and shortening the time of seedling growth (Hammad et al., 2011). Many strains have been catalogued as (PGPR)due to their effect on plant growth pathogens (Bashan and de Bashan, 2002 and Al-Kahal et al., 2003) or to their ability to induce plant growth promoting effect (Bashan, 1999 and Mekhamar, 2001). Most of these strains belong to Bacillus, Pesudmnas, Azotobacter, and 1989). Azospirillum (Reddy Rahe and Phytohormones such as indol -3- acetic acid (IAA) or cytokinins are among the plant growth promoting compounds often produced by bacteria (Hubble et al., 1979 and Muller et al., 1989). However, other compounds, known as auxin-like IAA-1 are often responsible for the promoting effects (Oberhansli et al., 1990 and Selvadurai et al., 1991).

The present study aimed to investigate response of *Azadirachta indicia* (neem) seedlings to bio-fertilizer compared to mineral nutrition under calcareous soil as a new reclaimed soil condition.

Materials and Methods

This study was carried out at the Experimental Nursery of Horticultural Research Station at El-Kanater El-Khayria during two successive seasons of 2012/2013 and 2013/2014, to study the response of neem seedlings to biofertilizer and mineral nutrition grown in new reclaimed soil transplanted from 10th of Ramadan Desert in El-Sharkia Governrate. **Physical and chemical properties of soil** Physical and chemical analysis of used soil was done according to the Pipette method as described by (**Piper, 1947**) as shown in Tables (A) and (B).

Soil type	(Coarse sand %	Fine san	d %	Silt %		Clay %		Texture	e class
Calcareous sa	ınd	39.40	57.33	5	2.17		1.10	С	alcareo	us sand
Table B. The	Table B. The chemical characteristics of the calcareous sand used for growing <i>Azadirachta indica</i> seedlings.									
~ 11	E.C.	E.C.	CaCO ₃ %		Cations (meq/l)			Anions (meq/l)		
Soil type	pН	pH (ds/m)		Ca ⁺⁺	Mg^{++}	Na ⁺	\mathbf{K}^+	HCO ₃	Cl	SO_4
Calcareous sand	8.51	2.44	15.17	1.2	0.7	3.2	0.3	1.1	2.34	1.96

Table A. The mechanical analysis of the calcareous sand used for growing Azadirachta indica seedlings

Micro-organisms

Organisms culture strain (*Azospirillum brasilense, Azotobacter chrococcum and Bacillus polymixa*) were supplied by the unit of bio fertilizers, Faculty of Agriculture Ain Shams, University, Cairo Egypt. Biofertilizer strains were grown on modified Ashby's agar medium (**Abdel-Malek and Ishac, 1968**) and semi-solid malate medium (**Dobereiner, 1978**), respectively after that incubated at 30°C for 7 days until the bacteria numbers reached about 1x10⁷ cfu ml⁻¹ over wise.

Chemical and bio-fertilization treatments

Seeds of Azadirachta indica were divided into two groups, the first one did not receive any microorganism but another one was inoculated with the culture of microorganisms PGPR (Azotobacter chroococcum, Azospirillum brasilense and Bacillus polyixa), on the first of June 2012 and 2013, seeds of both two groups were planted in plastic cups 5 cm diameter filled with sterilized media, at the nursery of Horticultural Research Station at El-Kanater El-Khayria.On the first of August 2012 seedlings were transplanted in plastic cups 10 cm diameter .The treated group were inoculated again by the same bacterial culture. On the first of October 2012 and 2013, homogenous seedlings were transplanted into plastic bags 25 cm diameter and 35 cm depth filled with 6 kg of soil, and the inoculation repeated another one by the same bacterial culture. The seedlings were placed in a shaded area and after two weeks from transplanting, seedlings were removed outdoors to a sunny area and irrigated (twice weekly in winter and daily in summer). Every seedling received nutrition NPK 0.5 gm. from Kristalon 19: 19: 19 as starter for bacterial activity. The seedlings received different mineral and biofertilization treatments, as follows

1- Control: Seedlings did not received any nutrition 2- Mineral fertilization: Seedlings receive Nitrogen, Phosphorus and Potassium, to all seedlings. Phosphorus applications was added monthly as calcium phosphate (15 % P_2O_5), at rate of 0.5 gm./ seedling, while Potassium fertilizer was added as Potassium sulphate (48% K_2O) at rate 0.25 gm./seedling. Nitrogen fertilization was added as ammonium sulphate (20.5% N) at rate of 1 gm/ seedling.

3- Bio-fertilization: Seedlings were inoculated once with the culture of microorganisms PGPR (*Azotobacter chroococcum, Azospirillum brasilense and Bacillus polyixa*), at previous stages.

- 4- Bio fertilization with complete dose of mineral fertilization.
- 5- Bio fertilization with half dose of mineral fertilization.

Data concerned:

In both seasons 2012/2013 and 2013/2014, the vegetative growth parameters were recorded including:

- Plant height from soil surface (cm).
- Stem diameter above 5cm from soil surface (cm).
- Root length, (cm).
- Biomass fresh and dry weights (gm/plant).

Chemical composition

The chemical constituents in oven dried shoot samples were determined according to A.O.A.C., **1980**).

Microbial analysis

Densities of *Azospirillum* and *Azotobacter* microbial were determined on modified Ashby's medium (Abdel-Malak and Ishac, 1968) and semi-solid malate (Dobereiner, 1978), respectively using the most probable number technique.

Nitrogenase activity in the rhizosphere of the tested plants were determined according to (Hardy *et al.*, 1973).

Carbon dioxide evaluated by soil micro-organisms was assayed using the method described by (**Page** *et al*, 1982).

Layout of the experiment

The lay out of the experiment was complete randomized block design, with 5 treatments; and three replicates each replicate included 25 seedlings. The obtained data were subjected to analysis of variance ANOVA according to (**Snedecor and Cochran, 1980**). The means were compared by Duncan's multiple range test described by (**Duncan**, **1955**) at 5% properly between means of various treatments

Results and Discussion

Vegetative growth.

Data presented in Tables (1 & 2) indicated that biofertilization by inoculation with (PGPR) as well as half dose of mineral nutrition enhanced vegetative growth much more than the other treatments. This fact was pronounced in both seasons in which significantly the highest values of plant height, stem diameter, root length, biomass fresh and dry weight were 76.85 cm; 1.13 cm, 27.13 cm, 41.71 g and 12.63 g in the first season. Whereas, the values were 71.18 cm, 1.66 cm, 31.00 cm, 44.53 g and 10.80 g in the second season, respectively. It means that the previous treatment resulted in increases as percentages of 75, 43, 47, 86 and 101 % in plant height, stem diameter, root length, biomass fresh and dry weight over control, respectively. These results indicate that the PGPR exhibited positive effects on the growth parameters of the inoculated host plant as previously reported by (Zahir et al., 2004) and (Mekhamar et al., 2007).

Table 1. Effect of chemical and bio-fertilization treatments on plant height, stem diameter and root length (cm) of *Azadirachta indica* seedlings during 2012/2013 and 2013/2014 seasons.

First season			Second season			
Plant height	Stem diameter	Root length	Plant height	Stem diameter	Root length	
(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	
43.80E	0.79D	18.40C	50.01D	0.97D	19.53D	
61.40C	0.93C	18.88C	63.18B	1.19C	21.01D	
49.40D	0.81D	20.07C	56.40C	1.00D	23.44C	
68.11B	1.05B	22.18B	69.61A	1.31B	26.12B	
76.85A	1.13A	27.13A	71.18A	1.66A	31.00A	
	(cm) 43.80E 61.40C 49.40D 68.11B	Plant height Stem diameter (cm) (cm) 43.80E 0.79D 61.40C 0.93C 49.40D 0.81D 68.11B 1.05B	Plant height Stem diameter Root length (cm) (cm) (cm) 43.80E 0.79D 18.40C 61.40C 0.93C 18.88C 49.40D 0.81D 20.07C 68.11B 1.05B 22.18B	Plant height Stem diameter Root length Plant height (cm) (cm) (cm) (cm) 43.80E 0.79D 18.40C 50.01D 61.40C 0.93C 18.88C 63.18B 49.40D 0.81D 20.07C 56.40C 68.11B 1.05B 22.18B 69.61A	Plant height Stem diameter Root length Plant height Stem diameter (cm) (cm) (cm) (cm) (cm) (cm) 43.80E 0.79D 18.40C 50.01D 0.97D 61.40C 0.93C 18.88C 63.18B 1.19C 49.40D 0.81D 20.07C 56.40C 1.00D 68.11B 1.05B 22.18B 69.61A 1.31B	

Means followed by the same letter (s) within the same column are not significantly different

Table 2. Effect of chemical and bio-fertilization treatments on biomass fresh and dry weight (g) of Azadirachta indica seedlings during 2012/2013 and 2013/2014 seasons.

	First	season	Second season		
Treatments	Biomass fresh	Biomass dry weight	Biomass fresh weight	Biomass dry weight	
	weight (g)	(g)	(g)	(g)	
Control	22.42D	6.26D	23.35D	6.58D	
Mineral	34.35B	9.00B	37.43B	9.50B	
Bio-fertilizer	29.26C	8.36C	32.73C	7.93C	
Mine. + Bio	35.35B	9.10B	39.00B	10.00B	
1/2Mine. + Bio	41.71A	12.63A	44.53A	10.80A	

Means followed by the same letter (s) within the same column are not significantly different

Many results are inconclusive, but encouraging enough to improve selection procedures and the production of quality inoculate for practical application. As PGPR mediated processes involved in nutrient cycling include those related to nonsymbiotic nitrogen-fixation, and those responsible for increasing the availability of phosphate and other nutrients in the soil. Many symbiotic diazotrophic bacteria have been described and tested as bio fertilizers (Kennedy et al., 2004). The selection of effective PGPR diazotrophs is critical for further development of this technology. Azospirillum species are also considered to be PGPR (Lucy et al., 2004) and (Zahir et al., 2004). A significant activity of these bacteria is the production of auxin-type phytohormones that affect root morphology and, thereby, improve nutrient uptake from the soil. This may be more important than their N2-fixing activity. Azospirillum species are being used as seed inoculants under field conditions (Dobbelaere et al., 2001, Lucy et al., 2004, Zahir et al., 2004). Despite many studies reporting that, the benefits of Azospirillum inoculation, some studies present inconsistent results. However, it can be assumed that, upon establishing appropriate management practices, the use of these inoculants will have a beneficial effect on plant fertilizer. It has recently been postulated that an additional mechanism for plant growth promotion by PGPR could be their altering of microbial rhizosphere communities (Ramos et al., 2003). Agreeing with such as indirect mechanism, it would be interesting to evaluate the actual impact of this activity in rhizosphere biology. Rhizobacteria that exert beneficial effects on plant growth and development are referred to as plant growth promoting rhizobacteria PGPR. In recent years, the use of PGPR to promote plant growth has increased in various parts of the world.

Chemical analysis

Data presented in Table (3) indicate that significant increases in N% were observed in the seedlings inoculated with PGPR with half doses from NPK which showed higher N content being 44% and 45% than those recorded for transplants grown in the control media which un-inoculated with PGPR, in two experiment of seasons, respectively. It indicates that *Azadirachta indica* seedlings responded positively to inoculation with PGPR, the N content varied from 1.33% in the transplants grown in an un-inoculated in control media and did not receive mineral fertilizer to 1.56% in the transplants grown in mineral fertilized media, with full doses from

NPK, and without inoculation to 1.46% in the transplants grown in the inoculated media only, to 1. 91% in the transplants grown in the inoculated with PGPR and half doses from mineral nutrition, in the first season, the second season gave the same trends approximately. Data in **Table (3)** showed that no significant differences between N% content in the transplants grown in mineral nutrition medium and those grown in bio-fertilizer media in both seasons.

Table 3. Effect of chemical and bio-fertilization treatments on N, P and K (%) of *Azadirachta indica* seedlings during 2012/2013 and 2013/2014 seasons.

Tractine contra	First season			Second season		
Treatments	N (%)	P (%)	K (%)	N (%)	P (%)	K (%)
Control	1.33B	0.156C	1.00C	1.41C	0.173C	0.98B
Mineral	1.56B	0.186B	1.30BC	1.66BC	0.194B	1.51A
Bio-fertilizer	1.46B	0.177B	1.09C	1.55C	0.188BC	1.13B
Mine. + Bio	1.86A	0.281A	1.58AB	1.93AB	0.291A	1.63A
1/2Mine. + Bio	1.91A	0.283A	1.64A	2.05A	0.296A	1.71A

Means followed by the same letter (s) within the same column are not significantly different

Additionally, it is well demonstrated that in both seasons chemical composition of dried transplants which were grown in different fertilizers types which reported in Table (3) that the P content was considerably increased referee to addition of Bacillus polymixa to the bio-fertilizes media. The P content varied from 0.156% in the transplants grown in an un-inoculated control media to 0.177% in transplants grown in media inoculated PGPR strains. This means that the addition of PGPR strains to the media increased NPK contents in the transplants as shown in Table (3) compared to control. Solubilization of mineral nutrients such as phosphorus and potassium by PGPR made them more readily available for plant uptake, and this should be considered as a mechanisms for enhanced plant growth (Glick, 1996). It worthily observed from data of **Table(3)** that, applying full or half dose of mineral fertilizers as well as bio fertilization association on increment in N,P,K content in plants means that scarce minerals applying specially half dose resulted in more activities for microorganisms around roots rhizosphere zone consequently increased absorbed nutrition minerals. Several authers suggested that PGPR can stimulate plant growth by increasing solubilization via releasing

siderophores or organic acids and facilitate the uptake of mineral nutrition such as (Chabot *et al.*, 1996, Biswas *et al.*, 2000 a and b, Hammad *et al.*, 2011).

These results are in agreement with the finding of several authors (Abo El-Soud *et al.*, 2007) and (Mekhamar *et al.*, 2007) who explained that improving effects arising from microbial inoculation are due to producing growth promoter substances such as auxins, gibberellins and cytokinins.

Table (4) indicates that the inoculation with (PGPR) treatments with half dose of mineral nutrition significantly exceeded leaf total chlorophyll concentration to maximum values in the two seasons. This result is beneficial in photosynthesis which ameliorate growth characters better than of control. Similar results, were obtained by (Sorial and Abd El-Fattah 1998) and (El Khyat and Zaghloul 1999).

The results in Table (4) also indicate that, the inoculation with **PGPR** treatments with either half or full mineral nutrition gave significantly the highest values of total Carbohydrate of *Azadirachta indica* seedlings which reached the maximum values in both seasons.

 Table 4. Effect of chemical and bio-fertilization treatments on total chlorophyll (mg/g. f.w) and total carbohydrate % of Azadirachta indica seedlings during 2012/2013 and 2013/2014 seasons

	First	season	Second season		
Treatments	Total chlorophyll (mg/g. f.w.)	Total carbohydrate (%)	Total chlorophyll (mg/g. f.w.)	Total carbohydrate (%)	
Control	0.836D	4.31C	0.893E	4.82C	
Mineral	0.935C	6.25AB	1.044C	6.81A	
Bio-fertilizer	0.860D	5.53B	0.968D	5.91B	
Mine. + Bio	1.100B	7.03A	1.151B	7.50A	
1/2Mine. + Bio	1.192A	7.14A	1.222A	7.53A	

Means followed by the same letter (s) within the same column are not significantly different

The increasing in total Carbohydrate may be attributed to the positive effects of bio-fertilization on photosynthesis and consequently the plant metabolism. The same results were observed by (Haggag and Azzazy 1996) and (Sorial and Abd El-Fattah 1998).

As a general conclusion the results of this research indicate that, inoculation of *Azadirachta indica* seedlings by PGPR had a beneficial effect on the growth, chemical composition and strength of the seedlings.

Microbial Analysis.

Effect of (PGPR) inoculation and mineral fertilization on CO₂ evolution and Nitrogenase activity

The results presented in **Table** (5) show that, the rate of CO₂- evaluation in rhizosphere of *Azadirachta indica* seedling as an indication for microbial activity was remarkably increased by inoculation with (PGPR) and receiving half dose of mineral nutrition compared to any other treatments. This result is in harmony with (**Neweigy** *et al.*, **1997**) and (**Ashoub and Abd El-Ghany 1994**), they found that bio-fertilization treatments recorded the highest values of CO₂-evaluation.

Table 5. Effect of chemical and bio-fertilization treatments on CO2 evolution d μg/g dry soil/hr and Nitrogenase activity of *Azadirachta indica* seedlings during 2012/2013 and 2013/2014 seasons.

	First sea	ison	Second season		
Treatments	CO_2 evoluted $\Box g/g$	Nitrogenase	CO_2 evoluted $\Box g/g$	Nitrogenase activity	
	dry soil/hr	activity	dry soil/hr		
Control	46.90E	11.77E	47.40E	11.80E	
Mineral	62.55D	21.14D	73.16D	20.44D	
Bio-fertilizer	110.12C	55.17C	115.80C	56.93C	
Mine. + Bio	122.40B	59.10B	129.80B	61.44B	
1/2Mine. + Bio	131.50A	68.80A	139.40A	71.10A	

Means followed by the same letter (s) within the same column are not significantly different

Results in **Table** (5) also show that the N₂-ase activity in rhizosphere of *Azadirachta indica* seedlings increased on all bio-fertilization treatments as compared to uninoculated treatments. Inoculation with (PGPR) with half dose of mineral fertilizers gave the highest records of N₂-ase activity. These results matched well with those of (**Pederson** *et al.*, **1978**) and (**El-Sawy** *et al.*, **1998**), they found that, heavy doses of mineral fertilizers inhibited N2-ase activity of N₂-fixers. Also, these results agree with (**Ishac** *et al.*, **1986**) and (**Saleh** *et al.*, **1998**), they found that low doses of N-fertilizer exhibited a positive effect on biological N₂-fixation.

As a general conclusion the results of this research indicated that, inoculation of *Azadirachta indica* seedlings by PGPR had beneficial effects on the growth, chemical composition and strength of the seedlings.

It can be recommended from the previous results that, the combination of bio-fertilizer and half dose of mineral fertilizer can be used as substitutes for full dose of environment and reduce the high cost of chemical fertilizers.

References

- A.O.A.C.(1980). Official Methods of Analysis, 12th Ed. Association of Official Analysis Chemists: Washington, D.C, U.S.A
- Abdel-Malek, Y. and Ishac, Y. Z. (1968). Evaluation of methods used in counting azotobacters. J. Appl. Bact., 31: 267-275.

- Abo El-Soud, A.A, Kandil, B.A.A. and Hasouna, B.A. (2007). Response of wheat growth and yield to N₂- fixer bacteria combined with plant growth promoting rhizobacteria. Egypt. J.of Appl., Sci., 22:670-681.
- Al-Kahal A.A., Ragab A.A., Saida, S.A. and Omar, S.A. (2003). Use of plant growth promoting rhizobacteria for controlling *faba been* roots disease caused by *Fusarium oxysporum*. Eleventh Conference of Microbiology, Caro, Egypt, Oct. 12-14, p.63-70.
- Ashoub, A.H. and Abd El-Ghany, B.F. (1994). Effect of phosphate-dissolving bacteria on chickpea production under calcareous soil. Egypt.J.Appl.Sci.,:9(4). Pp149-160.
- Bashan, Y. (1999). Interactions of *Azospirillum* spp. In soils: a review. Biol. Fertil. Soils. 29:246-256.
- Bashan, Y. and de Bashan, L.E. (2002). Protection of tomato seedlings against infection by *Pseudomonas syringae* pv. Tomato by using the plant growth promoting: bacterium *Azospirillum brasilense*. App, Environ. Microbial. 68:2637-2643.
- Biswas, J.C., Ladha, J.K. and Dazzo, F.B. (2000a). Rhizobia inoculation improves nutrient uptake and growth of low land rice. Soil Sci.Am.J.64:1644-1650.
- Biswas, J.C., Ladha J.K., Dazzo, F.B., Yanni, Y.G. and Rolfe B.G. (2000b). Rhizobial inoculation influences seedling vigor and yield of rice. Agron. J., M. 92:880-886.
- Chabot, R., Antoun, H. and Cescas, M.P. (1996). Growth promoting of maize and lettuce by

phosphate – solubilizing *Rhizobium leguminosarum* biovar *phaseoli*. Plant Soil, 184:311-321.

- **Debashri, M., Tamal, M. (2012).** A review on efficacy of *Azadarachta indica* A. juss based biopesticides: an Indian perspective. Research Journal of Recent Secience, 1 (3): 94-99.
- **Dobereiner, J. (1978).** Influence of environmental factors on the occurrence of *S. Lipoferum* in soil and roots. Ecol. Bull. (Stockhlom), 26: 343-352.
- **Duncan, D. B.** (1955). Multiple range and multiple F. Tests biometrics, 11: 1- 24.
- El-Maadawy, E. I. and Moursy, Kh. S. (2007). Bio-fertilizers as a partial alternative to chemical NPK fertilization of Jojoba (*Simmondsia chinensis*) plants grown in different soil types. J. Product. & Dev., 12 (1): 211-236.
- El Khyat, A.S. and Zaghloul, R.A. (1999). biofertilization and organic manuring efficiency on growth and yield of caraway plants (*Carum carvi* 1.). Annls. of Agric. Sci. Moshtohor, 37(2):pp1379-1397.
- El-Sawy, M., Saleh, E.A., EL-Borollosy, M.A., Nokhal T. H., Fendrik, I. and Sharaf, M.S.(1998). Effectiveness of dual inoculation with diazotrophs and vascular arbuscular mycorrhizae on the growth and khcllin content of *Ammi visnaga*. Arab Univ. J. Agric. Sci., 6(2). PP. 357-371.
- Glick, R.B. (1996). The enhancement of plant growth promotion by free living bacterial. Can. J. Microbiol.41:109-117.
- Gutierrez, Manero, F.J., Acero, N., Lucas, J.A. and Probanza, A. (1996). The influence of native rhizobacteria on European alder (*Alnus* glutinosa (L.) Gaertn.) growth. Plant and Soil 182: 67-74.
- Haggag, L.F. and Azzazy, M.A. (1996). Evaluation of micro bacteria as a multistrains bio-fertilizer for production of improved mango seedlings. Annals, of Agric. Sci. Cairo, 41(10:pp.321-331.
- Hammad, H. H., Awad, A. A. and El-Kobisy, O. S. (2011). Influence of some plant growth promoting rhizobacteria PGPR on vegetative growth, nitrogen and phosphorus contents and anatomical characteristics of *Taxodium distichum* Rich. Transplants. Bull. Fac., Agric., Cairo Uni., 62: 29-39.
- Hardy, R.W.F.; B.C. Bumv, and R.D. Holsten, (1973). Application of thr acetylene assay for measurement of nitrogen fixation. Soil Biol. Biochem., 5: 47-81.
- Hubble, D.H., Tein, T. M., Gaskin, M. H. and Lee,
 J. (1979). Physiological interactions in Aospirillum – grass root association. In Associative N₂ – Fixation. Eds. P.B. Vosa and A. P. Ruschel. CRC PRESS, Lnc. Boca Raton, FL, USA.
- Ishac, Y.Z. El-Haddad, M.E., Kherbawy, M.E., Saleh, E, A., El- Borollosy, M.A. and El-

Demerdash, M.E. (1986). Effect of seed bacterization and phosphate supplementation on wheat yield and mycrorrhizal development. Proc. 2nd Conf. AABNF/Cairo, Egypt, pp:597-610.

- Kennedy I. R., Choudhury. A. T.M. A. and Kecskes. M. L. (2004). Non-symbiotic bacterial diazotrophs in crop-farming systems: cantheir potential for plant growth promotion better exploited ? Soil Biology and Biochemistry. 36, 1229-1244.
- Lucy M., Reed. E. and Glick. B. R. (2004). Application of free living plant growth promoting rhizobacteria. Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology 86, 1-25.
- Mekhamar G. A. A. (2001). Respons of *Faba* bean plants to co-inoculation with *Rhizobium leguminosarum* and *Bacillus megatherium* under different level of phosphate fertilization in newly reclaimed lands. J. Agric. Sci., Mansoura Univ., 26 :8129-8140.
- Mekhamar G. A. A., Badawi, F., Radwan, T.E.E. and Hasouna, B.A. (2007). Assessment of multi- strain PGPRs biofertilization as compared to sole-strain or meniral fertilization on wheat plants grown in clay soil in Egypt. Egypt J. Biotechnol., 25:27-44.
- Muller M., Deigele, C. and Ziegler, H. (1989). Hormonal interactions in the rhizosphere of maize (*Zea mays* L.) and their effect on plant development. Z. Pflanzen. Bodenk., 152: 242-254.
- Neweigy N.A, Ehsan, A. Hanafy, Zagloul, R. A. and EL-Sayeda, H. El-Badawy, (1997). Response of sorghum to inoculation with *Azospirillum*, organic and inorganic fertilization in the presence of phosphate solubilizing microorgamisms.Annals of Agric. Sci. Moshtohor, 35 (3):1383-1401.
- **Oberhansli T., Defago, G. and Haas, D. (1990).** Influence of tryptophan side chain oxidase (TSO) of a *Pseudomonas fluorescens* strain on the indol-3acetic acid (IAA) production and on the suppression of take all of wheat and black root of tobacco under gnotobiotic conditions. In Abstracts Second International Workshop on Plant Growth– Promoting Rhizobacteria. Interlaken. Switzerland Oct. 14-19, 1.
- Page, A. L.; R. H. Miller, and D. R. Keeny, (1982). Methods of soil analysis. Part, 2; 2nd Ed., Am. Soc. Agronomy, Inc. Wisconsin U.S.A.
- Pankaj, S. Lokeshwar, T. Mukesh, B. Vishnu, B. (2011). Review on Neem (*Azadarachta indica*): Thousand Problems one solution. International Research Journal of Pharmacy 2 (12): 97-102.
- Pederson, W. L., Chakrabarty, K., Klucas, R. V. and Vidaver, A.K. (1978). Nitrogen fixcation (acctylene reduction) associated with roots of winter wheat and sorghum in Nebraska . Appl. Environ. Microbiol., 35 (1) .ppp.129-135.

- Piper, C. S. (1947). Soil and Plant Analyssis: 293 296. The University of Adelaide, Adelade.
- Ramos B., Garcia, J. A. L., Probanza, A., Barrientos, M.I. and Gutierrez, Manero, F.J. (2003). Alterations in the rhizobacterial community inoculated with PGPR strain *Bacillus licheniformis*. Environmental and Experimental Botany 49,61-68.
- Reddy M.S. and Rahe, J.E. (1989). Growth effect associated with seed bacterization non correlated with populations of *Bacillus subtilis* inoculated in onion seedling rhizospheres. Soil Boil.Biochem. 21, 373-378.
- Saleh. E. A., Nokhal, T. H., El- Borollosy, M.A., Fendrik, I., Sharaf M.S. and El-Sawy, M. (1998). *Datura stramonium* Arab Univ. J. Agric. Sci. 6(2). pp. 343-355.

- Selvadurai E. L., Brown, A. E. and Hamilton, J. T. G. (1991). Production of indol-3-acitic acid analogues by strains of *Bacillus cereus* in relation to their influence on seedling development. Soil, Biol. Biochem. 23, 401-403.
- Snedecor, G.W. and Cochran, W.G. (1980). Statistical methods. 7th-ed. Iowa State Univ. Press, Ames, Iowa, U.S.A PP. 507.
- Sorial, M.E., and Abed El-Fattah, M.A. (1998). The possibility of using the biofertilizer as a completely substitute of NPK –fertilizer in plant production. Annals. of Agric. Sci. Moshtohor, 36(3). pp. 1683-1700.
- Zahir, Z., Arshad, A. M. and Frankenberger, W. T. (2004). Plant Growth Promoting *Rhizobacteria*: Applications and Perspectives. In Agriculture-Advances in Agronomy. Volume 81 by Academic Press.

استجابة شتلات اشجار النيم للتسميد الحيوى مقارنة بالتسميد المعدنى

حسام حسن حماد – عصام نجيب الاطرش

قسم بحوث الأشجار الخشبية بمعهد بحوث البساتين – مركز البحوث الزراعية . الجيزة

اجرى هذا البحث على شتلات اشجار النيم خلال موسمين زراعيين متتاليين2013/2012 & 2013 / 2014 بهدف دراسة تأثير خليط من بعض سلالات البكتيريا المشجعة للنمو وهي :

Azotobacter chroococcum, Azospirillum brasilense and Bacillus polymixa

اوضحت النتائج المتحصل عليها ما يلي:

- حدوث زيادة معنوية في قيم نمو الشتلات وقيم التحليل الكيميائي عند استخدام اللقاحات البكتيرية مقارنة بالكنترول.
- 2- ادى استخدام اللقاحات البكتيرية مع نصف جرعات السماد المعدني الى الحصول على أعلى قيم النمو والمكونات الكيميائية داخل الانسجة النباتية وكانت الريادة 25 و22 و44 و21 و60% بالنسبة لارتفاع النبات ومحيط الساق وطول الجذر والوزن الطازج والجاف على الترتيب مقارنة بتلك التي أضيف إليها جرعات كاملة من السماد المعدني، وكانت الزيادة في النمو للشتلات التي والجاف على الترتيب مقارنة بتلك التي أضيف إليها جرعات كاملة من السماد المعدني، وكانت الزيادة مع نصف جرعات العماد في عام النبات ومحيط الساق وطول الجذر والوزن الطازج والجاف على الترتيب مقارنة بتلك التي أضيف إليها جرعات كاملة من السماد المعدني، وكانت نسبة الزيادة في النمو للشتلات التي عوملت بالقاحات البكتيرية مع نصف جرعة النبعد لمعدني هي 75 ، 34 ، 40 % مالقاحات البكتيرية مع نصف جرعة التسميد المعدني هي 75 ، 34 ، 40 % مالقاحات البكتيرية المقارفة مع الكنترول .
- 3- وبناء على ما تم التوصل اليه من نتائج فانه يوصى بتلقيح بذور وشتلات اشجار النيم باللقاحات البكتيرية المشجعة للنمو للحصول على شتلات قوية بالمشتل فى فترة زمنية قصيرة بالاضافة الى توفير الاسمدة المعدنية للمحاصيل الاخرى وهذا سوف يكون له مردود اقتصادى كبير على عملية الانتاج.