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The paper presents an on-line optimal artificial neural network
(ANN)- based controller for simplified order power systems to improve
the dynamic response under different operating conditions. The original
13™ order power system is reduced to 5" order model. The basic feature
of the proposed ANN controller is that it consists of two neural networks,
one of them (ANN1) maps the optimal control process at different loading
conditions and the other (ANN2) maps the feedback control to produce
the required control action signal. The ANNI is trained using input/output
pairs of data which are collected from the optimal control of the reduced
order model of power system at different loading conditions The ANN2
parameters are adapted on-line through the ANNI according to loading
conditions. The digital simulation results proved the high performance of
the synchronous generator using the proposed ANN controller in terms of
fast response and less undershot/overshot under different operating
conditions. A comparison between the off-line fixed parameters optimal
controller and the proposed ANN controller validates the effectiveness
and reliability of the ANN controller.

KEYWORD: Reduction Technique, power systems, optimal controller,

ANN controller.
NOMENCLATURE

Xq g-axis reactance
X4 d-axis reactance
Xmg g-axis mutual reactance
Xmd d-axis mutual reactance
Xkq g-axis damper winding reactance
Xkd d-axis damper winding reactance
Xfd Field winding reactance
X Transmission lines reactance
I Transmission lines resistance
M Inertia constant
R, Steady state speed governer regulation
T, Governer time constant
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Steam turbine time constant
Exciter gain

Amplifier gain

AVR gain

Exciter stablizer gain

Exciter time constant
Amplifier time constant

AVR time constant

Exciter stablizer time constant
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1. INTRODUCTION

Power systems are continuously increasing in size in national and international
levels. Inter-connected unified networks are installed in nearly all countries and
continent. Consumers demand of electricity increases day after day allover the world.
Stable operation of such large power systems is a necessity for all people. Power
systems are usually subjected to continual impacts due to lines and loads switching and
different types of faults due to malfunctions of utility drives or failures at consumer's
networks or loads. According to these interconnections, the systems orders become
relatively high and the complexity is increased. Therefore, the analysis of dynamic
stability and controller's design of these large interconnected power systems becomes
time consuming and laborious in order to have an accordance order representation of
high-order power systems, model reduction techniques are used for getting simplified
models with adequate accordance. Several methods for model reduction are based on
eigenvalue analysis of the system linearized differential equations [1,2]. Davison [1]
had used the eigenvalues and eigenvectors of the complete system model to compute a
reduced model of smaller order than the original. In this method, the dominant
eigenvalues are to be chosen with real parts closest to the imaginary axis.

Transient stability is of main concern to power systems engineers, as its loss can lead
to dangerous electromechanical oscillations or to partial or complete blackouts.
Damage of synchronous generators shafts can also occur. Preservation of such transient
stability is assured by the presence of capable and effective controls. An additional
signal to the excitation and /or mechanical system is currently being used for
improving the damping characteristic of the synchronous generator under disturbance
conditions. The classical controllers with filters fed from speed signals are well known
and used in practice [3]. Modern optimal control theory has now been used in this field
[4, 5]. Normally, the parameters of optimal controller are designed at certain operating
point to give a good performance. However, the system dynamic response may
deteriorate when operating point changes.

The artificial intelligent neural network (ANN) has been developed for improving
systems dynamic performance and to adapt controller parameters in real time due to
any change in the loading conditions [6-12]. Dejan J. S. and Y. H. Pao, in 1989 used an
ANN based to evaluate the critical clearing time of the power system [6]. An ANN
based power system stabilizer (PSS) using an on-line measurements of the generator
active output power and power factor as an input signals to the PSS is designed by Y.
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Y. Hsu and C. R. Chen in 1991 [7]. Y. Zhang, et al have presented an ANN based PSS.
They concluded that PSS can provide good damping of the power system over a wide
range of operating point and significantly improve the dynamic performance of the
system [8]. ANN power system stabilizer based a pole placement state feedback gain
as off-line training is presented be El-Sherbiny, et al [9]. They indicate the
effectiveness of the proposed ANN controller in comparison with the conventional PI
controller. An enhanced adaptive neural network control scheme, based on the adaptive
linear element is designed by L. C. Min and L. Qing [10]. This schemeis applied to
multi- machine system and it has effectiveness for different types of faults and for a
wide range of operating point.

The present paper introduces an optimal ANN controller based on reduced order model
of power system. This controller is constructed from two neural networks, one of them
(ANNT1) maps the optimal control process at different loading conditions and the other
(ANN?2) maps the feedback control to produce the required control action signal. The
ANN2 parameters are adapted on-line through the ANNI according to loading
conditions and the reduction technique is used through the designing stage of such
controller in order to retain only the states which are usually observable. The ANNI1 is
trained using input/output pairs of data which are collected from the optimal control of
the reduced order model of power system at different loading conditions.

2. POWER SYSTEM MODEL

The studied power system consists of a 13™ order model of a synchronous
machine connected to an infinite bus through a transimission line as shown in Fig.1.
This model contains of 5" order for winding representation of synchronous machine,
4™ order for automatic voltage regulator (AVR)& exciter and 4™ order for turbine &
governor.

The matrix form for the power system model

x = Ax + Bu (1)
1 .
Ax+—A, x=Bu )
@,

From the above equations the A matrix can be written as

A=—w,A'A 3)
Elements of A-matrix are defined in appendix[a]
where

x=[ni, Ai, A, A, A, AS Aw AE, AV, AV. AV, AP, AP [

u=[AP, AV, AR]
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Fig. 1: Schematic diagram of power system Model.

3. REDUCTION TECHNIQUE

The methods of reducing dynamic system are discussed in [3:6]. The differences
between these methods are the way of choosing the dominant eigenvalues. The input -
output performance indices in [4,5] are used for giving good accuracies. Instead of
choosing the eigenvalues closest to the Jw-axis, the eigenvalues which have highest
input- output indices can be selected. After the dominant eigenvalues are chosen, the
Davision method [3] is used for giving the reduced order model of power system. The
model reduction technique is used for reducing a 13" order model for generating unit
to 5" order model which is used for controller design. The retained states considered
are the rotor angle, the rotor frequency, the exciter voltage and stator current
components which are measured for achieving control action.

The A matrix of the system which is given by Eq.(1) can be rewritten as follows:

A=MAM" “4)

where;
M is the matrix of eigenvectors
/\ is the diagonal matrix of eignvalues
The reduced system model is described by following equation

x =Ax +B.u (5)
where

A? = MrAer_l (6)

B, =M, [M"B] %

A, & B, arereduced order constant system matrices.
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X, is the retained states vector
M is a matrix representing a subset of the complete eigenvector matrix M. The

.
rows of this matrix are selected from M based on retained states , the columns of M,
are selected from M based on retained eignvalues

A is a diagonal matrix of retained eignvalues.

r

[M _1B] is a diagonal matrix consisting of the retained rows of M ~' B corresponding
to x;.

4. THE OPTIMAL CONTROLLER DESIGN PROCEDURE

the object of the optimal control design is determining the optimal control
law u(t,x) which can transfer system from its initial state to the final state such that a
given quadratic performance index is minimized. Considering the reduced order model
of power system which is described by Eq. (5). The quadratic performance index J is
described by:

e 0]
J=(x" Qx,+u'R u) dt (8)
0
the optimal control law is written as
u(t)= K, x,(1) 9)

where: Q is positive semi definite matrix and R is real symmetrical matrix. The
problem is to find the vector K, of control law
The problem then is to choose Kr to minimize the performance index J .This problem
is discussed in Ref [4] and the Kr is given by:

K.=-R'B"P (10

The matrix P is positive definite, symmetric solution to the matrix Ricciti equation
which is written as:

PA,+A'P +0- PB.R'B'P=0 (11)

Normally the parameters of optimal controller are designed at nominal operating point
to give a good performance.

5. OPTIMAL ARTIFICIAL NEURAL NETWORK

Optimal ANN controller based on reduced order model of power system is introduced.
This controller is constructed from two neural networks as shown in Fig. 3 , one of
them (ANN1) maps the optimal control process at different loading conditions and the
other (ANN2) maps the feedback control (u(t) =k x(t)) to produce the control signal.
The ANN2 parameter adapts online through the ANNI1 according to loading
conditions and the reduction technique is used through the designing stage of such
controller in order to retain only the states which are measured (observable
states),reduce the consuming time and reduce the neurons which are required for
controller structure. The first ANNI is trained using the input output pairs of data
which are collected from the optimal control of the reduced order model of power
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system at different loading condition. The ANN1 have 2 input nodes [P, Q] and
4-nodes in hidden layer and also 5-nodes in the output layer. The output of the ANNI1
is the weights of ANN2.

The ANN2 contains the 5 nodes in input layer [the five interesting states] and one
node in output layer [control signal]

5.1 The Operation Steps of a ANN1

Step 1: Nodes of the input layer receive signals from the loading condition , the input
vector is Pq

Pq=[P; Q] (12)

Step 2: Output of the input layer passes to hidden nodes through the weighted links,
the resulting weight matrix between the hidden and input neurons is given by w1l and
the hidden nodes biases are given by the b11.

Step 3: The output of hidden nodes results from input signal passing through the
activation function (tan sigmoid transfer function), the hidden layer output vector of
ANN1 is oh,where

oh=tansig(wll*Pq,bl1) (13)

Step 4: Hidden layer outputs sent to the output nodes through weighted links, the
resulting weight matrix between the hidden and output neurons is given by w21 and
the hidden nodes biases given by the b21.

Step 5: The ANNI output is obtained using another activation function (Linear
transfer function ),the output vector of ANNI is ol,where

ol=purelin (w21*oh, b21) (14)

5.2 The Operation Steps of a ANN2
The following steps describe the operation of a ANN2

Step 1: Nodes of the input layer receive signals from the outside world, the input
vector is Xr
Xr=[ Ad; Aw; AEfd ;Ai,; Aig] (15)

Step 2: Output of the input layer passes to output node through the weighted links, the
weight matrix between the input and output neuron is given by w2 .

w2=0l (16)
ol is the output vector of ANNT1 is described by equations (12:14).

Step 3:_The ANNI output is obtained using activation function (Linear transfer
function ),the output of ANN2 is control signal (u)

u= purelin (w2* Xr,b2) (17)
The equations from 12 to 17 describe the operation of the proposed artificial neural
network controller . The ability of this controller to adapt its parameters with itself

dependS on the loading conditions. The closed loop matrix of system with ANN can
be calculated as:

AANN=Ar *Br * w2 (18)
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Fig. 3: ANN Structure.

6. DIGITAL SIMULATION RESULT

The power system shown in Fig. 1 is used for digital simulation. It consists of a
synchronous machine connected to an infinite bus through a transimission line. The
complete data of this system are given in appendix (b). The model reduction
technique is given in [2], which is used for reducing the 13" order model of generating
unit (A,B in Eqn.1) to 5" order model (A, ,B, in Eqn.5). At nominal operating point
P=.75, Q=0.0 and the reduced order models is calculated as follows:



AN ON-LINE OPTIMAL ARTIFICIAL NEURAL NETWORK-BASED.... 97

0 1 0 0 0
-1.6843 0.144  0.61356 -96.677  -56.46
A = 11.499  1.1557 -0.68237 -22.348 0.94102

6.5536  2.0122 0.042102 -19.098 0.15544
0.074332  2.1151 0.59603  0.086713 -1.6279

-0.017014  0.089148 -0.72744
71.631 7.3419 -1.0961
B = -0.92436 11.909 -4.1655
9.521 -0.53664 0.95514
022388  0.84646 0.13895

Table 1 gives the eigenvalues of both the original and reduced order models and the
corresponding time response is dedicated in Fig. 4.

Table 1 : The eigenvalues of the original and reduced power system models.

Eigenvalues of 13" Eigenvalues of 5" order
order model model
-1000 -3.5219 +15.2508i
-26.935+ 376.49i -3.5219 -15.2508i1
-26.935 - 376.49i -13.3713
-26.245 + 39.868i -0.4248 + 0.8616i1
-26.245 - 39.868i -0.4248 - 0.8616i
-38.227

-3.5219+  15.2511
-3.5219 - 15.251i
-13.371

-4.1084

-0.42476 + 0.86163i
-0.42476 - 0.86163i
-0.97768

From the digital simulation results shown in Fig. 4 it can be seen that the 5" order
model give a good accuracies. The optimal controller is designed in section 3, the
feedback matrix is calculated by using Eq. (10) at nominal operating point (P=0.75 pu
Q=0.0pu) to minimize the performance index J in Eq. (8)

K,=[-1.2584 0.5948 -0.6375 -8.2231 -10.9569]

Using this matrix the closed loop eigenvalues of system with optimal controller are
calculated at different operating conditions and the results are tabulated in table 2.

The proposed ANN controller is constructed from two neural networks, this is
discussed in section (5). The ANNTI is trained using input/output pairs of data which
are collected from the optimal control of the reduced order model of power system at
different loading conditions. The training data was fed to Matlab Tool Box to calculate
the weights and biases of ANNI
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The statistical data for ANN1 training

No of iteration =10000

Max. squared error = 1E-3

Learning rate = .001

The resulting weight matrix between the hidden and input neurons, and also the
hidden nodes biases matrix are given by

-2.1918] [ 1.9432  0.091295 ]|
-2.3053 2.0553 -0.0047312
-7.2796 19152  -12.154
7.22 -1.8667  12.126
bll= 23.759 wll= -74.947 30473
23.532 -74367  30.127
71.5 -1.1156  128.77
1.2978 32499  1.9344
| 15152 | | -1.2181 17187

The resulting weight matrix between the output and hidden neurons, and also the
output nodes biases matrix are given by

-14.991 1.969 17769 -7.8039 -22.269
13.698 -1.7419 -1.6922  9.1325  20.749

-84972  -8.1071 -0.50802 69.043  47.282 -9.3186

-85.607 -8.2762 -0.5069  68.909  47.566 -0.49551

w2l=| -52901 32394 092924 -95876 5663 | °H=| 071995
57097 -32119 -0.75665  9.898 -56.783 8.9751

-4.725

8.0854 0.54458  .0014447 -8.9805 0.87331
41223 0.36252 029057 -0.74039 -2.8098
-4.1207 -0.068004 -0.11298  1.423  2.5943 |

The ANN2 parameters are adapted on-line through the ANNI1 according to loading
conditions. The closed loop eigenvalues of system with proposed ANN controller are
calculated at different operating condition by using Eq.18. The results of system with
proposed ANN ,with optimal controller and without controller are tabulated in
Table 2.

To validate the above results, time responses of speed deviation for 0.01 pu increase
in load power are drawn at a wide range of operating conditions. In each case the
responses of the system with optimal controller and without controller are also given.
Figures 5, 6, 7 and 9 show the rotor speed deviation response due to 0.01 load
disturbance at lage power factor loads at different controller. Figures 8 and 10 show
the rotor speed deviation response due to 0.01 load disturbance at lead power factor
loads at different controller .
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It can be concluded from these results that the system with optimal controller give
good dynamic response and the system with proposed ANN give responses better
than the responses of the system with optimal controller. Figsures 8, 10 and 11 show
the system without controller and with optimal controller suffers from synchronous
instability in other hand the system with proposed ANN controller provide good
dynamic response at the same operating conditions. The comparision of settling time

between different controllers are given in table 3.

Table 2: Eigenvalue at different controller and at different operating

conditions of the reduced order model.

Load System without System with _ System
condition controller optimal controller | With proposed
ANN controller
P=0.75 -3.5219 +15.2508i1 -9.6721 +15.2263i -10.4165 +15.37741
Q=0.0 -3.5219 -15.2508i -9.6721 -15.2263i -10.4165 -15.3774i
-13.3713 -0.3119 -0.6208
-0.4248 + 0.86161 -11.7442 + 0.5954i -7.7532
-0.4248 - 0.86161 -11.7442 - 0.5954i -17.4330
P=0.25 -6.4568 + 18.531i |-6.4568 + 18.531i -9.4082 + 18.28i1
Q=0.0 -6.4568 - 18.531i -6.4568 - 18.531i -9.4082 - 18.28i
-7.1595 -7.1595 -1.2219
-0.5578 + 0.3351i |-0.5578 + 0.3351i -6.0768
-0.5578 - 0.3351i -0.5578 - 0.3351i -17.095
P=0.75 -14.6084 -4.2354 +10.7103i -1.2264
Q=0.6 -2.6732 +13.2562i -4.2354 -10.7103i -6.2935 +10.8393i
-2.6732 -13.2562i -1.1834 -6.2935 -10.8393i
-0.5075 + 0.4225i -16.8061 + 7.3942i -15.9735 + 4.3691i
-0.5075 - 0.42251 -16.8061 - 7.3942i -15.9735 - 4.3691i
P=0.75 -19.5200 0.2414 -22.0042
Q=-0.6 0.2410 +12.2945i -3.8598 +10.8910i -8.6232 +11.3263i
0.2410 -12.2945i1 -3.8598 -10.8910i -8.6232 -11.3263i
0.7802 -26.7929 -0.5481
-0.6056 -10.572 -11.7625
P=1.2 -19.1532 -18.3961 + 8.6234i -0.8057
=0.6 -0.4137 +12.4600i -18.3961 - 8.6234i -6.5433 + 9.5543i
-0.4137 -12.4600i -2.6355 + 9.6792i -6.5433 - 9.55431
-0.4443 + 0.77341 -2.6355 -9.6792i -16.7937 + 4.29751
-0.4443 - 0.77341 -0.6384 -16.7937 - 4.2975i1
P=1.2 -20.0862 -27.4922 -24.7373
Q=-0.6 0.6424 +11.99011 -3.0553 +10.52441 -7.3560 +10.48671
0.6424 -11.99011 -3.0553 -10.5244i -7.3560 -10.4867i
1.1391 0.1721 -0.5163
-0.7657 -11.2971 -13.9946
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Table 3: Settling time of different cases at different loading condition.

Loading Without controller With optimal With proposed

condition controller ANN controller
P=0.25 Q=0.0 6 Sec. 1.5 Sec. 1.2 Sec.
P=0.75 Q=0.6 7 Sec. 3  Sec. 1.4 Sec.
P=0.75 Q=-0.6 o Sec. o Sec. 3.5 Sec.

7. CONCLUSION

An optimal artificial neural network controller has been developed to be
included in power systems in order to improve the dynamic response of this system
and to give an optimal performance at any loading condition. The proposed controller
has ability to adapt its parameters at any loading condition. This controller is designed
based on reduced order model of power system in order to retain only the states, which
are measurable or observable. The feature of this controller is the reduction of the
consuming time and reduction of the number of neurons, which are required for
proposed ANN structure. The obtained results show the effectiveness of proposed
ANN controller in enhancing the damping characteristic of the studied power system
at any loading condition in comparison with optimal feedback controllers.The
proposed controller has better perfoprmance than the optimal feedback controller in
terms of fast damping response and small settling time .
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APPENDICES

Appendix-a : Elements definition of A-matrix
W ao= Xl 4o + xdefO

l//qO = 'quq()

M10.1 = KrVqOrl K.V,
’ TV,

M10.2 = K,V,0% =K.V,
| Tr‘/t(]

M10.6 K,V,V,sind, +K.V,V, cosd,
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M10.7 = KrVq()Id()‘xI - KrVdoIqoxl
| Tr‘/t()

Vg™ XL g0 + X, IfO

l//qO = 'quqO
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M10.7 = K.Vl 0% =K, Vol o
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Appendix-b :System parameters

Table b-1: parameter of one machine -infinite bus( in per unit).

Xq 1.563 o) 377
X4 1.653 M 00.014
Xmq 1.47 D 0.0
Xmd 1.56 R, 18.85
Xiq 1.503 T, 0.25
Xkd 1.608 T, 1
Xtd 1.646 K. 13.89
Xi 0.2 K, 50
Ia 0.0032 K, 1
I'ta 0.001 K, 0.057
I'kd 00.011 Te 0.28
I'kq 00.014 T, 0.02
I 0.02 T, 0.001
Vb 1 T, 0.45
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