
Journal of Engineering Sciences, Assiut University, Vol. 34, No. 1, pp. 173-188, January 2006

TOWARD A FORMALIZATION OF USE CASE DIAGRAM
USING Z SPECIFICATIONS

Ahmed M. Mostafa
 1

 ; Manal A. Ismail
2
 ; El Sayed M. Saad

3

and Hatem EL-Bolok
4

Electronics & Communication Department, Faculty of Engineering,

Helwan University, Cairo, Egypt

1
 engahmed_youssef@ yahoo.com

2
 mshoman@helwan. edu.eg

3
elsayedmos@ hotmail.com

4
hbolok@mailer.eun.eg

(Received September 24, 2005 Accepted November 27, 2005)

The Unified Modeling Language (UML) is an evolutionary step in the

development of Object-Oriented analysis and design (OOA&D) methods

that appeared in the late '80s and early '90s. UML has become a widely

adopted standard in the software development industry. Various attempts

have been made to formally define the syntax and semantics of the UML

notations, and to represent its models in a formal notation. The purpose of

these attempts is to allow UML models to be rigorously checked, and to

allow formal analysis of the modeled systems. Use Case Diagram is one

of the diagrams supported by UML which describe the functional

requirements of the system under development, helping to identify the

complete set of user requirements. This paper aims to present a tentative

approach to provide the Use Case Diagram with formal semantics using Z

specification language.

KEYWORDS: Unified Modeling Language (UML), Use Case Diagram,

Formalization, Z specification language.

1. INTRODUCTION

 The Unified Modeling Language (UML) [1] is a language for specifying,

visualizing, constructing, and documenting the artifacts of software systems, as well as

for business modeling and other non-software systems. The UML represents a

collection of the best engineering practices that have proven successful in the modeling

of large and complex systems.

 Unfortunately, UML has many limitations that preclude rigorous (or sound)

development. UML models are imprecise and cannot be formally analyzed in the UML

context. This brings the following consequences [2]:

1. UML models result in ambiguous descriptions of software systems.

2. UML models cannot be checked for consistency, which means that one may

produce unsatisfiable models for which no implementation may possibly exist.

173

mailto:Engahmed_youssef@yahoo.com
mailto:mshoman@helwan.edu.eg

 Ahmed M. Mostafa

; Manal A. Ismail ; El Sayed M. Saad and Hatem EL-Bolok

__

174

3. There are no means for checking whether certain desired system properties

hold in a UML model.

 Formal specification languages (FSLs), on the other hand, yield precise

descriptions of software systems that are amenable to formal analysis. However, these

languages require substantial expertise from developers.

There are some of the ways in which the UML could benefit from formalization [3];

these ways are:

 Clarity:
 To act as a reference - if at any point, there is confusion over the exact meaning of

a particular UML component; reference can be made to the formal description to verify

its semantics.

 Equivalence and Consistency:
 To provide an unambiguous basis from which to compare and contrast the UML

with other techniques and notations, and for ensuring consistency between its different

components.

 Extendibility:
 To enable the soundness of any extensions to the UML to be verified (as

encouraged by the UML authors).

 Refinement:
 To allow correctness of design steps in the UML to be verified and precisely

documented. In particular, it should enable design patterns to be checked for

correctness. Once checked, a particular pattern can be used again and again without

having to re-check it.

 Proof:
 To allow justified proofs and checks of important properties of a system described

in the UML, for example safety properties.

 The use case model can serve as a means of communication between the different

stakeholders in a project. It is used in planning the project and is updated and used

during the project [4]. Developing use cases is one of the first steps in the object

oriented approach using UML to capture the required functionality [5]. Use cases,

while very useful, are nevertheless informal descriptions suffering from the problems

of inconsistencies, ambiguities etc. Even though use cases are the starting point in

UML based software engineering, there is very little by way of formalization [6].

 This paper presents an initial attempt to provide a suitable formal model for the

use Case Model using Z Specifications. Section 2 presents the Use Case Model in an

informal way to determine its underlying semantic foundation. A brief definition of Z

specifications is presented in section 3. Section 4, presents a formal description of the

basic Use Case Model concepts using Z specifications, and finally Section 5 is a

conclusion.

2. AN INFORMAL DESCRIPTION OF USE CASE MODEL

 The elements in the Use Cases model are primarily used to define the behavior of

an entity, like a system or a subsystem, without specifying its internal structure. The

key elements in this model are Use Case and Actor.

TOWARD A FORMALIZATION OF USE CASE DIAGRAM….
__

175

 Figure 1 shows some of the use cases for a financial trading system as an example

of a use case diagram [7]. An informal description of the use case model will be given

through this example. Figure 1 shows that the use case diagram consists of four basic

concepts. These concepts are Actor, Actor Relationships, Use Case, and Use Case

Relationships.

2.1. Actor

 An actor defines a coherent set of roles that users of an entity can play when

interacting with the entity. An actor may be considered to play a separate role with

regard to each use case with which it communicates. An Actor may also have a set of

Interfaces; each describing how other elements may communicate with the Actor.

 Actors carry out use cases. A single actor may perform many use cases;

conversely, a use case may have several actors performing it. There are four actors in

figure 1; Trading Manager, Trader, Salesperson, and Accounting System. Actors don't

need to be human; an actor can also be an external system (i.e. Accounting System).

2.2. Actor Relationships

There is one standard relationship among actors (Generalization) and one between

actors and use cases (Association).

• Generalization – An actor may have generalization relationships to other actors. This

means that the child actor will be able to play the same roles as the parent actor, that is,

communicate with the same set of use cases, as the parent actor. Figure 2 shows an

example of actor generalization, where the Trading Manager actor will be able to play

the same roles as the Manager actor.

Set Limits

Trading Manager

Update

Accounts

Accounting

System
<<include>>

Price Deal

Capture Deal Trader

Salesperson

Limits Exceeded Use Case

Generalization

<<include>>
Valuation

Include

Actor

Analyze

Risk

Figure 1: Use Case Diagram.

 Ahmed M. Mostafa

; Manal A. Ismail ; El Sayed M. Saad and Hatem EL-Bolok

__

176

• Association – The participation of an actor in a use case; that is, instances of the actor

and instances of the use case communicate with each other. This is the only

relationship between actors and use cases. For example, the association between

Accounting System actor and Update Accounts use case.

2.3 . Use Case

 A use case is a set of scenarios tied together by a common user goal. As an

example, consider the Buy a Product use case with the successful purchase and the

authorization failure as two of the use case's scenarios. There are seven use cases in

figure 1; Set Limits, Update Accounts, Analyze Risk, Price Deal, Capture Deal, Limits

Exceeded, and Valuation.

2.4 . Use Case Relationships

 In addition to the links among actors and use cases (Association), several kinds of

relationships between use cases (Include, Generalization, Extend) can be shown.

• Include – An include relationship means that a chunk of behavior is similar across

more than one use case and it is not wanted to keep copying the description of that

behavior. For instance, both Analyze Risk and Price Deal require valuing the deal. Use

include to avoid repetition in two or more separate use cases.

• Generalization – A generalization relationship between use cases implies that the

child use case contains all the attributes, sequences of behavior, and extension points

defined in the parent use case, and participates in all relationships of the parent use

case. The child use case may also define new behavior sequences, as well as add

additional behavior into and specialize existing behavior of the inherited ones. In our

example, the basic use case is Capture Deal; this is the case in which all goes

smoothly. Things can upset the smooth capture of a deal, however. One is when a limit

is exceeded – for instance, the maximum amount the trading organization has

established for a particular customer. Here we carry out an alternative to the usual use

case. Use generalization to describe a variation on normal behavior casually.

• Extend – An extend relationship is similar to generalization but with more rules to it.

The extending use case may add behavior to the base use case, but this time the base

use case must declare certain "extension points" and the extending use case may add

additional behavior only at one or more of these extension points. Figure 3 shows an

example of the extend relationship, here the customer is already known to the system

 Manager

Figure 2: Actor Generalization.

 Trading Manager

TOWARD A FORMALIZATION OF USE CASE DIAGRAM….
__

177

Declaration

Schema-Name

Predicate; : : : ; Predicate]

[

as a regular customer and the system will display the current shipping, pricing, and

billing information. Use extend to describe a variation on normal behavior using the

more controlled form, declaring extension points in the base use case.

3. Z SPECIFICATIONS

 A formal specification can serve as a single, reliable reference point for all those

concerned with the system [8]. Formal Methods can be grouped under three general

categories [9]:

Set based formalisms: Use mathematical notation to describe in a precise way the

properties which an information system must have. These are good for describing

systems in an "object oriented" way. Provides a high level view of a system that can be

refined as specification proceeds. Example of this is: Z specification language.

Logic based formalisms: This is a wide field which includes specification languages

and property languages. Examples of this are classical logic, predicate logic, modal

logics, temporal logics, and theorem provers.

Behavior based formalisms: Systems are described as states and transitions between

states. A natural way of describing a system for a programmer. Examples in this area

include labeled transition systems, and Petri Nets.

 For the UML formalization, Z specification language is most appropriate because

it is a mature, expressive, and abstract language that is well supported by tools [10].

 In Z, specification can be decomposed into small pieces called schemas. A schema

consists of two parts, the declaration part which declare some variables and the

predicate part which gives a set of relationships between the variables in the

declaration part.

Schemas can be written in one of two forms:

 Vertical form:

Regular

Customer

Buy a Product

extension points

payment info

shipping info

<<extend>>

(payment info, shipping info)

Figure 3: Extend Relationship.

 Ahmed M. Mostafa

; Manal A. Ismail ; El Sayed M. Saad and Hatem EL-Bolok

__

178

x,y: ℤ

Aleph

x < y

 Horizontal form:

Schema-Name ≙ Schema-Exp

 These forms introduce a new schema name. If the predicate part in the vertical

form is absent, the default is true. In the horizontal form, the Schema-Exp which comes

after the definition sign (≙) can be any number of schema names connected by logical

operators.

The schema Aleph is an example of schemas:

Which declare two variables x and y as integers, and state that x must be smaller

than y.

 A schema binding is the assignment of values to its variables declared in the

declaration part. For example, the binding x ⇛ 3, y ⇛ 5 satisfies the condition x < y.

The expression Aleph.x = 3 selects only the x component of the schema Aleph.

 Now, a summary of Z notations which are used in the formalization of the use case

diagram is given in the next subsections.

3.1. Set Operators

 Power set

If S is a set, ℙ S is the set of all subsets of S.

ℙ represents non-empty set.

 Set difference

The members of S \ T are those objects which are members of S but not of T.

3.2. Relations

 Binary Relations

If S and T are sets, then S T is the set of binary relations between S and T.

S T = ℙ (S × T).

 Domain and Range
dom, ran - represents the domain and range of a relation.

 Partial and Total Functions

If X and Y are sets, X Y is the set of partial functions from X to Y.

These are relations which relate each member x of X to at most one member of

Y. This member of Y, if it exists, is written f(x). The set X Y is the set of total

functions from X to Y. These are partial functions whose domain is the whole of

X; they relate each member of X to exactly one member of Y.

TOWARD A FORMALIZATION OF USE CASE DIAGRAM….
__

179

3.3. Logical operators

 ¬ Negation

 Conjunction

 Disjunction

 Implication (note: not)

 Equivalence (note: not)

3.4. Numbers and Finiteness

ℕ Is the set of natural numbers {0; 1; 2; ……}.

ℤ Is the set of integers {…… ;-2;-1; 0; 1; 2; ….. }.
 Members of a set can be counted by a natural number.

There is a unique natural number which counts the members of the set S without

repetition, and this is the size #S of S.

3.5. Sequences

 Finite sequences (seq)

seq x is the set of finite sequences over x. For example, the sequence x1,

x2,……., xn can be written as the set {1↦ x1, 2 ↦ x2, …….., n ↦ xn}, where:

x ↦ y is a graphic way of expressing the ordered pair (x,y).

 Non-empty Finite sequences (seq1)

Is the set of all finite sequences over x except the empty sequence.

 Disjointness and Partitions
Disjointness between the two sets A, B means they do not intersect and the sets

A, B partition the set C means that C is the union of A and B and that the two

sets A, B do not intersect.

3.6. Quantification

Q x1: S1;…… ; xn : Sn | p ● q

Where Q is one of (for all), (there exist). Meaning:

 x1 : S1;…… ; xn : Sn (p q)

Whatever the value taken by the variables x1 to xn which make p true, the predicate q

will be true as well.

 x1 : S1;…… ; xn : Sn (p q)

There is at least one way of giving values to the variables x1 to xn so that both

predicates p and q true.

4. FORMALIZATION OF THE BASIC USE CASE MODEL

The basic Use Case model consists of [1]:

 Actors.

 Use Cases.

 Ahmed M. Mostafa

; Manal A. Ismail ; El Sayed M. Saad and Hatem EL-Bolok

__

180

BasicUseCaseModel

Actors

Usecases

ActorRelationships

UseCaseRelationships

Actors
human, non_human: ActorName

actorRoles: Role

aRoles: ActorName Role

human, non_human Partition ActorName

dom aRoles = human ∪ non_human

 (ran aRoles) = actorRoles

Usecases
ucases: UsecaseName

scenario: seq1 Actions

usecase: ℙ scenario

expoints: ExtensionPoints

extension: UsecaseName ExtensionPoints

dom extension = ucases

 (ran extension) = expoints

 u: ucases; x: extension(u) | #(extension(u)) > 1 ● (extension(u)\{x}) ∩ {x}=

 Actor Relationships.

 Use Case Relationships.

The result of the formalization will be a Z schema for the basic Use Case Model that

includes four schemas that correspond to the above concepts.

4.1. Actors Schema:

It is assumed that there is a given sets:

[ActorName, Role]

From which the names of all actors and their roles can be drawn.

 The constraint in the predicate part of the schema state that human and

non_human actors can not have the same name.

4.2. Use cases Schema:

It is assumed that there is a given sets:

[UsecaseName, Actions, ExtensionPoints]

From which the names of all use cases, actions, and extension points can be drawn.

TOWARD A FORMALIZATION OF USE CASE DIAGRAM….
__

181

AssociationEnd

Association

Actors

Usecases

owner: AssociationEndName

disjoint (human ∪ non_human), ucases

owner (human ∪ non_human ∪ ucases)

AssociatioEnd

associations: AssociationName

linking: AssociationName AssociatioEnd

 a: associations; e1,e2: AssociationEnd | #(linking(a)) = 2 e1= (linking(a)(1))

e2 = (linking(a)(2)) ● ((e1.owner (human ∪ non_human) (e2.owner ucases))

((e2.owner (human ∪ non_human) (e1.owner ucases))

Actors

aparent, achild: Actors

ageneralization: aparent achild

 x,y,z: human | (x,y) ageneralization (y,z) ageneralization ● (x,z) ageneralization

 x,y,z: non-human | (x,y) ageneralization (y,z) ageneralization ● (x,z) ageneralization

 p: aparent; c: achild | (p,c) ageneralization ● (p.aRoles c.aRoles (c,p) ageneralization)

Actor Generalization

 The constraint in the predicate part of the schema state that the names of the

extension points must be unique in the same use case.

4.3. Actor Relationships Schema:

It is assumed that there is a given sets:

[AssociationEndName, AssociationName]

From which the names of all association ends and associations can be drawn.

 The constraint of the schema state that the use cases’s names and actors’s names
can not be the same, and the owner of the association end is an actor or a use case.

 The constraint of the schema is just a way of saying that associations only allowed

between use cases and actors and these associations are binary associations.

 The constraint of the schema says that the child actor inherits all roles of its parent

and its parent can not inherit any thing from it.

The schema ActorRelatioShips is the conjunction of the above schemas:

ActorRelatioShips ≙ Association ActorGeneralization

 Ahmed M. Mostafa

; Manal A. Ismail ; El Sayed M. Saad and Hatem EL-Bolok

__

182

UsecaseExtend

Usecases

included, base: Usecases

include: base included

 x,y,z: ucases | (x,y) include (y,z) include ● (x,z) include

 b: base; i: included | (b,i) include ● ((i.usecase b.usecase) ((i,b) include))

UsecaseInclude

Usecases

uparent, uchild: Ucases

ugeneralization: uparent uchild

 x,y,z: ucases | (x,y) ugeneralization (y,z) ugeneralization ● (x,z) ugeneralization

 p: uparent; c: uchild | (p,c) ugeneralization ●
((p.usecase c.usecase) (extension(p) extension(c)) ((c,p) ugeneralization))

Usecase Generalization

4.4. Use case Relationships Schema:

The constraint of the schema says that the child use case inherits all use cases and

extension points of its parent and its parent can not inherits any thing from it.

 The constraint of this schema is that the referenced extension points must be

included in the set of extension points of the base use case.

 The constraint here is that the set of scenarios in the included use case is a subset

of the base usecase’s scenarios and the included use case can not include its base use
case.

The schema UseCaseRelationships is the conjunction of the above schemas:

UseCaseRelationships ≙ Association

 UsecaseGeneralization

 UsecaseExtend ∧

 UsecaseInclude

 Now, consider the example given in section 2 (figures 1, 2, and 3) to be

represented as Z specifications using the previous schemas. The use case diagram has

the following sets (human, non-human, ucases, expoints, owner, associations, aparent,

achild, ageneralization, uparent, uchild, ugeneralization, extend, include):

 human

 {Manager, Trading Manager, Trader, Salesperson}

 non-human

 {Accounting System}

Usecases

extending, base: Usecases

extendingpoints: seq1 ExtensionPoints

condition, isextended:Bool

extend: extending base

condition = t isextended = t

ran(extendingpoints) extension(base)

TOWARD A FORMALIZATION OF USE CASE DIAGRAM….
__

183

human, non_human: ActorName

human, non_human Partition {Manager, Trading Manager, Trader, Salesperson,

Accounting System }

Actors

 ucases

{Set Limits, Analyze Risk, Price Deal, Capture Deal, Valuation, Limits Exceeded,

Update

Accounts, Regular Customer, Buy a Product}

 expoints

 {payment info, shipping info}

 owner

{Trading Manager, Trader, Salesperson, Accounting System, Set Limits, Analyze

Risk, Price Deal, Capture Deal, Update Accounts}

 associations

{Trading Manager_Set Limits, Accounting System_Update Accounts,

Trader_Analyze Risk, Trader_Price Deal, Trader_Capture Deal, Salesperson_Price

Deal, Salesperson _Capture Deal}

 aparent

 {Manager}

 achild

 {Trading Manager}

 ageneralization

 {(Manager, Trading Manager)}

 uparent

 {Capture Deal}

 uchild

 {Limits Exceeded}

 ugeneralization

 {(Capture Deal, Limits Exceeded)}

 extend

 {(Regular Customer, Buy a Product)}

 include

 {(Analyze Risk, Valuation), (Price Deal, Valuation)}

The specification schemas are as follows:

ucases: UsecaseName

expoints: ExtensionPoints

extension: UsecaseName ExtensionPoints

dom extension = {Buy a Product}

extension (Buy a Product) = {payment info, shipping info}

Buy a Product: ucases; payment info: extension(Buy a Product) | #(extension (Buy a Product))>1 ●
(extension (BuyProduct) \ { payment info }) ∩{ payment info } =

Buy a Product: ucases; shipping info: extension(Buy a Product) | #(extension (Buy a Product))>1 ●
(extension (BuyProduct) \ { shipping info }) ∩{ shipping info } =

Usecases

 Ahmed M. Mostafa

; Manal A. Ismail ; El Sayed M. Saad and Hatem EL-Bolok

__

184

Associatio End

associations: AssociationName

linking: AssociationName AssociatioEnd

Trading Manager_Set Limits: associations; Trading Manager, Set Limits: AssociationEnd |

(linking (Trading Manager_Set Limits)) = 2

Trading Manager = (linking (Trading Manager_Set Limits) (1))

Set Limits = (linking (Trading Manager_Set Limits) (2)) ●
(Trading Manager human) (Set Limits ucases)

Accounting System_Update Accounts: associations;

Accounting System, Update Accounts: AssociationEnd |

#(linking(Accounting System_Update Accounts)) = 2

Accounting System = (linking(Accounting System_Update Accounts) (1))

Update Accounts = (linking(Accounting System_Update Accounts) (2)) ●
(Accounting System non-human) (Update Accounts ucases)

Trader_Analyze Risk: associations; Trader, Analyze Risk: AssociationEnd |

#(linking(Trader_Analyze Risk)) = 2 Trader = (linking(Trader_Analyze Risk) (1))

Analyze Risk = (linking (Trader_Analyze Risk) (2)) ● (Trader human) (Analyze

Risk ucases)

Trader_Price Deal: associations; Trader, Price Deal: AssociationEnd |

#(linking(Trader_ Price Deal)) = 2 Trader = (linking(Trader_ Price Deal) (1))

Price Deal = (linking(Trader_ Price Deal) (2)) ● (Trader human) (Price Deal ucases)

Trader_Capture Deal: associations; Trader, Capture Deal: AssociationEnd |

#(linking(Trader_ Capture Deal)) = 2 Trader = (linking(Trader_ Capture Deal) (1))

Capture Deal = (linking (Trader_ Capture Deal) (2)) ● (Trader human) (Capture

Deal ucases)

Salesperson_Price Deal: associations; Salesperson, Price Deal: AssociationEnd |

(linking (Salesperson _ Price Deal)) = 2 Salesperson = (linking (Salesperson _ Price

Deal) (1))

Price Deal = (linking(Salesperson _ Price Deal) (2)) ●
(Salesperson human) (Price Deal ucases)

Salesperson_ Capture Deal: associations; Salesperson, Capture Deal: AssociationEnd |

(linking(Salesperson _ Capture Deal)) = 2 Salesperson = (linking(Salesperson _ Capture

Deal) (1))

Price Deal = (linking(Salesperson _ Capture Deal) (2)) ●
(Salesperson human) (Capture Deal ucases))

Association

Actors

Usecases

owner: AssociationEndName

disjoint {Manager,Trading Manager, Trader, Salesperson, Accounting System}, {Set Limits,

Analyze Risk, Price Deal, Capture Deal, Valuation, Limits Exceeded, Update Accounts,

Regular Customer, Buy a Product}

{Trading Manager, Trader, Salesperson, Accounting System, Set Limits, Analyze Risk,

Price Deal, Capture Deal, Update Accounts} { Manager, Trading Manager, Trader,

 Salesperson, Accounting System, Set Limits, Analyze Risk, Price Deal, Capture Deal,

 Valuation, Limits Exceeded, Update Accounts, Regular Customer, Buy a Product}

Association End

TOWARD A FORMALIZATION OF USE CASE DIAGRAM….
__

185

Actors

aparent, achild: Actors

ageneralization: aparent achild

Manager: aparent; Trading Manager: achild | (Manager, Trading Manager) ageneralization ●
(Trading Manager, Manager) ageneralization

ActorGeneralization

Usecases

uparent, uchild: Ucases

ugeneralization: uparent uchild

Capture Deal: uparent; Limits Exceeded: uchild | (Capture Deal, Limits Exceeded)

ugeneralization ● (Limits Exceeded, Capture Deal) ugeneralization

Usecase Generalization

Usecases

extending, base: Usecases

extendingpoints: seq1 ExtensionPoints

extend: extending base

Regular Customer: extending; Buy a Product: base; extending points = payment info,

shipping info; ran(extendingpoints) ={payment info, shipping info};

extension(Buy a Product) = {payment info, shipping info} ●
ran(extendingpoints) extension(Buy a Product)

Usecase Extend

Usecase Include

Usecases

included, base: Usecases

include: base included

Analyze Risk: base; Valuation: included | (Analyze Risk, Valuation) include ●
(Valuation, Analyze Risk) include

Price Deal: base; Valuation: included | (Price Deal, Valuation) include ●
(Valuation, Price Deal) include

 Consider the extend relationship shown in figure 4; the Z specification of this

relationship can not be generated.

 Ahmed M. Mostafa

; Manal A. Ismail ; El Sayed M. Saad and Hatem EL-Bolok

__

186

 This error occurred because the second predicate (ran (extendingpoints)

extension (base)) in the UseCaseExtend schema is invalid. From figure 4, it can be

seen that ran(extendingpoints) is {payment info, shipping info}; extension(Buy a

Product) is {payment info}.

 In addition to this error, the Z specification presented in section 3 can check other

types of errors. These errors are presented in table 1 which consists of two columns,

the first is the UML requirements and the second is the Z specification constraints to

satisfy them.

5. CONCLUSION

 Although mature object-oriented analysis modeling techniques are widely used

for software specification, their expressiveness and rich set of intuitive constructs are

not used for the modeling of complex systems. This is mainly due to their lack of

support for rigorous analysis [11]. This paper has presented a tentative approach for

formalizing the Unified Modeling Language (UML). As an initial step in this direction,

a representation of the use case diagram using Z specification has been proposed. It has

been shown that the UML has many benefits from formalization; these are clarity,

equivalence and consistency, extendibility, refinement, and proof. All the above work

is very important in developing a more precise understanding of emerging software

development techniques.

 By concentrating on the use case diagram of the UML, it is aimed to develop a

more understandable and manageable description of the language.

Regular

Customer

Buy a Product

extension points

payment info
<<extend>>

(payment info, shipping info)

Figure 4: Extend Relationship with error.

TOWARD A FORMALIZATION OF USE CASE DIAGRAM….
__

187

Table 1. UML Requirements against Z Specification Constraints.

UML Requirements Z Specification Constraints

1 Human and non_human actors can not

have the same name.
human, non_human Partition

ActorName

2 The names of the extension points

must be unique in the same use case.
 u: ucases; x: extension(u) |

#(extension(u)) > 1 ●
(extension(u) \ {x}) ∩ {x} =

3 The use cases’s names and actors’s
names can not be the same, and the

owner of the association end is an

actor or a use case.

disjoint (human ∪ non_human), ucases

owner (human ∪ non_human ∪ ucases)

4 Associations only allowed between use

cases and actors and these associations

are binary associations.

 a: associations; e1,e2: AssociationEnd |

#(linking(a)) = 2 e1= (linking(a) (1))

e2 = (linking(a) (2)) ●

((e1.owner (human ∪ non_human)

(e2.owner ucases))

((e2.owner (human ∪ non_human)

(e1.owner ucases))

5 The child actor inherits all roles of its

parent and its parent can not inherit

any thing from it.

 p: aparent; c: achild |

(p,c) ageneralization ●

(c,p) ageneralization

6 The child use case inherits all use

cases and extension points of its parent

and its parent can not inherits any

thing from it.

 p: uparent; c: uchild |

(p,c) ugeneralization ●

(c,p) ugeneralization

7 The referenced extension points in an

extend relationship must be included

in the set of extension points of the

base use case.

ran(extendingpoints) extension (base)

8 The included use case can not include

its base use case.
 b: base; i: included | (b,i) include ●
(i,b) include

REFERENCES

[1] Object Management Group (OMG), "OMG Unified Modeling Language

Specification", version 1.5, URL "http://www.omg.org/uml", March 2003.

[2] N. Amálio, S. Stepney, and F. Polack, "Formal Proof from UML Models",

ICFEM 2004, Seattle, USA, pp 418-433, Springer, 2004

[3] A.S. Evans and A.N. Clark, "Foundations of the Unified Modeling Language",

2nd Northern Formal Methods Workshop, electronic Workshops in Computing,

Springer-Verlag, 1998.

 Ahmed M. Mostafa

; Manal A. Ismail ; El Sayed M. Saad and Hatem EL-Bolok

__

188

[4] B. Anda and M. Jørgensen, "Understanding Use Case Models", International

Conference on Software Engineering, pp 94-102, June 5, 2000, Limerick,

Ireland.

[5] G. Booch, J. Rumbaugh, and I. Jacobson, "The Unified Modeling Language User

Guide", Addison-Wesley, 1999.

[6] P. Krishnan, "A Framework for Analyses of Use Case Descriptions", URL

"http://www.it. bond.edu.au/publications", 2003.

[7] M. FOWLER and K. SCOTT, "The UML Distilled", second edition. Addison-

Wesley, 2000.

[8] J. Michael Spivey, "The Z Notation: A Reference Manual", Prentice Hall,

Englewood Cliffs, NJ, Second edition, 2001.

[9] T. Tynjälä, "Case Study 1: Formal Methods – Introduction", URL

"http://www.tcs.hut.fi/ Studies/T-79.232", February 2, 2005.

[10] R. France, A. Evans, K. Lano, B. Rumpe, "The UML as a Formal Modeling

Notation", the pUMLgroup, URL "http://www.cs.york.ac.uk/puml/papers", 1998.

[11] J.-M. Bruel and R.B. France, "Transforming UML Models to Formal

Specifications",

Proceedings of the Int. Conf. on Object Oriented Programming Systems

Language and Applications (OOPSLA'98) Vancouver, Canada, 18-22 October

1998.

ا بواسط مواصفا ز ي لنمو حال ااست يل الشك نحو التم

سةةطاخن لالغةةالنلذجة ةةالنلج هةةخطلةةةتلدمةة طلتطوختةةال ةةتللمةة التةةاملنلط ةة ل لنلط ةةج ل
لغةالنلذجة ةاللأصةح نلطتلظهاتل تلأ ندالنلثجان ذاتل لأ نئة لنلطعةن ذاتلللوةخللنأش اء

ت ةةا تل خ ةةخطللجةة لللالنلحاتج ةةاتنلج هةةخطلتو ةةاسل نسةةيلن دط ةةاعل ةةتلصةةذا اللمةة
لهل طجث ةةة لنليةةةر تللطا حةةةاتلل تنةةةانتلعتةةة لللغةةةالنلذجة ةةةالنلج هةةةخطللنلغةةةا لتةةة لةةةةة
نلج ا تلة لنلط وقلنلةخي قلتة لنجةالغللغةالنلذجة ةالنلج هةخطل نلعةجالل الط ة لنليةر تل

نلطةتلة لنهخلنلاسة تاتلنلطام م ةاللن سطاخن لأنظجالنلج ججاللنلاس لنلطام متلل الال
لخ جهاللغالنلذجة النلج هخطل لنلةة ل ةالن هط ا ةاتلنل ظ ةالل ذظةا لنلجمة عكل لللة ل
ل جعا خطل تلنلطنافل تلن هط ا اتلنلرات الل جعطاخ للةةنلنلح ثل هخفللطوةخ لتا وةال

 تحخئ الن لنلطجث لنلير تللذج لغلهالالن سطاخن ل نسمالت نص اتللدلللل

http://www.simula.no/people_publication.php?people_id=12&internal_people=y
http://www.simula.no/publication_one.php?publication_id=311
http://www.it.bond.edu.au/publications
http://www1.acm.org:81/sigplan/oopsla/
http://www1.acm.org:81/sigplan/oopsla/

