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A new hybrid two-stage electrocardiogram (ECG) signals compression 

method based on the Modified Discrete Cosine Transform (MDCT) and 

Discrete Wavelet Transform (DWT) is proposed. The ECG signal is 

partitioned in blocks and the MDCT is applied to each block to 

decorrelate the spectral information. Then, the DWT is applied to each 

MDCT block of the signal. Removing spectral redundancy is achieved by 

compressing the subordinate components more than the dominant 

components. The resulting wavelet coefficients are then threshold and 

compressed using energy packing and binary-significant map coding 

technique for storage space saving. Experimenting on an ECG records 

from the MIT-BIH database is performed with various combinations of the 

MDCT and wavelet filters at different transformation levels, and 

quantization intervals. The decompressed signals are evaluated using 

percentage root mean square error (PRD) and zero-mean root mean 

square error (PRD1) measures. The results showed that the proposed 

method provides low bit-rate and high quality of the reconstructed signal. 

It offers a compressed ratio (CR) in between 12.6 and 21.5 average PRD 

of 5.89%, which would be suitable for most monitoring and diagnoses 

applications. Experiments with ECG signals used in results from the 

literature showed that the proposed method compares favorably with 

various state-of-the-art ECG compressors. 

 

KEYWORDS: Data compression; Electrocardiogram; Wavelet 

transform; Discrete cosine transform; Energy packing; Binary-significant 

map coding. 

 
1. INTRODUCTION 

 

As a diagnosis tool of cardiac diseases, the ECG is a very important physiological 

signal. It provides essential information to cardiologist that is used for both monitoring 

and diagnostic purposes. However, the amount of ECG data grows with the increase of 

sampling rate, sample resolution, recording time, and the number of channels. This 

gradually becomes a problem when storage space and bandwidth are very limited. 

Uncompressed   ECG  data  requires  considerable  storage  capacity  and  transmission  
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bandwidth. In most applications, the sampling rate varies from 125 to 500 Hz and 8, 12 

or 16 bits may represent each data sample. This will lead to an accumulation of ECG 

data ranging from 60 Kbits per minute to 480 Kbits per minute. Despite rapid progress 

in mass-storage density, processor speeds, and digital communication system 

performance, demand for data storage capacity and data-transmission bandwidth 

continues to outstrip the capabilities of available technologies [1].  
 

A typical computerized medical signal processing system acquires a large amount of 

data that is difficult to store and transmit. It is very desirable to find a method of 

reducing the quantity of data without loss of important information. Under these 

circumstances, preserving the most useful information when compressing a signal to an 

acceptable size becomes the central goal of ECG data compression techniques 

proposed in literature over the past 30 years [2]. Conventional ECG signal compression 

techniques explore useful information within the signal. A lossless compression is the 

best choice as long as the compression ratio is acceptable, but it usually cannot offer a 

satisfactory CR. This type of ECG compression techniques hardly achieves a 

compression ratio greater than 2. To obtain significant signal compression, lossy 

compression is preferable to a lossless compression [3]. In this case, compression is 

accomplished by applying an invertible orthogonal transform to the signal, and one 

tries to reduce the redundancy present in the new representation. Due to its 

decorrelation and energy compaction properties and to the existence of efficient 

algorithms to compute it, discrete cosine transform [4], and modified discrete cosine 

transform [5]-[7], have been widely investigated for ECG signal compression. Over the 

years, a variety of other linear transforms have been developed which include DFT, 

DWT and many more, each with its own advantages and disadvantages [8]. Among 

these techniques, DWT has been proven to be very efficient for ECG signal coding [3], 

[9]. Compared to other methods, DWT has gained widespread acceptance in signal 

processing in general, and in ECG compression research in particular. In this case, 

wavelet-based schemes outperform other coding schemes like the one based on DFT 

[1], [10].  
 

In this paper, a hybrid two-stage ECG signals compression method based on MDCT 

and DWT is proposed. Their combination removes the spectral redundancy by 

compressing the subordinate components more than the dominant components. The 

resulting transformed coefficients that represent the transformational signal are then 

threshold and compressed using a new coding technique for storage space saving. 

Experimenting on an ECG records from the MIT-BIH database is performed with 

various combinations of MDCT and DWT at different transformation levels, and 

quantization intervals [11].  

 
2.  WAVELET  TRANSFORMATION 

 

Wavelets are functions defined over a finite interval and having an average value of 

zero [8]. The basic idea of the wavelet transform is to represent any arbitrary function 

x(t) as a superposition of a set of basis functions (wavelets). These basis functions or 

baby wavelets are obtained from a single prototype mother wavelet, by dilations or 

contractions (scaling) and translations (shifts). So, a wavelet transform decomposes a 

signal into a series of smooth signals and associated detailed signals at different 
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resolution levels [12]. At each level, the smooth signal and associated detailed signal 

have all of the information necessary to reconstruct the smooth signal at the next higher 

resolution level. A multi-resolution WT involves two functions: a mother wavelet (t) 

and a scaling function (t). Since 1989, techniques based on filter banks concept have 

been proposed by various researchers under the name of Wavelet Coding (WC) using 

filters specifically designed for this purpose [8]-[10]. In [8], Daubechies was the first to 

discover that the discrete-time filters or quadrature mirror filter (QMF) banks can be 

iterated and under certain regularity conditions will lead to continuous-time wavelets. 

This is a very practical and extremely useful wavelet decomposition scheme, since FIR 

discrete-time filters can be used to implement them. It follows that the orthonormal 

bases in [8] correspond to a subband-coding scheme with exact reconstruction 

property, using the same FIR filters for reconstruction as for decomposition. Wavelets 

did not gain popularity in ECG coding until Daubechies established this link in late 

1980s [8]. Later a systematic way of constructing a family of compactly supported 

biorthogonal wavelets was developed by Cohen, Daubechies, and Feauveau (CDF) 

[12].  

 
3.  MODIFIED  DISCRETE  COSINE  TRANSFORM 

 

The discrete cosine transform (DCT) is a Fourier-related transform of roughly twice 

the length, operating on real data with even symmetry, where in some variants the 

input and/or output data are shifted by half a sample. MDCT is a linear orthogonal 

lapped transform, based on the idea of time domain aliasing cancellation (TDAC) and 

designed to be performed on consecutive blocks of a larger dataset, where subsequent 

blocks are overlapped so that the last half of one block coincides with the first half of 

the next block. This overlapping, in addition to the energy-compaction qualities of the 

DCT, makes the MDCT especially attractive for signal compression applications. 

Thus, it helps to avoid artifacts stemming from the block boundaries [5]-[6]. MDCT is 

critically sampled, which means that though it is 50% overlapped, a sequence data after 

MDCT has the same number of coefficients as samples before the transform (after 

overlap-and-add). This means that, a single block of IMDCT data does not correspond 

to the original block on which the MDCT was performed. When subsequent blocks of 

inverse transformed data are added, the errors introduced by the transform cancel out 

TDAC. The MDCT is defined as [6]: 
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where, x(n), n=0, 1, 2, …, N-1 is the sequence to be transformed, N=2M is the window 

length and M is the number of transform coefficients. The computation burden can be 

reduced if the transform coefficients given by equation (1) are rewritten in the 

following recursive form 
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Where,  

0,1,...,2N,1Nm,VVcos2)m(xV 2m1mkm     (3) 
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And  
M2

1kk

                      (4) 

The MDCT computation algorithm of a data sequence x(n) can be summarized in the 

following: 

1. Partition the data sequence in Nb consecutive blocks, each one with N=64 samples.  

2. Recursively generate the mV from the input sequence x(n) according to (3) and (4).  

3. Calculate the MDCT coefficients for each block by evaluating the k-th MDCT 

coefficient using (2) at the N-th step.  
 

The inverse MDCT is known as the IMDCT. Because there are different numbers of 

inputs and outputs, at first glance it might seem that the MDCT should not be 

invertible. However, perfect invertability is achieved by adding the overlapped 

IMDCTs of subsequent overlapping blocks, causing the errors to cancel and the 

original data to be retrieved. The IMDCT transforms the M real coefficients, XC (0),   

XC (1), … , XC (M-1), into N=2M real numbers, x(0), x(1), … , x(N-1), according to the 

formula:  

     1N...,1,0n,
M2

1k
2

1Mncos)k(X)n(x
1M

0k

C 



 






 (5) 

 

Again, the computation burden of x(n) can be reduced considerably if equation (5) is 

rewritten in the following recursive form 
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Where, 
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4.  COMPRESSION  AND  DISTORTION  MEASURES 
 

All data compression algorithms seek to minimize data storage by eliminating 

redundancy where possible by increasing the compression ratio. It is defined as the 

ratio of the number of bits of the original signal to the number required to store the 

compressed signal. A high compression ratio is wanted, typically, but using this alone 

to compare data compression algorithms is not acceptable. Generally the bandwidth, 

sampling frequency, and precision of the original data very much affect the 

compression ratio. A data compression algorithm must also represent the data with 

acceptable fidelity. 
 

In ECG signal compression, the clinical acceptability of the reconstructed signal has to 

be determined through visual inspection by cardiologists. The error signal resulting 

from the difference between the reconstructed signal and the original one may also be 

measured by numerical measure. A lossless data compression algorithm produces zero 

residual, and the reconstructed signal exactly replicates the original signal. However, 

clinically acceptable quality is neither guaranteed by a low nonzero residual nor ruled 

out by a high numerical residual. The criterion for testing compression algorithms 

performance includes three components: compression measure, reconstruction error 
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and computational complexity. The compression measure and the reconstruction error 

are usually dependent on each other and are used to create the rate-distortion function 

of the algorithm. The computational complexity component is part of the practical 

implementation consideration. 

 
4.1 Distortion Measures 
 

One of the most difficult problems in ECG compression and reconstruction is defining 

the error criterion. The purpose of the compression system is to remove the irrelevant 

information which does not contain diagnostic information. Consequently, the error 

criterion has to be defined such that it will measure the ability of the reconstructed 

signal to preserve the relevant information. As yet, there is no such mathematical 

structure to this criterion, and all accepted error measures are still variations of the 

Mean Square Error or absolute error, which are easy to compute mathematically, but 

are not always diagnostically relevant. In technical literature, the distortion resulting 

from the ECG processing is frequently measured by the percent root-mean-square 

difference (PRD) [1]-[4]. It is most commonly defined as: 
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where,  nx  and  nx~  are the values of the original and reconstructed samples, 

respectively, and N is the length of the window over which the PRD is calculated. 

Another definition, called here PRD1, subtracts from the signal its average value x , in 

the denominator of the above equation.  
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This definition is independent in the DC level of the original signal. One can use the 

first definition, but the original signal has to have a zero mean. Despite their wide use, 

PRD and PRD1 do not indicate precisely the quality of signal's reconstruction [9] and 

the decompressed signal has also to be evaluated by visual inspection. 

 
4.2 Compression Measures 
 

The size of compression is often measured by CR, which is defined as the ratio 

between the bit rate of the original signal ( originalb ) and the bit rate of the compressed 

one ( compressedb ). 
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compressed

original

b

b
CR         (10) 

 

The problem of using the above definition of CR is that every algorithm is fed with an 

ECG signal that has a different sampling frequency and a different number of 

quantization levels; thus, the bit rate of the original signal is not standard. Some 

attempts were made in the past to define standards for sampling frequency and 

quantization, but these standards were not implemented and the algorithms’ developers 
still use rates and quantizers that are convenient to them [2]. In the literature [9], some 

authors use the number of bits transmitted per sample of the compressed signal as a 

measure of information rate. This measure removes the dependency on the quantizer 

resolution, but the dependence on the sampling frequency remains. Another way is 

using the number of bits transmitted per second [13]. This measure removes the 

dependence on the quantizer resolution as well as the dependence on the sampling 

frequency.  

 
5.  QUANTIZATION  AND  CODING  ALGORITHMS 

 

A quantizer simply reduces the number of bits needed to store the transformed 

coefficients by reducing the precision of those values. Since this is a many-to-one 

mapping, it is a lossy process and is the main source of compression in an encoder. A 

quantization scheme maps a large number of input values into a smaller set of output 

values. This implies that some information is lost during the quantization process. The 

original wavelet coefficients )n(c  cannot be recovered exactly after quantization. An 

encoder further compresses the quantized values losslessly to give better overall 

compression. The most commonly used encoders are the Huffman encoder and the 

arithmetic encoder, although for applications requiring fast execution, simple run-

length encoding (RLE) has proven very effective [10]. In the following, wavelet 

coefficients quantization and coding algorithms are described.  

 

5.1. Energy  Packing  Efficiency  Strategy 
 

In this section, the quantization strategy adopted is based on the energy packing 

efficiency (EPE). It guarantees the balance between the compression achievement and 

information loss. Here, quantization process is performed by selecting an appropriate 

threshold level  to control the compression ratio. Due to the careful representation by 

combining the MDCT and DWT, it is reasonable to assume that only a few coefficients 

contain information about the real signal while others appear as less important details. 

The goal is to extract these significant coefficients and to ignore others smaller than  . 

The optimal value of  is determined such that the reconstructed signal is as close to 

the original one as possible. Usually the selection of optimal threshold level is not an 

easy task, because some of the coefficients that represent the actual signal details may 

be also killed, and as a result, signal distortion is the side effect [17].  
 

As it can be deduced from the above discussion, the approximation band is the smallest 

band in size and it includes high amplitude approximation coefficients. The wavelet 

coefficients other than these included by the approximation band, detail coefficients, 
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have small magnitudes. Most of the energy is captured by these coefficients of the 

lowest resolution band. This can be seen from the decomposition of 4096-sample ECG 

signal up to the fifth level. The total energy of the signal is 94393.5. About 99.73% of 

this energy is concentrated in the 136 approximation coefficients and only 0.27% of the 

energy is concentrated in the remaining 3960 detail coefficients. Here, threshold levels 

are defined according to the energy packing efficiencies of the signal for all subbands. 

EPE for a set of coefficients in the ith subband is defined as the ratio of the energy 

captured by the subband coefficients and the energy captured by the whole number of 

coefficients. 
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Where iL and L are the number of coefficients in the ith subband and the whole 

number of coefficients respectively. A large threshold could attain high data reduction 

but poor signal fidelity and a small threshold would produce low data reduction but 

high signal fidelity. To explore the effect of threshold level () selection and the 

coefficients representation on the compression ratio and PRD, the following 

thresholding rule is set: 
 

Keep all the wavelet coefficients in the approximation subband without thresholding 

and  calculate the threshold value for each details subband separately  by preserving 

the highest amplitude wavelet coefficients in the ith details subband that contribute to 

i % of the energy in that subband.  
 

One important feature of this rule is that the integer part of the wavelet coefficients in 

each subband is represented by different number of bits.  

 

5.2.  Binary  Significant  Map  Coding  Algorithm 
 

The coding algorithm adopted here is based on grouping the significant coefficients in 

one vector and the locations of the insignificant coefficients in another vector. The 

significant coefficients are arranged from high scale coefficients to low scale 

coefficients. Each significant coefficient is decomposed into integer part and fractional 

part, where M-bits are assigned to represent the integer part (signed representation) and 

N-bits represent the fractional part; i.e. each coefficient is represented by N+M bits. A 

binary significant map is used as flags to indicate if the coefficient is significant or not. 

This binary stream is compressed further as will be shown in the following: 
 

1. Threshold the wavelet coefficients, )(nc , to produce the threshold coefficients 

)(nc . The threshold level () is determined by using the above-mentioned rule 

such that the distortion in the reconstructed signal ix  is acceptable. The distortion 

is measured using PRD and/or visual inspection. The optimal non-orthogonal 

wavelet transform developed in [5] may be used to minimize the PRD in least 

mean square sense.  
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2. Search the vector )(nc to isolate the significant coefficient in another vector )(ˆ mCS .  

3. Use finite word length representation to represent the integer and fractional parts of 

the coefficients, )(ˆ mCS . The number of bits used to represent these coefficients is 

determined as follows: 

3.1 Search the vector )(ˆ mCS to find the maximum coefficient (in absolute 

value) and determine the number of bits that represents this coefficient. 

This can be done by finding |)m(
S

Ĉ|maxIntk   where .Int  denotes 

the integer part. Then convert k to a binary number and count the number of 

bits, M.  

3.2 Similarly, find the number of bits, N, that represent the minimum value of 

the fractional part of each significant coefficient in such a way to keep the 

distortion within acceptable limits.  

4. Generate a binary stream, b(n),  of 1’s and 0’s that encodes the zero-locations in 

)n(c . This is done by coding each significant coefficient in )n(c by a binary 1. 

The length of the binary stream equals n1, where n1 designates the index value of 

the last significant coefficients in )n(c . Hence, there is no need to encode the 

zeros for n> n1. The value of n1 need not be stored because it can be determined as 

the length of the vector b(n) in the decoding process.  

5. Compress the binary stream using run length encoding of 0’s and 1’s. This is done 
as follows: 

5.1 Set i = 1,  Run-type= b(i),  and set the run length Z to 1; 

5.2 If b(i)  b(i+1)  increment i by Z. Else, while b(i+1) = b(i),  increment i by 

1  and Z by 1   end;  end. 

5.3 From Table (1), find the inequality that Z satisfies. Then output the symbol 

that specifies the run type followed by the number Z. i.e., code = [code  Z],  

where  designates concatenation operator.  

5.4 If index < n1 set Z=1 and go to step (5.1). 

6. Represent the obtained run length code in binary format. There are 16 different 

symbols that can be generated from step 5. These are the digits 0-9 and the letters 

A-F. Hence, 4 bits can be used to represent each symbol. 

 
Table (1): Run Length Encoding of 0’s and 1’s. 

 

Symbol Run Type Range  Symbol Run Type Range 

A 0 999100  Z   D 1 999100  Z  
B 0 9910  Z   E 1 9910  Z  
C 0 92  Z   F 1 92  Z  

 
 

6.  EXPERIMENTAL  RESULTS 
  

In this section the performances of the introduced compression algorithm is presented 

and compared to other known compression algorithms. For this purpose, data from the 

MIT-BIH arrhythmia database is used to evaluate the proposed compression algorithm. 
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The obtained results are compared with that obtained using other well known ECG 

compression algorithms [1], [3], [14]-[16]. All ECG data used here are sampled at 360 

Hz, and the resolution of each sample is 11 bits/sample. The distortion between the 

original and reconstructed signal is measured by percent root mean square difference 

(PRD or PRD1). Although PRD does not exactly correspond to the result of a clinical 

subjective test, it is easy to calculate and compare, so it is widely used in the ECG data 

compression literature. The first two minutes of records 117 and 119 from MIT-BIH 

database were used to experimentally assess the performance of the method. We 

applied MDCT followed by DWT for each test signal and for target PRD equal to 

1.5%, 2.0%, 2.5% and 3.0%. The wavelets used for the assessment of the proposed 

method are: biorthogonal with 12/4 filters lengths, Daubechies D4, and symlets of order 

4. The resulting WT-coefficients were then thresholded and coded using the above 

mentioned thresholding rule and coding technique respectively. Figure (1) allows 

visual assessment of the quality of four second length ECG signal from record 119. It 

indicates an excellent preservation of QRS complexes and of all important signal 

features. 
 

 

  
 

Fig. (1): Visual assessment of the quality of four second ECG signal from record 119. 
(a) Original signal  (b) Reconstructed signal  (c) Error signal (with PRD=3.42%). 

 

 

 
 

In order to compare the performance of our method with other ECG compressors, we 

selected results from the literature reporting CR and PRD or PRD1 and obtained with 

precisely defined sections of records from the MIT/BIH arrhythmia database. Some of 

these results were produced after changing the sampling rate or the number of bits per 

sample of the signals, and we altered the signals accordingly. We compared PRD or 

PRD1 at the same CR, within a 0.04 tolerance. Table (2) summarizes the results. A 

compression ratio of 7.98:1 has been achieved with a percent of root mean square 

difference (PRD) of 0.25%, indicating that the proposed compression technique offers 
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the best performance over the other evaluated methods. For higher compression ratios 

up to 21.5:1, the PRDs are less than 5.89% which is acceptable from diagnoses point of 

view. 

 

7. CONCLUSION 
 

In this paper, we proposed a hybrid ECG compression technique based on wavelet 

transformation of the MDCT coefficients of the signal. While the DCT-based ECG 

coders perform very well at moderate bit rates, at higher compression ratios, ECG 

signal quality degrades. Wavelet-based coding on the other hand provides substantial 

improvement in signal quality at low bit rates because of overlapping basis functions 

and better energy compaction property of wavelet transforms. Interaction of MDCT 

analysis with data compression, DWT transformations, signals thresholding and coding 

are a few of the many outstanding challenges in ECG compression. We tested the 

performance of the algorithm by coding two records in MIT-BIH ECG arrhythmia 

database. Results obtained by running the compressor on the first two minutes of 

records 117 and 119 and adopting different MDCT and DWTs show that the proposed 

method is capable of achieving compressed ratio in between 12.6:1 and 21.5:1, with 

PRD less than 5.89% which would be suitable for most monitoring and diagnoses 

applications. We presented traces for visual assessment of the quality of the 

reconstructed signals. These traces indicate an excellent preservation of all important 

signal features. 

 
Table (2): Comparing compressors from literature with the proposed compressor. 

 

Methods from Literature Proposed Method 

CR 
Compression Method 

% PRD or 

% PRD1  (*) 

% PRD or 

% PRD1  (*) 

Wavelet Compression by SPIHT [1] 
3.0 

6.5 

2.5 

5.4 

10 

20 

Sub-band/F16B FIR [14] 2.8
* 

2.4
* 

7.3 

Adaptive Optimized Quantization of  

WT Coefficients [3] 
6.8 6.0 12.5 

Cut and Align Beats Approach with 1D 

DCT [15] 

7.5 

15.1 

1.7 

4.0 

6.0 

12.0 

Gold Washing VQ / WT [16] 
6.3

* 

8.2
*
 

3.4
*
 

4.7
*
 

9.4 

12.4 
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 ( :sabahma@yahoo.com  ) بريΪ الϜترϭني 

 

(. تعتϤةΪ هةάا اليريقةة (ECGفي هάا البحث تم اقتراΡ طريقة هΠينيةة جΪيةΪل لπةأش أةةاέل القϠة  
  Ϥال  ϡاϤجي  الت ϝحوϤل ϝالفعا ϡاΪΨي ااستϠع( تقيعϤال ϝΪََعMDCT تقيةعϤةة الΠويϤال ϝمحةوϭ  )

(DWT( ل الةةةةي اجةةةة ا   ةةةةأيرلέحيةةةةث يةةةةتم تقسةةةةيم ااةةةةةا )blocks ϝبيةةةةو )عينةةةةة يةةةةتم  46            
عةةةϝΪَ الϤتقيةةةع عϠيϬةةةا اϭا طيالةةةة الϤعϠومةةةا  الييفيةةةة ال ائةةةΪل تيبيةةة   Ϥال  ϡةةةاϤجيةةة  الت ϝمحةةةو                     

(spectral redundancyحي )( ˶حقةةϠϤو˷نةا˶  الϜϤش ال ( subordinate componentsث يتم οَةأط
οةأش معةام   الϤويΠةة (. يϠةي Ϋلة  dominant componentsأكثةر م˶ة ط الϜϤو˷نةا  الϬϤيϤنةة )

لϤϠعةام    (  ϭتشةفير الΨرييةة˶ الثنائيةة˶ έenergy packingبةش الياقةة˶ ) تيإستعϤاϝ تقنيالناتΠة ب
ϭلقΪ تم اختبةاέ اليريقةة الϤقترحةة عϠةي سةΠ ˶  اةةاέا   (. binary significant map) الϬامة

               عةةϡΪ اتسةةان النةةبو الϤتةةوفرل فةةي الϤعϬةةΪ ا مريϜةةي اϡ أ  تةةيقϠةة  مةةةخوΫل م˶ةة ط قاعةةΪل˶ بيانةةا  
 (MIT-BIH arrhythmia database ،)  وعةةةا  متنوعةةةة مةةةϤΠلةةة  مΫ فةةةي ϡΪΨحيةةةث اسةةةت

عَةةϝΪَ الϤتقيةةمحةةوا    Ϥال  ϡةةاϤبةةش طاقةةة˶ جيةة  التέ  مسةةتويا Ϊتقيةةع عنةةϤةةة الΠويϤال ϝمحةةوϭ ع
ϭمسةةتويا  تحويةةت مΨتϠفةةة. تةةم تقةةيم هةةάا اليريقةةة عةة  طريةة  اسةةتΪΨاϡ مقيةةا  الΠةةέά التربيعةةي 

(  ϭ الΠةέά التربيعةةي لϤتوسةش الفةرن بةةي  root-mean-squared errorلϤتوسةش مربةع الΨيةة )
ََ التةي تةم  .(zero-mean root-mean-squared errorمربةع الΨيةة ϭمربةع الϤتوسةش ) النتَةائ˶
قترََحةَ   الحصوϝ عϠيϬا تبي  أ˷ϥ اليريقةَ   Ϥتعييال ϝΪفو قيعةة معةΨمةن (low bit-rate)  ˶لέإةةاϭ    

( عالية الΠوΩل˶. هάا النتائَ توοح انه تم الو وϝ إلي نسةبة reconstructed signalمسترجعة )
فةةي اطةةةاέل الϤسةةترجعة ا يتΠةةاϭي  بΨيةةة ο1:.421  ϭ:1.121ةةأش ل ةةةاέل فةةي الϤةةΪ  مةةا بةةي  

. ϭبتيبيةة  ϭهةةάا القةةيم مناسةةبة تϤامةةا   ةةرار عةةرر ااةةةاέل ϭالتشةةΨي  الϤرοةةي  % 5..9
قترََحةَ عϠي اةاέا  سب  οةأيϬا بيةرن حΪيثةة منشةوέل فةي الةέϭΪيا  العالϤيةة تبةي    Ϥاليريقةَ ال

                                                                              التϜافئ اايΠابي بينϬا. 
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