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       Abstract— The Internet of things is a pool of on-demand and configurable resources and services that are 

delivered across the usage of the internet. Providing privacy and security to protect their resources is 

considered a very challenging issue since the distributed architecture of the cloud makes it vulnerable to the 

intruders. To mitigate this issue, intrusion detection system plays an important role in detecting the attacks in 

the network. Intrusion detection system is a software or hardware component that implements monitoring and 

analysis processes of the system events or network activities. Once detecting any intrusion, an alert is raised to 

the administrator in order to take appropriate actions against such these intrusive events. In this paper an 

intrusion detection system is proposed for routing protocol for lossy and low power network attacks. The 

objective of the proposed system is to detect a variety of routing attacks namely sinkhole, selective forward and 

blackhole attacks. The detection algorithm uses trust management strategies that are based on a set of trust 

properties each of which is used for the detection of a specific type of routing attacks. The proposed attack 

detection algorithm was simulated using the Contiki Cooja simulator with centralized intrusion detection 

system placement strategy. The evaluation results show that in the proposed algorithm was able to detect the 

simulated attacks with 100% true positive detection rate in some scenarios.  

Keywords— Trust Management, Internet of Things; RPL Attacks; Intrusion Detection System; Sinkhole; 

Blackhole. 

I. INTRODUCTION 

The Internet of things (IoT) systems are exposed to several attacks because of the huge number of 

connected devices and the nature of this devices which all operate in low power and lossy networks (LLNs). 

Traditional security techniques cannot be directly applied to overcome IoT security issues [1]. LLNs use a 

standard routing protocol named routing protocol for LLNs (RPL). There are three main types of RPL 

attacks namely: attacks against resources, attacks against topology and attacks against traffic [2]. The focus 

of this paper is to detect RPL attacks against topology specially sinkhole, selective-forward and blackhole 

attacks. 

In this paper an intrusion detection system (IDS) for RPL attacks in IoT networks is proposed. The 

proposed approach uses trust management strategies for the detection a specific type of RPL attacks such 

as sinkhole, selective forward and blackhole attacks. The proposed IDS uses an attack detection algorithm 

that leverages a set of parameters to detect a variety of RPL attacks. Two main attack detection parameters 

are used by the detection algorithm which are the node-rank change rate in the network and the drop rate 

of node-forward-packets in the network. 

A wide variety of research techniques have been proposed in the literature to design, implement, and 

evaluate an IDS for IoT networks [3, 4, 5, 6, 7]. Such techniques can detect and identify various types of 

RPL attacks such as sinkhole, blackhole and selective forward attacks. Each of these techniques is focused 

on a single type of attacks, while the proposed approach aims to develop an extendable IDS that can be 
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easily modified to detect types of attacks other than those used in the trust model that supports the proposed 

IDS. 

Simulated networks with different configurations were implemented to evaluate the proposed IDS 

using Contiki Cooja simulator [8]. The true positive attack detection percentage ranges from 89% to 100% 

for sinkhole attack and ranges from 80% to 100% for both blackhole and selective-forward attacks. Also, 

simulations were performed with a combination of sinkhole and blackhole attacks. In such simulations the 

true positive attack detection percentage was in range from 92% to 100%. Such combination was 

implemented by merging two different attack detection parameters in a single trust management model. 

The proposed technique increases the detection percentage for the mentioned attacks and provides high 

detection percentage for combination of sinkhole and blackhole attacks. 

The paper is organized as follows. Section II introduces background information about related RPL 

attacks and types of IDSs. Related work is briefly explained in section III. Section IV describes the proposed 

IDS. A brief explanation of the experimental setup is introduced in section V. The experimental results are 

presented and discussed in section VI. Finally, conclusions and future work are summarized in section VII. 

II. BACKGROUND 

Security issues in IoT are categorized based on IoT layers into three layers namely: perception layer, 

application layer and transportation layer [9]. In this paper the focus is on RPL attacks in the perception 

layer. The following subsections provide background information about such RPL attacks and a 

classification of different IDSs.                        

A. RPL Attacks 

Figure 1 shows a taxonomy of attacks against RPL protocol [2]. The attacks are classified into three 

main categories based on the target of each attack. The first category of attacks is made against network 

resources in which illegitimate nodes create unnecessary actions to overload these resources. The second 

category of attacks is made against network topology while the third category attacks is made against the 

traffic flow in the network. Each of the three categories will be described in more detail as follows.                                            

 

      Fig. 1. Taxonomy of RPL attacks [2] 

Resource attacks are divided into two subcategories namely: direct attacks and indirect attacks. In 

direct attacks, the malicious node breaks down the resource by creating a flow of unnecessary actions which 

include flooding and routing table overload. In the indirect attacks, the malicious node forces other nodes 
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to create unnecessary actions to overload the network resources. The indirect attacks include increased-

rank attacks, direct acyclic graph (DAG) inconsistency attacks and version number modification attacks.                                                                                           

Topology attacks are divided into two subcategories namely: sub-optimization and isolation attacks. 

The sub-optimization attacks affect the network performance by diverging network traffic paths from the 

optimal path. They include routing table falsification attacks, sinkhole, wormhole, routing information 

replay and worst parent attacks. The isolation attacks aim to isolate a node or a subset of nodes in the 

network which makes these nodes idle and consequently, cannot communicate with their neighbours or 

with the root. The isolation attacks include blackhole attack and destination advertisement object (DAO) 

inconsistency attacks.  

Topology attacks are the focus of this paper specially sinkhole, selective forward and blackhole 

attacks. Sinkhole is considered a node rank attack where the malicious node advertises a lower rank than 

its neighbors to attract their traffic to itself. In selective-forward attack, malicious nodes may refuse to 

forward certain messages and simply drop them. The malicious node selectively drops the packets coming 

from a particular node or from a group of nodes [10]. The blackhole attack drops all messages and never 

forwards anything, this attack when combined with the sinkhole, can have severe effects on the network 

performance [11].           

Finally, traffic attacks include two subcategories namely: eavesdropping attacks and misappropriation. 

In eavesdropping attacks, malicious nodes perform eavesdropping activities such as sniffing on the traffic 

of the network. Eavesdropping attacks include sniffing and traffic analysis attacks. Misappropriation attacks 

work on changing the identity of a legitimate node. These attacks do not cause effective damage of the RPL 

network. These attacks are often used as a base for other types of attacks. Misappropriation attacks include 

decreased rank and identity attacks.    

B. Intrusion Detection Systems                                                     

The IoT network can be secured by encryption but there are some limitations on applying encryption 

in IoT networks [8]. This is due to the lack of encryption and authentication standards developed 

specifically for IoT networks in addition to the limited computing power of IoT devices. Therefore, 

traditional security countermeasures like encryption could not work efficiently in IoT systems [12]. For this 

reason, developing specific security solutions for IoT networks is essential. Hence, an IDS is adopted with 

various IDS placement strategies are applied. The administrator of an IoT network can choose the strategy 

that is more appropriate for the network resource capacity.   An IDS acts as a network observer which 

generates an alert before the attacker start attacking. It can detect both types of attacks namely: internal and 

external attacks. IDSs can be classified into three categories based on placement strategies, detection 

methods and validation strategies [12]. More details will be described in the subsequent subsections.      

B.1 IDS Placement Strategies 

       There are three placement strategies based on network architectures [12]. The three strategies are 

described in more detail as follows: 

• Distributed IDS placement: An IDS module is placed in every node in the LLN. Each node is 

responsible for monitoring its neighbors. 

• Centralized IDS placement: An IDS module is placed in a centralized node, for example, in the 

border router, where all data that nodes send are gathered in that router.  The centralized approach 

takes into consideration the LLN attribute of IoT nodes. The centralized node is the only node in the 

network that analyzes data and is responsible for the detection of attacks from any objects in the 

physical domain.  
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• Hybrid IDS placement: Hybrid IDS placement strategy combines the two previous placement 

strategies together to gain from the advantages of both and to avoid their draw backs. There are two 

approaches for hybrid IDS placement. In the first approach the network is divided into clusters where 

the IDS modules are placed in the head of each cluster. In the second approach, IDS modules are 

placed both in the centralized nodes and in the other network nodes. The main difference of this 

approach from the first one is the presence of a central component. 

B.2 Intrusion Detection Methods 

       The intrusion detection methods are divided into four categories namely: anomaly-based, signature-

based, specification-based and hybrid [12]. Details will be described as follows: 

• Signature-based approaches: the IDS generates internal signature databases from the behaviors of 

the different attacks. If the activity of the network matches the signatures stored in the databases, 

then an alarm is fired. Signature-based IDSs are very effective and provide high accuracy of 

detecting attacks with known signatures.  However, they are ineffective to detect new attacks and 

variants of known attacks, because a signature of these attacks is still unknown by the IDS. 

• Anomaly-based approaches: the IDS studies and analyses the behavior of the network under attack 

and compares this behavior with the normal network behavior. If a mismatch based on a specified 

threshold occurs, the IDS fires an alarm. This approach is efficient to detect attacks against 

resources, because such attacks force a network node to create unnecessary actions which affect the 

behavior of the node.  

• Specification-based approaches: the IDS specifies an exact behavior for each node, routing 

table or other network component. The approach then detects intrusion when a network 

component behavior deviates from the specified exact behavior with a specific threshold. 

Therefore, the concept of deviations from normal behavior is the same for anomaly-based 

and specification-based detection approaches. However, the main difference is the rules of 

specification-based approaches which are defined manually for each specification made by 

a human expert which makes this approach both tedious and error prone.  

• Hybrid approaches: merge the concepts of the three previously described approaches to maximize 

their advantages and minimize the impact of their drawbacks.  

B.3 IDS Validation Strategies 

IDS validation strategies can be performed by use of data and experts. While the use of data means a 

quantitative and more objective validation, the use of experts provides a subjective and qualitative 

validation. A classification of validation methods was presented in [12]. This classification includes four 

main validation methods namely: hypothetical, empirical, simulation and theoretical. Hypothetical methods 

are used when there is unclear relation between the IDS and realism. Empirical methods are used for 

systematic experimental gathering of data from operational settings. In [13, 14] the authors developed 

experimental testbeds using a combination of specific IoT software/hardware components such as TinyOS 

[15] and Raspberry Pi [16] to evaluate their proposals. Simulation methods are used is simulating various 

IoT scenarios. The authors in [3,4,17] used simulation as their validation strategy. Theoretical methods are 

based on formal or precise theoretical arguments to support results [18].  

III. RELATED WORK 

SVELTE is a hybrid IDS where the authors proposed an anomaly- and signature-based IDS [3]. They 

proposed a hybrid placement strategy where they placed IDS modules both in the 6LoWPAN Border Router 

(6BR) and in any other constrained IoT nodes in the network. SVELTE IDS applied network simulations 
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on sinkhole and selective forward attacks using Contiki Cooja network simulator [8]. SVELTE IDS expect 

that the 6BR is not a constrained node and it can be a PC or a laptop. 

SVELTE IDS defines three modules. The first module is the 6Mapper mapping module which is 

responsible for collecting information about the RPL network. The second module is for intrusion detection 

which analyses the data collected by the 6Mapper and detects the intrusion. The third module is a firewall 

which filters unwanted traffic before it enters the constrained IoT network. For sinkhole attacks, SVELTE 

IDS was able to achieve a maximum true positive attack detection rate of 90% which decreases for larger 

networks. While for selective forward attacks, SVELTE IDS was able to achieve 80% true positive attack 

detection rate in lossy networks.  

The proposed IDS in this paper aims to detect the same attacks like SVELTE, but using a centralized 

approach to relieve the load from the burden of the constrained IoT nodes. Unlike SVELTE, the proposed 

IDS uses a set of trust management properties to detect different types of attacks and the 6BR is constrained 

node as any node in network not pc or laptop. 

INTI is an IDS of sinkhole attacks in 6LoWPAN IoT networks that was proposed in [4].  INTI was 

proposed to identify sinkhole attacks on the routing services in IoT. INTI aimed to reduce the ratio of false 

positive and false negative attack detection rates. INTI used reputation and trust strategies for detection of 

attackers by analysing the behaviour of IoT devices. The results showed that INTI achieved a sinkhole 

attack detection rate up to 92% in a fixed scenario and 75% in a mobile scenario. The proposed IDS is 

similar to Cervantes IDS in its usage of reputation and trust strategies for detection of attackers. The 

difference between the two approaches is that the proposed IDS analyses the behaviour of the attack itself 

not the behaviour of the IoT devices.                                                   

A trust-based IDS was proposed in [5] to secure RPL routing protocol from blackhole attacks. This 

approach is based on a monitoring mechanism where each node in the network monitors the traffic of its 

neighbours. The proposed IDS used traffic analysis to detect malicious nodes. This method costs the 

constrained IoT devices extra energy consumption. The proposed IDs in this paper provides a similar work 

to secure RPL routing protocol from blackhole attacks in addition to other types of attacks. 

SIEWE is an anomaly-based IDS to detect RPL blackhole attack [6]. SIEWE filters out suspect able 

nodes in the network and then verifies the behaviour of these nodes. SIEWE  filters out the nodes that 

broadcast a comparatively high routing metric and appends their node IDs to a suspect list. The behaviour 

of the nodes in the suspect list is then analysed and the observations are sent to a border router node. The 

proposed approach is also used to detect RPL blackhole attacks. However, unlike SIEWE, the proposed 

IDS is signature-based and the detection mechanism is performed based on the behaviour of the attack not 

the behaviour of nodes in the network. 

Trust based IDS to detect internal attacks in IoT Systems is proposed in [7]. This work focused on 

three attacks namely: blackhole, sinkhole and wormhole attacks.  The proposed IDS in this work was placed 

in each node. Each node behaves as a monitor node and evaluates the trust score of all its neighbours. The 

trust scores are evaluated based on three different behaviours namely: honesty, reception of packets only 

from neighbouring nodes and lack of cooperation. This work is similar to the proposed approach in using 

trust management techniques and in detecting similar attacks. However, it differs from the proposed IDS 

in that the detection technique is based on the behaviour of the neighbour nodes not on the attack itself. 

Furthermore, our proposed IDS is placed in the boarder router not at each node to save energy consumption 

which the monitoring technique exhaust on constrained IoT devices.  
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Table 1 shows a summary of the related work versus the proposed IDS. The table shows a simple 

classification of the work discussed above based on IDS characteristics and RPL attacks. Specifically, for 

each related work the table shows the IDS placement strategy, intrusion detection method and the RPL 

attacks used to evaluate the IDS detection method. The characteristics of the proposed IDS is shown in the 

last row of the table. 

Table 1. Summary of related work versus proposed IDS 

Reference Paper 

IDS Placement Strategy 
Intrusion Detection 

Method 
RPL Attacks used in evaluation 

Distributed Centralized 
Anomaly 

 based 

Signature 

 based  

Sinkhole  

attack   

Blackhole 

 attack   

Selective-

forward  

attack   

Raza et al. [3] X X X X X  X 

Cervantes et al. [4]  X  X X   

Airehrour et al. [5] X  X   X  

Patel et al. [6] X  X   X  

Ambili et al. [7] X  X  X X  

Proposed IDS  X  X X X X 

IV. PROPOSED IDS 

This section describes the proposed IDS. The proposed IDS uses an intrusion detection trust 

management model to detect RPL attacks against network topology. It works as a network observer that 

generates an alert when the attackers begin to attack both from inside and from outside of the network. It 

applies a centralized strategy where the IDS is placed in the broader router as shown in Figure 2. All nodes 

in the network act as data collection components that send their data to a border router node. The border 

router node collects data for analysis purposes. The proposed IDS applies a signature-based strategy where 

there are specific signatures that define the different attacks. If any match happens with the stored 

patterns/signatures, the IDS fires an alarm.  

 

  Analysis component 

 

   

 

   Data collection component 

 

Fig. 2. Centralized Based IDS 
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A. Proposed Trust Management Model 

The proposed IDS is based on a trust management model where the trust assessment of node j by node 

i at time t is denoted by Tij (t). The time t is the time at which node j sends data to node i . Tij (t) is a real 

number in the range of [0, 1] where 0 indicates no trust, and 1 indicates full trust. Tij (t) is formally defined 

as follows: 

Tij (t) = 1 - Dij (t)           (1) 

Where Dij (t) is the probability of detecting the attack made by node j to node i at time t. Dij (t) takes a 

value from 0 to 1 that defines the probability of considering the node to be an attacking node. For example, 

if Dij (t) is 0.7, this means node i considers node j an attacking node with probability 0.7. Therefore, the 

trust value Tij (t) will be 0.3. Dij (t) is formally defined as follows: 

Dij (t) = w1× p1 + w2×p2    (2) 

Where w1, w2 are two weights associated with two attack detection parameters, p1 and p2 where the 

sum of w1 and w2 is equal to 1. The weight values are used to assign more effect to one of the two attack 

detection properties on the value of Dij (t) than the other trust property. Changing the weight values provides 

flexibility in the detection of more than one type of RPL attacks.  Each of the two properties are described 

as follows.  

The first attack detection parameter, p1, is used to detect change-in-node-rank family attacks like 

sinkhole attack. It is used to calculate the change in rank compared with its neighbours’ average rank as 

shown in the following equation: 

p1=  
(average of neighbours ranks –current node rank)

MinHopRankIncrease
   (3) 

Where the MinHopRankIncrease refers to the minimum allowed increase in rank between a node and 

any of its parents [19]. MinHopRankIncrease is a constant variable whose default value is 256 which is 

considered the minimum rank in the IoT network, i.e., rank of the root node [20. 21]. The Contiki Cooja 

simulator which is used in this work assigns a 16-bit rank value to each node. The node rank value changes 

in units of 256 that allows a maximum of 255 hops. Each node calculates its rank with respect to its parent 

rank using the summation of the parent rank and the MinHopRankIncrease value. The rank calculation is 

based on hop count objective function which is defined as follows: 

R (n) = R (P) + MinHopRankIncrease    (4) 

where R(n) represents the rank of node n and R(P) is the rank of the parent node. Any node selects one of 

the neighbour nodes with the least R(n) value to be its parent node.  

Figure 3 shows a sample IoT network with sample rank values. This figure shows how the parameter, 

p1, is used to detect a sinkhole attack. Root node 1 calculates the change in rank for the other three neighbour 

nodes, 2, 3 and 4 based on the sent rank from the three nodes. Node 1 then calculates the paramter p1 and 

T1j (t) for each node j, based on the following  steps. First of all, node 1 collects all neighbors’ data and 

calculates the average rank of all neighbor nodes. Then node 1 uses equation (3) to calculate p1 followed 

by equation (2) to calculate D1j (t) where w1 =1, w2 =0 because only p1 is used to detect sinkhole attacks, 

while p2 is ignored. Finally, trust value T1j (t) is calculated using equation (1). These steps are repeated for 

each node for each send interval period, t. 
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Fig. 3. An IoT network with sample rank values 

The values that result from applying the above calculations are as follows. For node 2, p1= 0.1, D12 (t) 

= 0.1 and T12 (t) = 0.9. For nodes 3 and 4, p1 = 0.4 , D13 (t) = D14 (t) = 0.4 and T13 (t) = T14 (t) = 0.6. In 

general, when a sinkhole attack occurs, a decrease in the node rank happens which results in the decrease 

in the value of Tij (t). 

The second attack detection parameter, p2, is used to detect packet-drop family attacks like selective-

forward and blackhole attacks. These attacks work by dropping the forwarded data packet which is received 

by a node from its neighbours. This data packet is a Destination Oriented Directed Acyclic Graph 

(DODAG) Information Object (IO) message. This DODAG Information Object (DIO) message stores rank 

and DAG information about the node’s neighbour as shown in figure 4 [22]. DIO message is the first 

message that each node sends to all its neighbours in the DODAG. The trust property, p2, is formally defined 

by following equation: 

 p2 = 1 −
 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑝𝑎𝑐𝑘𝑒𝑡  

𝑚𝑎𝑥𝑑𝑎𝑡𝑎𝑝𝑎𝑐𝑘𝑒𝑡 
      (5)  

where the received forward packet is the summation of the values of all the objects in DIO message like 

node ID, node rank and number of neighbours as shown in figure 5 [3] and maxdatapacket is the sum of 

max values of these objects i.e. the sum of max node ID, max rank, max parent ID, max parent rank and 

max number of neighbours. 

The structure of the dropping attacks like blackhole or selective-forward attacks is based on dropping 

of the received data packet of their children. For example, if a node x, i.e. a blackhole malicious node, 

receives a data packet from its child node y, the node x neglects the received packet. This means that the 

received forward packet at the root node becomes always zero. 

RPL Instance ID Version Number Rank 

G 0 MOP Prf DTSN Flags Reserved 

Fig. 4. DIO message for a node 

Node ID    Node Rank Parent ID Parent Rank Number of Neighbors 

Fig. 5. Format of the forward data packet  

B. Proposed Algorithm 

The proposed attack detection algorithm is shown in figure 6. It takes as input a set of nodes N and a 

threshold value TH. The algorithm calculates and returns a final trust value for all nodes in N and raises an 
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alarm when the trust value becomes less than or equal to TH. The proposed algorithm performs one of two 

tasks for all nodes in N at each transmission time. The two tasks are described as follows. 

The first task is applied if the node has a direct link with the root node. This task is applied by the 

proposed algorithm by testing the equality between the node’s parent ranks with the root rank as shown in 

line 3. If this equality is true, the two parameters, p1 and p2, are computed as shown in lines 4 and 5.  

The second task is applied if the node has no direct link with the root node. This node only sends its 

data packets to its parent node. In this case the parameter, p2, is not effective and the detection is only based 

on parameter p1. Since there is no forwarding of data packets and consequently, there is no packet dropping 

that can occur, parameter p2 is ignored. The weight values, w1 and w2, are set based on which of the two 

parameters has the higher value. The parameter with the higher value is multiplied by the higher weight 

while the other parameter is multiplied by the lower weight. This is shown in lines 10 to 14. Finally, the 

root calculates the trust value Tij (t), for each node in N as shown in line 16. The root node then raises an 

alarm for each node in N if Tij (t) value is less than or equal to TH as shown in lines 18 to 24. 

Input: N - a list of nodes and threshold TH (the minimum trust value is equal to 0.5) 

Output: trust value for each node in N at the time of sending t, i.e. Tij (t) 

Begin 

1.      foreach Node in N do  

2.         diff_rank=average_neighbour_rank - node_rank 

3.         if  (parent_rank = root_rank)  then  

4.              p1← |diff_rank/MinHopRankIncrease| 

5.              p2← |1- (received forward packet /maxdatapacket)|  

6.         else 

7.              p1← |(diff.rank/MinHopRankIncrease)|  

8.              p2← 0 

9.         end if 

10.         If (p1>p2) then  

11.              w1 is set to a value greater than w2  

12.         else  

13.              w2 is set to a value greater than w1 

14.          end if  

15.       Dij (t) ←w1×p1+w2×p2 

16.       Tij (t) ←1- Dij (t) 

17.      end for  

18.      foreach Node in N do  

19.        if  Tij (t) ≤ TH then  

20.          Fire alarm    

21.          Return Tij (t)  

22.        end if  

23.        Return Tij (t)     

24.      end for 

 End 

Fig. 6. Attack Detection Algorithm 
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Figure 7 describes by an example how the attack detection algorithm shown in figure 6 can detect 

sinkhole, blackhole and selective-forward attacks. As shown in figure 7, node 1 is the root node, node 4 is 

a malicious node that generates an attack and the other eight nodes are normal nodes. When the algorithm 

starts, each of the nodes 2, 3 and 4 sends two packets of data. The first data packet contains the node’s own 

data which contains its rank value and its parent rank value. The second data packet contains its children 

data. The root node receives all data packets from the three nodes and calculates the two parameters, p1 and 

p2, in addition to the trust values of the three nodes.  

As shown in figure 7, node 2 has five neighbors, i.e. nodes 1, 3, 4, 5 and 7. The average of node 2 

neighbor ranks is equal to 706.4. According to step 2 in figure 6, the diff_rank for node 2 will be equal to 

52.4. The comparison between the parent rank and the root rank is done as shown in line 3 of figure 6 to 

decide if the node has a direct link with the root node or not, then according to line 4 p1 = 0.2047.  

 

Fig. 7. An IoT network with 9 normal nodes and 1 malicious node (node 2)  

The received forward packet from node 5 to node 2 is evaluated to 1705. This is computed by adding 

node id, node rank, node parent id, node parent rank and number of neighbors for node 5. The 

maxdatapacket is evaluated to 1822. This value is the maximum received forward packet among all nodes 

at the root. Afterwards, according to line 5, p2 is 0.064. The weights values are selected to be 0.8 and 0.2, 

where the more effective parameter, i.e., with the higher value, is 0.8 and the other parameter is 0.2. 

Therefore, w1 = 0.8 and w2 = 0.2. Finally, according to equation (1) at line 15, D12 (t) = 0.1766 and at line 

16 T12 (t) = 0.823. Similarly, the trust values for nodes 3 and 4 are calculated. For nodes 5, 6,7,8,9 and 10 

the root calculates only parameter p1 based on the data forwarded by their parents. Parameter p2 is set to 

zero because of all these nodes are leaf nodes with no children. 

Suppose that node 2 becomes a malicious node that generates sinkhole attack and suppose that its rank 

decreases to 500 to attract neighbor node to be their parent. Consequently, p1 = 0.806, p2 = 0.1487, D12 (t) 

= 0.674 and T12 (t) = 0.325.  

Suppose that node 2 becomes a malicious node that generates blackhole or selective-forward. This 

means that node 2 will drop the received forward packet, i.e., the received forward packet =0. Therefore, 

p1 = 0.2047, p2 = 1, D12 (t) = 0.841 and T12 (t) = 0.159.  

V. EXPERMANTAL SETUP  

The experiments used to evaluate the proposed approach are implemented using Contiki Cooja 

network simulator [8]. A set of experiments are run to evaluate each of the following attacks: sinkhole, 

blackhole, selective-forward and a combination of sinkhole and blackhole attacks. The number of nodes 

used in the experiments are either 8, 16 or 24 nodes. Each single experiment is run five times and every 
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time the true positive attack detection rate is calculated.  The true positive attack detection percentage (TAP) 

is defined by the following equation.  

TAP = (
number of  true alarms (𝑎𝑡𝑡𝑎𝑐𝑘 𝑒𝑣𝑒𝑛𝑡𝑠)

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑎𝑟𝑚𝑠 
) x 100%    (5) 

The simulation time of each of the five run times is selected to be one of the following: 5, 10, 15 and 

20 minutes.  Finally, the average TAP is calculated across the five different run times for each simulation 

time. The selected weights are 0.8 and 0.2 where the attack detection parameter which gives the higher TAP 

value is multiplied by 0.8 while the other detection parameter is multiplied by 0.2. 

Figures 8, 9 and 10 are a set of figures that show the structure of the simulated networks that were 

built to evaluate sinkhole attacks. The border router, i.e. the root node, is always shown in green colour, the 

normal nodes are shown in yellow colour and the attack nodes are shown in red colour. 

Figures 11, 12 and 13 are a set of figures that that show the structure of the simulated networks that 

were built to evaluate blackhole and selective-forward attacks. In case of blackhole and selective-forward 

attacks the structure of the network differs from that of the sinkhole attack network to decrease the adverse 

effect of lossy IOT network.  The former is divided into clusters to reduce the reverse effect of lossy 

networks by reducing the root child. Which led to reduce the amount of request root that happen at same 

time. The root node contains the IDS. Any normal node sends a list of data to root. The data sent includes 

node’s rank, node’s parent ID, node’s parent rank, node’s neighbour ID, node’s neighbour rank, node’s 

neighbour parent and DIO message which is received from its children.  At least the attack node which send 

their data and drop the data for specific child in selective forward attack and data of all child in blackhole 

attack. 

 

 

Fig. 8. 8 nodes with 1 sinkhole 

node attack 

 

Fig. 9. 16 nodes with 2 

sinkhole node attacks 

 

Fig. 10. 24 nodes with 3 sinkhole 

node attacks 
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Fig. 11. 8 nodes with 1 

blackhole or selective-

forward node attack 

 

Fig. 12. 16 nodes with 2 

blackhole or selective-

forward node attacks 

 

Fig. 13. 24 nodes with 2 

blackhole or selective-

forward node attacks 

VI. EVALUATION RESULTS 

In this section evaluation results of the proposed attack detection algorithm are presented and 

discussed. The attack detection results are shown for sinkhole, blackhole, selective-forward attacks. 

Furthermore, attack detection results are shown when sinkhole and blackhole attacks are combined in the 

same node.  

A. Sinkhole Attack 

This section presents and discusses the attack detection results obtained for sinkhole attack. The results 

include two variations of the proposed trust management model namely: single weighted and two-weighted 

trust management models. The single-weighted trust management model is used when only one of the two 

weights shown in equation (2) is set to one while the other weight is set to zero. This allows only one of the 

two parameters, p1 and p2, in equation (2) to have full effect on the calculated node trust value while the 

other one does not have any effect at all. The two-weighted trust management model is used when it is 

required to explore the effect of both parameters as a weighted effect on the calculated node trust value. 

The higher weight is given to the parameter which provides the higher detection ratio.  

A.1 Single-Weighted Trust Management Model  

 In this subsection we present the attack detection results that are only obtained using the change-in-

node-rank attack detection parameter, p1, without any effect from the packet-drop attack detection 

parameter, p2. To obtain such detection results, weight, w1, is set to one while weight, w2, is set to zero in 

equation (2).  

Figure 14 shows the average TAP for sinkhole attack using the single-weighted trust management 

model. As described previously, the experiments were simulated with different run times as shown in the 

figure. Different IoT network configurations were used in the experiments including 8, 16 and 24 nodes. 

Figure 14 shows an average TAP of 100% in all simulation scenarios except for the IoT network with 24 

nodes. The reason for such finding is that when the number of nodes increases, the lossy property inherited 

in IoT networks becomes more effective.  This clearly affects the average TAP observed in IoT networks 

with 24 nodes which shows lower average TAP values in the range from 82% to 100%. Also, as the 

simulation time increases, the lossy property inherited in IoT networks becomes more apparent in IoT 

networks with large number of nodes.  To overcome such limitation, the IoT network can be divided into 

clusters where the IDS can be distributed across the root node and the head of each cluster. If the head of 

cluster becomes a malicious node, it can be detected by the root. 
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Fig. 14. Average TAP for sinkhole attack using single-weighted trust model 

 

A.2 Two-Weighted Trust Management Model 

In this subsection we present the detection results using both the change-in-node-rank attack detection 

parameter, p1, and the packet-drop attack detection parameter, p2. To obtain such detection results, the 

weights, w1, and w2, in equation (2) are set to 0.8 and 0.2 depending on the average TAP values obtained 

from the two parameters, p1 and p2.  As described previously, the attack detection parameter which gives 

the higher TAP value is multiplied by 0.8 while the other detection parameter is multiplied by 0.2. 

Figure 15 shows the average TAP for sinkhole attack using the two-weighted trust management model. 

Like the results illustrated in figure 14, an average TAP of 100% is obtained in all simulation scenarios 

except for the IoT network with 24 nodes. However, there is slight improvement in the average TAP values 

in the IoT networks with 24 nodes when compared with their counterparts shown in figure 14. The average 

TAP values in the IoT networks with 24 nodes range from 89% to 100%. This slight improvement shows 

the effect of merging the two parameters, p1 and p2, together in the trust model.  

 

Fig. 15. Average TAP for sinkhole attack using two-weighted trust model 

 

0

10

20

30

40

50

60

70

80

90

100

5 min 10 min 15 min 20 min

av
er

ag
e 

TA
P

run time (minute)

8nodes 16nodes 24nodes

0

10

20

30

40

50

60

70

80

90

100

5 min 10 min 15 min 20 min

av
er

ag
e 

TA
P

run time (minute)

8nodes 16nodes 24nodes



85 
 

B. Blackhole and Selective-forward Attacks  

This section presents and discusses the attack detection results obtained for blackhole and selective-

forward attacks. The results include the same two variations of the proposed trust management model like 

those shown in figures 15 and 16.  

B.1 Single-Weighted Trust Management Model 

Unlike subsection A.1, in this subsection we present the attack detection results only obtained using 

the effect of parameter, p2, without the effect of parameter, p1. To obtain such detection results, weight, w1, 

is set to zero while weight, w2, is set to one in equation (2). 

Figure 16 shows the average TAP for both blackhole and selective-forward attacks using the single-

weighted trust management model. The two attacks show the same result because the both blackhole and 

selective-forward attacks have the same malicious effect of dropping packet data.  Like the results obtained 

in figures 14 and 16 for sinkhole attack, an average TAP value of 100% was obtained in all simulation 

scenarios except for the IoT network with 24 nodes. However, the average TAP values for the IoT network 

with 24 nodes are better than their counterparts in figure 14. The average TAP values shown in figure 17 

and 18 shows a minimum of 92% across all simulation scenarios. The reason for this is that when the 

number of nodes increases, the IoT network is divided into clusters as described previously in section V. 

The flooding of messages forwarded by nodes are managed which allows the lossy property inherited in 

IoT networks to become less effective.  

B.2 Two-Weighted Trust Management Model 

Like subsection A.2, in this subsection we present the attack detection results using both parameters, 

p1, and p2. Figures 17 and 18 show the average TAP for blackhole and selective-forward attacks, 

respectively, using the two-weighted trust management model. Figure 18 shows that there is a slight 

increase in the average TAP values obtained for the selective-forward attack in the network with 24 nodes 

when compared with their corresponding values in Figure 17 for the blackhole attack.  This is because in 

selective-forward attack the malicious node drops forward packet to a selected child not all children like 

the case of blackhole attack.  

 

Fig. 16. Average TAP for blackhole/selective-forward attacks using single-weighted trust model 
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Fig. 17. Average TAP for blackhole attack using two-weighted trust model 

 

Fig. 18. Average TAP for selective-forward attack using two-weighted trust model 

Another notice in figures 17 and 18 is that both figures show the average TAP value decreases in the 

24 nodes network with the increase in the run time. The observed decrease happens because the constrained 

root node misses received data during calculating the two parameters when more nodes send at the same 

time.  

C. Combining Sinkhole and Blackhole Attacks  

In this subsection we present the attack detection results that are obtained when a combination of 

sinkhole and blackhole attacks are applied in the same node. Such type of combinations can have very 

adverse effects on the performance of the IoT network and harm its performance significantly [23]. This 

combination will lead to make unexpected change in node ranks in addition to dropping packet data in the 

network. The proposed trust management model with its two parameters, p1 and p2, is very useful in 

detecting such combination of attacks since each of the two parameters is used to detect only one of the two 

attacks, i.e., sinkhole and blackhole. To the best of our knowledge, such combination of attacks has not 

been investigated before while detecting RPL attacks in IoT networks.  

Figure 19 shows the average TAP for the combined attacks using the two-weighted trust management 

model. The figure shows average TAP values that range from 91% to 100%. These results show the positive 
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effect of the proposed trust management model on the detection accuracy of different types of attacks with 

different properties when combined in a single attack. 

 

Fig. 19. Average TAP for combined attacks using two-weighted trust model 

VII. CONCLUSIONS AND FUTURE WORK 

This paper proposed an IDS to detect a set of RPL attacks in IoT networks. The proposed IDS is based 

on an attack detection algorithm that uses a novel intrusion detection trust management model.  The 

proposed trust management model is based on two attack detection parameters to detect a set of different 

RPL attacks. The first parameter is used to measure the change of node rank to detect rank family attacks 

like sinkhole attacks. The second parameter is used to measure the dropped ratio of forward data packets 

that a network node receives from its parents. The second parameter is effective in the detection of packet 

drop family attacks like blackhole and selective-forward attacks.  

Simulated IoT networks were implemented to evaluate the proposed attack detection algorithm. The 

obtained average TAP ranges from 82% to 100% for sinkhole attack and ranges from 80% to 100% for 

both blackhole and selective-forward attacks. Also, simulations were performed with a combination of 

sinkhole and blackhole attacks. In such simulations the average TAP was in the range from 91% to 100%. 

Future work of this research is twofold. The first is testing the proposed IDS with different types of 

attacks. The second is the extension of the proposed approach to detect a wider range of attacks using 

additional trust properties. 
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