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ABSTRACT - This paper introduces the Particle Swarm Algorithm 
(PSA)-based Local Model network (LMN) for modeling and controlling 
dynamic systems. Structurally, the proposed PSA-LMN merges the fuzzy 
set theory and wavelets in a unified form. Learning this network 
comprises two phases, structure learning phase and parameters learning 
phase. The former is performed using the Adaptive Resonance Theory 
(ART) algorithm while the latter is performed using the PSA. The PSA is 
employed to optimize parameters of the fuzzy sets, the wavelets and the 
free weights of the proposed LMN. Two simulation nonlinear plants are 
used to test the soundness of the proposed network; one is a single input 
single output nonlinear plant and the other is multi-variable medical 
plant. The latter is employed to test the proposed network in control 
purposes compared with Genetic Algorithm (GA)-based LMN. Better 
results were obtained using the proposed PSA-based LMN. 
 
KEY WORDS:  Fuzzy neural networks, Wavelets, Particle swarm 
optimization. 

 
1. INTODUCTION  

 

The Evolutionary Algorithms (EAs) such as the GA [1], the Genetic Programming 
(GP) [2], and the Multi-objective Evolutionary Programming (MOP) [3] have been 
proposed to optimize neural networks and avoid drawbacks of using gradient descent 
methods.  GAs are stochastic search procedures [1]. They are more likely to find the 
global solution of a given problem and they use only a simple scalar performance 
measure that does not require any derivative information unlike gradient descent 
algorithms [4]. GAs have been successfully applied in learning fuzzy systems [5], 
neural networks [6], fuzzy neural networks [7,8] and classification algorithms [9].   
 

    Recently, a new evolutionary computing method, the particle swarm algorithm 
(PSA), is proposed [10]. Similar to the GA, the PSA is initialized with a population of 
random solutions. It was developed based on the analogy of the swarm theory of bird 
flocking and fish schooling. Each individual in the PSA is called particle and it is 
assigned with a randomized velocity according its own and its companion flying 
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experiences. Compared with the GA, the PSA has some attractive characteristics that 
can be summarized as follows [11]. It has a memory. That means that knowledge of 
good solutions is retained by all particles whereas in GA, previous knowledge of the 
problem is destroyed once the population changes. It has constructive cooperation 
between particles that share information between them. 
 

    Successful applications of the PSA to several optimization problems, such as power 
systems optimization [12-14], function minimization [15], adaptive control utilizing 
neural networks [16], systems identification [17], and recurrent neural network designs 
[11], have demonstrated its potential. 
 

    The proposed PSA – based LMN consists of a set of Takagi-Sugeno-Kang (TSK) 
fuzzy rule fertilized by a wavelet function. Each wavelet determines the contribution of 
each TSK fuzzy model. These sub-models are merged to provide the final output of the 
network. The optimization problem of this network comprises two phases, structure 
phase and parameter phase. The former finds the optimum number of the sub-models, 
the fuzzy set nodes and the wavelet nodes of the network using the fuzzy Adaptive 
resonance Theory (ART) [18] in order to track a specified process.  The latter 
optimizes the free network parameters of the network, which are the means and width 
of a fuzzy set and a wavelet function and the consequent of the fuzzy rule. This 
optimization is performed using both the PSA and the GA for comparison reasons.   
The contribution of this paper can be summarized as follows: 

 Development the PSA-based LMN 
 Optimizing the parameters of the LMN using PSA and GA.  
 Development an internal model control scheme using the optimized           

PSA-based LMN 
 Employing this developed scheme for controlling a multivariable medical 

system. 
 

    This paper is organized as follows. Section 2 briefly reviews the PSA. Section 3 
describes the proposed PSA-based LMN. Section 4 develops the internal model control 
scheme using the proposed PSA- based LMN. Simulation results are depicted through 
sections 3 and 4 respectively. Section 5 concludes the topics discussed in this paper. 
 

2.  PARTICLE  SWARM  ALGORITHM 
 

The PSA was first proposed by Kennedy and Eberhart [Kennedy and Eberhart, 1995]. 
It is an adaptive algorithm that depends on the observations of the social behavior of 
animals such as bird flocking, fish schools, and swarm theory. In this section, the basic 
concepts of the PSA are briefly reviewed.  
 
2.1. The Basic Concepts Of The PSA 
 

Similar to the EAs, in the PSA a set of solutions to the problem under consideration is 
used to probe the search space. In this algorithm, the term particle is used for each 
individual and the name swarm is used for the population. Each particle of the swarm 
has an adaptable velocity (position change) according to which it moves in the search 
space and it has a memory to remember the best position of the search space that has 
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ever visited. Thus its movement is an aggregated acceleration towards its best 
previously visited position and towards the best individual in the swarm [19]. 
 

    Suppose that the search space is D-dimensional, then the ith particle of the swarm can 
be represented by a D-dimensional vector, iP  

T
iDiii pppP ]...[ 11  

The velocity of this particle can be represented by another D-dimensional vector, iV  

T
iDiii vvvV ]...[ 11  

The best previously visited position of the ith particle is denoted as iPL defined below: 

T
iDiii plplplPL ]...[ 11  

 

Defining g as the index of the best particle in the swarm (i.e., the gth particle is the 
best). At each time step t, the original PSA is described by: 
 

))()(())()(()()1( 2211 tPtPLrctPtPLrctVtV idgdidididid          (1) 
 

)()1()1( tPtVtP ididid                                                                       (2) 
 

where d=1,2, . . . ,D ; i=1,2, . . . , N , and N is the size of the swarm; c1 and c2 are 
positive acceleration constants, and  r1 and r2 are uniformly distributed random 
numbers in the range [0,1]. Equation (1) describes how the velocity is dynamically 
updated and equation (2) adapts the particle position. Equation (1) consists of three 
parts. The first part is the momentum part to assure that the velocity can’t be changed 
abruptly. The second part is the “cognitive” part which represents private thinking of 
itself-learning from its own position experience. The third part is the “social “part 
which represents the collaboration among particles - learning from group position 
experience [20]. In equation (1), there was no actual mechanism for controlling the 
velocity of a particle, it was necessary to impose a maximum value maxV . If the velocity 

violates this limit it has to be set at this value. This parameter proved to be crucial, 
because large values could result a good indication for past moving of particles, while 
small values could result in insufficient exploration of the search space [19].  
 

The PSA is simple, easy to implement and has not heavy computation demand. The 
original procedure for implementing the PSA is summarized below: 

1. Initialize a swarm of particles with random positions and velocities on D 
dimensions in the problem space. 

2. Evaluate the desired optimization fitness for each particle. 
3. Compare particle’s fitness evaluation with its PL. If current value is better than 

its PL then set PL equal to the current position Pi in D-dimensional space. 
4. Identify the particle in the swarm with the best success so far, and assign its 

index to the variable g. 
5. Change the velocity and position of the particle according to (1) and (2). 
6. Go to step 2 until a criterion is met, usually a sufficiently good fitness or a 

maximum number of iterations. 
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2.2. The Parameters Of The PSA 
 

As mentioned above, the velocity changes of the PSA consist of three parts, the 
“social” part, the “cognitive” part, and the momentum part. The balance among these 
parts determines the balance of the global and the local search ability, and the 
performance of the PSA that has a set of free parameters. 
The first free parameter added into the original PSA is the inertia weight [21]. The 
velocity adaptation equation of the PSA with inertia weight is given by: 
 

 ))()(())()(()()1( 2211 tPtPLrctPtPLrctVtV idgdidididid                  (3) 
 

where  is the inertia weight. 
 

    The inertia weight is introduced to regulate between the global and local search 
abilities. A large inertia weight facilities global search (i.e., searching new area), while 
a small one facilities local search (i.e., fine- tuning the current search area). A suitable 
value for the inertia weight provides balance between the global and the local search 
abilities and consequently results in reduction of the number of iterations required to 
reach the optimum solution. The experimental results indicated that it is better to 
initially set to a large value, in order to promote global exploration of the search space, 
and gradually decreases to get more refined solutions [21]. The following relation is 
usually utilized to perform the gradually decreasing of the inertia weight [13]. 
 

t
tmax

minmax  
                                              (4) 

 

where max  is the initial weight, min  is the final weight, and maxt is the maximum 

iteration number. 
 

    Another free parameter called constriction coefficient is introduced with the hope 
that it insure a PSA to converge [15].  The method of incorporating this factor in a PSA 
defines in (5). 
 

 ))]()(())()(()([)1( 2211 tPtPLrctPtPLrctVktV idgdidididid           (5) 
 

where k is a constriction coefficient and is a function of c1 and c2 as follows: 
 

 42

2

2
k                                                                                            (6) 

 

where 4,21   cc  
 

    The PSA with the constriction factor can be considered as a special case of the PSA 
with inertia weight while the three parameters are connected thought (6). The 
constriction factor k controls the magnitude of the velocities, in a similar way to the 
Vmax parameter.  A better approach to use as a rule of thumb is to utilize the PSA with 
constriction factor while limiting Vmax to Pmax, the dynamic range of each dimension 
[20]. 
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3.  THE  PROPOSED  PSA-BASED LMN 
 

In this section, the optimization problem of the proposed PSA-based LMN will be 
investigated. First, the LMN will be briefly described. Second, the optimization 
problem using the PSA will be detailed. Finally, the performance of the optimized 
network using the PSA compared with GA in the modeling scheme will be 
demonstrated.  
 
3.1. The Proposed Local Model Network 
 

Figure 1 depicts the structure of the proposed LMN. It consists of five layers that are 
described as follows: 
Layer -1: A node at this layer just transmits the input values to the next layer. 
Layer -2: This layer consists of two groups, universes of discourse of the input fuzzy 
variables and their wavelets. The former cover the universes of discourse of the input 

variables by a set of triangular-shaped function )( ii
j

x
A . That is: 

     
ij

iji

iA

cx
xi

j 





2
1)(                                                                        (7) 

 

where Aj
i is the jth fuzzy set of the ith input variable xi , and cij , and ij are the center 

and  width of this fuzzy set respectively. 
 

The latter is a wavelet function generated by dilating and translating the mother 

wavelet function )
2

exp()1()(
2

2 x
xxh  . That is : 

 





n

k
jkZhX

1

)()(Φ j                                                                                            (8) 

 

where 
jk

jkk
jk d

mx
Z


 , n is the number of their inputs, m and d are the translation and 

dilation parameters respectively. 
 

Layer -3: The firing strength can be obtained using Larsen’s product at this layer [22] 
as follows: 





n

j
iAi

j

i x
1

)(                                                                       (9) 

 

where, its normalized value is: 





q

i

i

i
i

1



                                                                                                   (10) 

 

Layer-4: A node at this layer is a sub-model that merges the normalized firing 
strength of a TSK fuzzy rule with a wavelet. That is: 
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i
ii Xy )(Φ4                                                            (11) 

 

Layer -5: Based on the approximate Center Of Area (COA) defuzzification method, 
the crisp output ym can be deduced. That is: 
 

)((X)Φ
1

Xfy ii

q

i

i
m 



                           (12) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 The structure of the proposed LMN. 
 
 
The network described above performs the following rule: 
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where, 
)(Xfi is a linear function of the TSK model. That is: 

 

n
iii

i xwxwxwXf  12211 ...)(                  (14) 
 

and, )(Φ Xi is the wavelet function defined in (8). 

Reforming (8), results an LMN defined below: 
 

)(...)1()(...)1()( 11 skywkywrkuwkuwXf i
ys

i
y

i
ur

i
ui       (15)  

 

Substituting (15) in (12), results: 

)(...)1()(...)1()( 11 skyakyarkubkubky srm     (16) 
 

where, j
q

j
j

j
uii Xwb )(

1



 ,  i=1,2,…r,  j
q

j
j

j
yhh Xwa )(

1



 , h=1,2,…,s     (17) 

q is the number of rules generated, r and s are the orders of the plant input and output  
respectively. Equation (16) represents the proposed LMN with the input and output 
vectors defined below: 
X = [u (k-1) u (k-2) . . . u (k-r) y (k-1) y (k-2) . . .,  .y (k- s)] T  
Y=[y (k)] T                                                                           
 

    The optimization problem of the proposed LMN can be classified into two phases, 
the structure phase and the parameter phase. The former should determine the optimal 
number of the following seeds   

 Fuzzy clusters of each fuzzy variable. 
 Wavelet nodes 
 Fuzzy rules 

While the latter optimizes their free parameters. 
 

     The clustering algorithms techniques can be employed to perform the structure 
optimization of the proposed LMN. Among of these algorithms, the fuzzy ART 
algorithm [18] is employed in this paper to perform this optimization stage. Basically, 
the fuzzy ART was introduced to finding the parameters of an input membership 
function (the center “ ,jic ” and the width “ ji ”). This is equivalent to forming the 

proper fuzzy hyperboxes clusters in the input space, which defines the number of fuzzy 
rules and wavelet nodes. Forming these clusters requires the initial values of their 
centers and widths. Determining the parameters of a fuzzy cluster (a fuzzy set), 
includes the parameters of the corresponding wavelet function. That is 
 

jijijiji dcm   21 ,                                                                (18) 
 

where j =1,2, … q (number of wavelet functions), i=1,2, . . . n (number of input 
variables), jijic ,   are the center and the width of the jth fuzzy set of the ith input , and 

21 ,  are scaling factors. 
 

    In the parameter optimization stage, it should determine the optimum values of the 
following parameters. 
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 The fuzzy set parameters. 
 The wavelet parameters. 
 The rule consequent weights 

 

    Basically this optimization stage is a non-linear optimization problem. The main 
objective of this paper is to investigate this optimization problem using the PSA and to 
compare it with the GA as follows. 
 
3.2. Optimizing The Parameters Of The LMN Using The PSA  
 

The parameter optimization of the local model network using the PSA comprises two 
major operators: evaluation and adaptation. Before describing these operators, the 
issues of coding and initialization are presented. The coding concerns with the way that 
the network parameters are represented by a set of particles, whereas initialization is 
the proper assignment of optimization process before entering the evaluation process. 
The overall optimization process of the proposed LMN by the PSA is described below: 
 Coding: A floating point coding scheme is employed in this paper. For the ARX-

LMN, suppose the number of the generated sub-models ( fuzzy rules) is q and the 
number of the input nodes  is n , and the total number of parameters (D) to be 
optimized can be set as follows 

        D = the number of fuzzy sets nodes (2*n*q)  +  the number of wavelet nodes 
(2*n*q) + the number of rule nodes (n*q) = 5* n*q. 

        Thus, the parameters of these nodes can be coded into a particle as follows.  
 

               

T

ppp RWFP











                                                                         (19) 

 

        where,  Fp, Wp, and  Rp  are the vectors that represent  the parameters of the fuzzy 
set nodes (the center and the variance), the parameters of the wavelet nodes, and 
the parameters of the rule nodes (rule consequent weights). Those are: 

 

T
qnnqqqnnqqp ccccccF 





  ........................ 12121111212111

T
qnnqqqnnqqp ddddddmmmmmmW 







 ........................ 12121111212111

T
qnnqqp wwwwwwR 







 ............ 1212111  

 

 Initialization: In this stage, a population of particles with random positions and 
velocities was initialized. The position of each particle was assigned to the values 
of the parameters to be optimized and the velocity was assigned to the change of 
these parameters. As described above, each particle contains three groups of 
parameters; the initialization of each group was achieved as follows.  

        The first and the second groups, which concern with the fuzzy sets parameters and 
the wavelet parameters was initialized by using its initial values generated by the 
fuzzy ART. Those are: 
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)0(

)0(

)0(

)0(

ji
h
ji

ji
h
ji

ji
h
ji

ji
h
ji

drndd

mrndm

rnd

crndc










                                                                                      (20) 

 

        where j=1,2,. . ., q, i =1,2, . . ., n, h=1,2, .  .  ., N (the size of population),    
)0(),0( jijic   are the center and the variance of the jth fuzzy set of the ith input  

variable, which were generated by the fuzzy ART, )0(),0( jiji dm are the 

translation of the jth wavelet function of the ith input , which were given by (8), 
and rnd is a uniformly distributed random number in [0,1].  

        The third group, which concerns the rule consequence weights, is randomly 
assigned within the network output domain. For the purpose of generality, the 
network output domain is normalized be in the range [-1, 1], then the rule 
consequent weights are randomly initialized within [-1, 1]. 

 Evaluation: For each particle, the fitness value is calculated.  In this paper, the 
fitness function that measures the quality of each particle is given by the 
reciprocal of the Root Mean Square(RMS) errors  as follows: 

 

               



SN

k
d

S

kyky
N

RMS
1

2))()((
1

 

RMS
Pf ii

1
)(                                                                                              (21) 

        where i = 1,2,. .  . N, yd (k), y(k) are the desired and the actual outputs of the 
ARX-LMN at sample k , and NS is the number of samples.   

 Adaptation: In this stage, the best position for each particle PL and the best 
position swarm Pg are calculated. The original PSA algorithm and the PSA 
algorithm with the inertia weight are employed in this paper to adapt the position 
and the velocity of each particle. 

 

3.3.  Modeling  Simulations 
 

In this sub-section, nonlinear single input single output and multivariable control 
systems are employed to assure the soundness of the PSA-based LMN in the modeling 
purposes.  
    Nonlinear System: A complex system is employed to assure the capabilities of the 
optimized proposed LMN using the PSA in the dynamic systems modeling. The 
discrete time difference equation of the system [23] is: 
 

)2()1(1

)}(]1)2([*)1()2()1()({
)1(

22 



kyky

kukykukykyky
ky                     (22) 

 

The training signal u(k) is defined below: 
 

 )50/2sin(8.0)( kku                                            (23)  
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The input and the output vectors of the network are: 
 

T
d

T

kyY

kukykyX

)]1([

)]()1()([



        

 

    In this example, the PSA with the inertia weight defined in (3), is employed and the 
parameters max , min , c1 and c2  are set to 0.99, 0.4, 2 , and 2  respectively. Initially, 40 

individuals are randomly generated in a population, i.e., the size of swarm = 40 and the 
evolution is processed for 100 generation. To demonstrate the optimized result, two 
different test signals u1(k) and u2(k), are used to assure the modeling capabilities of the 
optimized network. Those are [23]: 
 












500)25/2sin(2.0)250/2sin(8.0

500)250/2sin(
)(1

kkk

kk
ku   (24) 

and 
)25/2sin(2.0)200/2sin(8.0)(2 kkku                          (25) 

 

    The outputs of the optimized network and the process using the two test signals 
defined in (24) and (25) are depicted in Fig. 2 and Fig. 3. It is clear that the modeling 
capabilities of the optimized network are outstanding.      

     For comparison reasons, the network is optimized by the GA to the same example. 
In the GA, the population size and the initial individuals are the same as those used in 
the PSA.  The parents for crossover are selected from the whole population and the 
roulette wheel selection method is used. The crossover probability and the mutation 
probability are set to 0.85 and 0.05 respectively. Figure 4 depicts the best RMS errors 
obtained using the PSA and the GA versus a set of generation. Best results are obtained 
using the PSA compared with the GA. Moreover, computationally the former is 
smaller than the latter. This is due to the computations needed in GA e.g. mutation and 
crossover are eliminated in the proposed PSA. A notable feature using the PSA over 
the GA is that each particle of the swarm has adaptable velocity according to the 
information acquired from the particles in the search space.   
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2: The outputs of the system and the proposed network using the test signal u1. 
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Fig.  3: The outputs of the system and the proposed network using the test signal u2. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  4: The best RMS error obtained using the PSA and the GA respectively 
(nonlinear system).  

 
 
Multivariable Blood Control System Model  
 

Clinically, it is required to regulate simultaneously the cardiac output (CO) and the 
mean arterial pressure (MAP) of a patient in hospital intensive care using various 
drugs. Two typical drugs used are dopamine (DOP), which is an inotropic drug, and 
sodium nitroprusside (SNP), which is a vasoactive drug. For the purpose of the 
simulation study Linkens and Nie adopt the same model used in [24, 25] which is 
given by [26]:   
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where CO  (ml/s) is the change in cardiac output to u1 and u2 ; MAP (mmHg) is the 
change in mean arterial pressure due to u1 and u2 ; u1 ( min)// Kgg is the infusion 
rate of dopamine; u2 (ml/h) is the infusion rate of sodium nitroprusside ; K11, K12, K21, 
and K22 are steady state-gains with nominal values of 8.44, 5.275, -0.09 and -0.15 
respectively ; τ1 and τ2 represent two time delays with nominal values of τ1= 60 s and 
τ2= 30 s; and T1 and T2  are time constants with nominal values  of 84.1 s and 58.75 s 
respectively. In modeling this multivariable system using the ARX-LM network, the 
input and the output vectors are: 

TdkudkukMABkCOX )]()()1()1([ 2211         

TkMABkCOY )]()([                   
 

where )(kCO , )(kMAP  are the changes of the cardiac output and the blood 
pressure at the kth time step respectively, d1 and d2 are the discreet delay times.   
 

The inputs training sequence consists of square pulses with random amplitudes in the 
range [0, 2.5 ml/h]. The PSA with the inertia weight defined in (3) is also employed 
and the parameters max , min , c1 and c2  are set to 0.99, 0.4, 2 , and 2  respectively. 

Initially, 20 individuals are randomly generated in a population, i.e., the size of swarm 
= 20 and the evolution is processed for 500 generation. The outputs of the optimized 
network and the process and the inputs training sequence for 200 samples are depicted 
in Fig. 5 and Fig. 6 respectively. It is clear that the modeling capabilities of the 
optimized network are very effective. 
 

Also, for the comparison reasons, the network is optimized by the GA to the same 
example. The GA used has the same parameters as those used in PSA. Also,   the 
parents for crossover are selected from the whole population and the roulette wheel 
selection method is used. The crossover probability and the mutation probability are set 
to 0.85 and 0.05 respectively. Figure 7 depicts the best RMS error for the PSA and the 
GA  versus a set of generations. The figure shows the superiority of the PSA over the 
GA in the network optimization for the second example. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5: The change of cardiac and the blood pressure outputs and the network outputs. 
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Fig. 6: The training pulses.  
 

 
 

Fig. 7: The RMS error obtained using the PSA and the GA respectively. 
(Multivariable blood pressure control system) 

 
 
Outstanding results obtained in modeling simulations, encourages us to extend the 
proposed PSA-based LMN in control systems. An internal model control (IMC) 
scheme based on the proposed PSA-based LMN is discussed in section 4. 

 
 

     4. DEVELOPMENT AN IMC USING THE PSA- based LMN 
 
The IMC strategy can theoretically provide perfect control, such that the output of the 
plant equals to the reference input signal. This is achieved by obtaining a perfect model 
of the plant and then inverting this model to produce a controller. The basic structure of 
the IMC depicted in Fig. 8, involves two models, the internal model of the plant, and 
its inverse (controller). An IMC system possesses the dual stability, the perfect control 
and zero offset properties [27]. The basic structure depicted in Fig. 8 is not applicable 
for controlling the dynamic systems that have non-causal, non-minimum phase, and 
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pure time delay dynamics. Having theses dynamics, leads to unstable and non-causal 
inverse system model. Isabelle and Leon introduced a modified procedure for the IMC 
scheme that can be used perfectly with the dynamics [28]. In this scheme, the 
controller is implemented as the inverse of the model deprived from its delay to 
eliminate the effect of the delay in the inverse of the model as depicted in Fig. 9.  The 
controller is then obtained by cascading this inverse model with rallying model, which 
ensures the robustness of the stability of the control scheme. A change in the desired 
regulation dynamic behavior or an improvement of the stability can be obtained by 
simply tuning of the model.  In this procedure, both the delay deprived model and its 
inverse is structured by using a feed-forward neural network.  
 
 
 
 
 
 
 
 
 
 
 

Fig.  8: A typical structure of IMC. 
 

 

 
 
 
 
 
 
 
 
 
 
 

Fig.  9:  The modified IMC scheme. 
 
 
This paper adopts this IMC scheme by using the PSA- based LMN as in the following 
subsection. 
 
4.1. Design The PSA –Based LMN- Based IMC 
 

Consider the system to be controlled is described by the following discrete-time 
nonlinear model: 
 

){,{()( 1
1 dk

mdk
k

nkpp uyky 



                  (27) 

- + 

d 

-  
yp 

ym 

R 

u

Inverse 
Model

Plant 

Internal 
Model

ue+ 

u  Zr 

          Internal model    
                                           

 
 
 

                                           Z 

+ 

-  

-+

Z

R  
Rallying 
Model 

Inverse 
model Process 

Delay-
deprived 
model 

q-(d-1) 

yp  



MULTIVARIABLE  DYNAMIC  SYSTEMS  MODELING  AND…. 
________________________________________________________________________________________________________________________________ 

  

571 

where yp(k) is the process output at instant k, 1{ 


k
nkpy  denotes the delayed output 

{ )}(...)1({ nkyky pp  and similarly dk
mdku 
 1{  denote the set of m past control 

inputs )}1(...)({  mdkudku , 1d  is the delay,   is the unknown 
nonlinear function. Using the optimized ARX-LMN, the given system is defined 
below: 
 

)(...)1()1(...)()( 11 nkyakyamdkubdkubky pspmdm      (28) 
 

where ym(k) is the output of the model at a sample k. The model parameters ai and bi 
can obtained using the optimized parameters using the PSA which are the fuzzy set, the 
wavelet, and the rule consequent parameters as described in (17). Using these 
parameters, the output of the delay deprived model Z(k) can be calculated using the 
following ARX model. 
 

)(...)()1(...)()1( 11 nkZakZamdkubdkubkZ nmd      (29)   
 

where: Z(k) = ym(k+d)           
 
    Once the delay deprived model stage is constructed, the only problem to be solved is 
how to develop the inverse model to be used as a controller. The parameters of this 
inverse model (the controller) are estimated at each time step. That means that the 
concept of developing an inverse model is deprived and replaced by a parameter 
estimation scheme. That simplifies the structure of the IMC scheme and makes the 
enhanced ARX-LMN-based IMC scheme promising for modeling and controlling real 
process.  
 

    Consider the delay deprived model described by the proposed PSA- based LMN as 
in 29, where the parameters ai and bi of the proposed network depends on the operating 
point. Based on this model formulation, the following exact inverse control law can be 
postulated: 
 

)1(...)1()(

...)2()()1((
1

)(

2

21
1





 mdkubdkubnkZa

kZakZakZ
b

dku

dmn

           (30) 

 

    This is possible if and only if the operating point does not depend on u (k). So, a 
novel approach is suggested to solve this problem by reforming (30) as follows: 
 

)1(...)1()(

...)2()()1()(

11

21




 mdkubdkubnkZa

kZakZakZadku

dmn

o
       (31) 

 

    Using the same input-output data used in the learning the internal model, the 
parameters ia and jb  can be estimated by using the Recursive Lease Square (RLS) 

method described as follows. Suppose the weight and the input/output vectors are:    
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TmdkudkunkZkZkZ )]1(...)1()(...)()1([β 

T
mdn bbbaaa ]......[θ 12110                                 

 

The control law can be written as: 
 

  θβ)( ku                             (32) 
 

The linear parameters θ  are recursively estimated by: 
 

          )()(β)1()1(θ)(θ kekkkk                      

)(β)1()(β1

)1()(β)(β)1(
)1()(

kkk

kkkk
kk

T

T




                                         (33) 

 

where  )(ke  is the error between the desired and the actual outputs of the inverse of 
the delay deprived model  respectively. That is:                                    
 

))()(()( kukduke                                       (34) 
 

where ud(k) is the desired output of the inverse of the delay –deprived model network 
which has been used in the internal model learning, and u(k) is the actual output of the 
controller given by 32. Once the delay deprived model and its inverse are structured off 
line, the on line structure depicted in Fig. 2 is applied. In the on line phase, the output 
of the inverse of the delay-deprived model can easily be calculated as follows: 
 

)1(...)1()(

...)2()()1()(

11

21




 mdkubdkubnkZa

kZakZakZadku

dmn

ro
        (35) 

 

where Zr(k+1) is the output of the rallying model that can be tuned to improve the 
system tracking and stability. Controlling the multivariable blood pressure control 
system described in section III, assures the soundness of the modified IMC scheme. 
 
4.2. Control Simulation Results 
 

In this subsection, the simulation results of the IMC based on the proposed PSA- based 
LMN for the multivariable blood pressure control system are described. The sampling 
time is 30 second, and the set- points for  CO  and MAP was set to be 20 ml/s and -10 
mmHg changing from nominal values of 100 ml/s and 120 mmHg respectively [29]. 
To investigate the effectiveness of the proposed scheme, four cases of the system 
parameters are performed; these cases are listed as follows [Linkens and Nie, 1995]:  

 The first case: The plant parameters (K11, K12, K21, K22, τ1, τ2, T1 and T2 ) are set 
to the nominal values.  

 The second case: The plant parameters (K21, K22, τ1, τ2, T1 and T2) are set to the 
nominal values and the two parameters K11, K12 were abrupt changed by 10% 
from their nominal values.  
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 The third case: The plant parameters (K11, K12, τ1, τ2, T1 and T2 ) are set to the 
nominal  values and the two parameters K21, K22 were abrupt changed by 10% 
from their nominal values.  

 The fourth case: The plant parameters (K11, K12, K21, K22, τ1 and τ2) are set to 
the nominal values and the two parameters T1 and T2 were abrupt changed by 
10% from their nominal values. 

 
    Figure 10 shows the response of the process using the proposed predictive scheme 
when the fourth case of the system parameters is presented. These dynamics are 
acceptable according to the results published in [29]. 
 

      Also, to show the effectiveness and efficiency of PSA in the control problem, the 
GA is applied to the same control problem. The PSA-based LMN-based IMC is 
compared with the GA- based LMN-based IMC in the sense of the RMS error defined 
in 36. The RMS error obtained are depicted in Table. 1.   
 

 
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
N

t
MAP

d
MAPCO

d
CO

N
RMS

1

22 )()(
1

                                         (36)              

 

where N is the number of samples, CO d , MAP d  are the desired changes of CO   
and MAP  respectively.  The table shows the superiority of the PSA over the GA in 
the control scheme. 
 
 

 
 
Fig.  10:  The change for both cardiac and blood pressure outputs using the proposed 

PSA- based LMN –based IMC (case four). 
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Table. 1 

 
5. CONCOLUSIONS 

 

This paper introduced the PSA-based LMN for modeling and controlling dynamical 
systems. Structurally, it merges the fuzzy set theory and the wavelets in a unified form. 
The fuzzy ART algorithm was employed in structure learning of the proposed network, 
while the PSA was used to optimize the parameters of the network. The main notable 
feature of using the PSA compared with the GA is that its particles observe each other 
in the search space and adapt themselves based on the information received from those 
particles closed to the best solution. The philosophy of the IMC scheme was adopted in 
this paper using the proposed PSA-LMN. Better results have been achieved using the 
proposed PSA-based LMN in modeling and controlling nonlinear dynamic systems 
compared with the GA-based LMN.  
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الدينامكية متعددة المتغيرات باستخدام شبكة محلية معتمدة  للأنظمةالنمذجة و التحكم 

  الجزئيعلى خوارزم التزاحم 
  

  طارق احمد محمود. نبيلة محمود الربيعى                    م. د
  منوف -كلية الھندسة الالكترونية  -قسم ھندسة الالكترونيات الصناعية والتحكم 

  
وذلѧك لنمذجѧة والѧتحكم  الجزئѧيث شبكة عصبية محلية جديدة معتمدة على خوارزم التزاحم يقدم ھذا البح

 بطريقѧѧةتѧѧدمج ھѧѧذه الشѧѧبكة مѧѧابين المنطѧѧق العيمѧѧى و الѧѧدوال المويجيѧѧة . المتغيѧѧرات ةمتعѧѧدد الأنظمѧѧة فѧѧي
 فѧي. اتالمتغيѧرو مرحلة تعليم  تعليم ھذه الشبكة بتضمن مرحلتين ھما مرحلة تعليم بناء الشبكة . موحدة

المرحلѧة الثانيѧة  فѧيلبناء الشبكة المحليѧة  بينمѧا    (Fuzzy ART )يتم توظيف خوارزم  الأولىالمرحلة 
لتحديد القѧيم المثلѧى لمتغيѧرات   (Particle Swarm Algorithm) الجزئييتم استخدام خوارزم التزاحم 

لقيѧاس مѧدى  نلا خطѧيام نظѧامين تم استخد. متغيرات المجموعات الغيمية و الدوال الميجية ھيالشبكة و 
ھѧو  الثѧانيوحيѧد الѧدخل و الخѧرج بينمѧا النظѧام  مھѧو نظѧا الأولالنظام . النمذجة فيالشبكة المقدمة  كفاءة
الѧتحكم متعѧدد المتغيѧرات  حيѧث تѧم  فѧيالشبكة المقترحѧة  كفاءةلقياس . متعدد الدخل و الخرج طبينظام 

  تطوير نظام تحكم من النوع  
 (Internal Model Control Scheme (IMC)) دةѧبية الجديѧبكة العصѧام  .  باستخدام الشѧيالنظѧالطب 

وھو نظام ضبط  كل من ضغط الدم و خرج القلب باستخدام نوعين من العقارات و ھما نترات الصوديم 
و قѧد لѧوحظ مѧن . الѧتحكم متعѧدد المتغيѧرات   فѧيالشѧبكة المقترحѧة  كفاءةو الدوبامين تم استخدامه لقياس 

 الجزئѧيالشѧبكة العصѧبية المحليѧة المقترحѧة  المعتمѧدة  علѧى خѧوارزم التѧزاحم  أنخلال النتائج المحاكيѧة 
 في   التقليديمن الشبكة العصبية المحلية المقترحة المعتمدة  على الخوارزم الوراثى  أفضلتعطى نتائج 

  : كالآتيھذا البحث  إسھاماتخيص ويمكن تل. النمذجة و التحكم
وذلѧك لنمذجѧة والѧتحكم  الجزئѧيبناء شبكة عصبية محلية جديدة معتمدة على خѧوارزم التѧزاحم   .١

 .المتغيرات ةمتعدد الأنظمة في
باسѧتخدام الشѧبكة  Internal Model Control Scheme   تطѧوير نظѧام تحكѧم مѧن النѧوع    .٢

 .العصبية الجديدة
كل من ضغط الدم و خرج القلب باستخدام نوعين من العقارات  فيترح تطبيق نظم التحكم المق .٣

 .و ھما نترات الصوديم و الدوبامين


