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ABSTRACT - This paper introduces the Particle Swarm Algorithm
(PSA)-based Local Model network (LMN) for modeling and controlling
dynamic systems. Structurally, the proposed PSA-LMN merges the fuzzy
set theory and wavelets in a unified form. Learning this network
comprises two phases, structure learning phase and parameters learning
phase. The former is performed using the Adaptive Resonance Theory
(ART) algorithm while the latter is performed using the PSA. The PSA is
employed to optimize parameters of the fuzzy sets, the wavelets and the
free weights of the proposed LMN. Two simulation nonlinear plants are
used to test the soundness of the proposed network; one is a single input
single output nonlinear plant and the other is multi-variable medical
plant. The latter is employed to test the proposed network in control
purposes compared with Genetic Algorithm (GA)-based LMN. Better
results were obtained using the proposed PSA-based LMN.

KEY WORDS: Fuzzy neural networks, Wavelets, Particle swarm
optimization.

1. INTODUCTION

The Evolutionary Algorithms (EAs) such as the GA [1], the Genetic Programming
(GP) [2], and the Multi-objective Evolutionary Programming (MOP) [3] have been
proposed to optimize neural networks and avoid drawbacks of using gradient descent
methods. GAs are stochastic search procedures [1]. They are more likely to find the
global solution of a given problem and they use only a simple scalar performance
measure that does not require any derivative information unlike gradient descent
algorithms [4]. GAs have been successfully applied in learning fuzzy systems [5],
neural networks [6], fuzzy neural networks [7,8] and classification algorithms [9].

Recently, a new evolutionary computing method, the particle swarm algorithm
(PSA), is proposed [10]. Similar to the GA, the PSA is initialized with a population of
random solutions. It was developed based on the analogy of the swarm theory of bird
flocking and fish schooling. Each individual in the PSA is called particle and it is
assigned with a randomized velocity according its own and its companion flying
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experiences. Compared with the GA, the PSA has some attractive characteristics that
can be summarized as follows [11]. It has a memory. That means that knowledge of
good solutions is retained by all particles whereas in GA, previous knowledge of the
problem is destroyed once the population changes. It has constructive cooperation
between particles that share information between them.

Successful applications of the PSA to several optimization problems, such as power
systems optimization [12-14], function minimization [15], adaptive control utilizing
neural networks [16], systems identification [17], and recurrent neural network designs
[11], have demonstrated its potential.

The proposed PSA — based LMN consists of a set of Takagi-Sugeno-Kang (TSK)
fuzzy rule fertilized by a wavelet function. Each wavelet determines the contribution of
each TSK fuzzy model. These sub-models are merged to provide the final output of the
network. The optimization problem of this network comprises two phases, structure
phase and parameter phase. The former finds the optimum number of the sub-models,
the fuzzy set nodes and the wavelet nodes of the network using the fuzzy Adaptive
resonance Theory (ART) [18] in order to track a specified process. The latter
optimizes the free network parameters of the network, which are the means and width
of a fuzzy set and a wavelet function and the consequent of the fuzzy rule. This
optimization is performed using both the PSA and the GA for comparison reasons.

The contribution of this paper can be summarized as follows:
e Development the PSA-based LMN
e Optimizing the parameters of the LMN using PSA and GA.
e Development an internal model control scheme using the optimized
PSA-based LMN
e Employing this developed scheme for controlling a multivariable medical
system.

This paper is organized as follows. Section 2 briefly reviews the PSA. Section 3
describes the proposed PSA-based LMN. Section 4 develops the internal model control
scheme using the proposed PSA- based LMN. Simulation results are depicted through
sections 3 and 4 respectively. Section 5 concludes the topics discussed in this paper.

2. PARTICLE SWARM ALGORITHM

The PSA was first proposed by Kennedy and Eberhart [Kennedy and Eberhart, 1995].
It is an adaptive algorithm that depends on the observations of the social behavior of
animals such as bird flocking, fish schools, and swarm theory. In this section, the basic
concepts of the PSA are briefly reviewed.

2.1. The Basic Concepts Of The PSA

Similar to the EAs, in the PSA a set of solutions to the problem under consideration is
used to probe the search space. In this algorithm, the term particle is used for each
individual and the name swarm is used for the population. Each particle of the swarm
has an adaptable velocity (position change) according to which it moves in the search
space and it has a memory to remember the best position of the search space that has
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ever visited. Thus its movement is an aggregated acceleration towards its best
previously visited position and towards the best individual in the swarm [19].

Suppose that the search space is D-dimensional, then the i" particle of the swarm can

be represented by a D-dimensional vector, P,

Pi:[pil P - - - piD]T

The velocity of this particle can be represented by another D-dimensional vector, V,

Vi=lvyp v oo ViD]T

The best previously visited position of the i particle is denoted as PL, defined below:

PL, =[pl, pl, . . . plp]

Defining g as the index of the best particle in the swarm (i.e., the g™ particle is the
best). At each time step t, the original PSA is described by:

Vig (t+1) =V, () + ¢, (PLy (1) — Py (1) + €, (PL, (1) — Py (1) (1)
P+ =V (t+1)+ By (0) (2)

where d=1,2, ... .,D;i=1,2, ..., N, and N is the size of the swarm; ¢, and ¢, are
positive acceleration constants, and r; and r, are uniformly distributed random
numbers in the range [0,1]. Equation (1) describes how the velocity is dynamically
updated and equation (2) adapts the particle position. Equation (1) consists of three
parts. The first part is the momentum part to assure that the velocity can’t be changed
abruptly. The second part is the “cognitive” part which represents private thinking of
itself-learning from its own position experience. The third part is the “social “part
which represents the collaboration among particles - learning from group position
experience [20]. In equation (1), there was no actual mechanism for controlling the

velocity of a particle, it was necessary to impose a maximum valueV__ . If the velocity

violates this limit it has to be set at this value. This parameter proved to be crucial,
because large values could result a good indication for past moving of particles, while
small values could result in insufficient exploration of the search space [19].

The PSA is simple, easy to implement and has not heavy computation demand. The
original procedure for implementing the PSA is summarized below:
1. Initialize a swarm of particles with random positions and velocities on D
dimensions in the problem space.
2. Evaluate the desired optimization fitness for each particle.
3. Compare particle’s fitness evaluation with its PL. If current value is better than
its PL then set PL equal to the current position P; in D-dimensional space.
4. Identify the particle in the swarm with the best success so far, and assign its
index to the variable g.
Change the velocity and position of the particle according to (1) and (2).
6. Go to step 2 until a criterion is met, usually a sufficiently good fitness or a
maximum number of iterations.

hd
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2.2. The Parameters Of The PSA

As mentioned above, the velocity changes of the PSA consist of three parts, the
“social” part, the “cognitive” part, and the momentum part. The balance among these
parts determines the balance of the global and the local search ability, and the
performance of the PSA that has a set of free parameters.

The first free parameter added into the original PSA is the inertia weight [21]. The
velocity adaptation equation of the PSA with inertia weight is given by:

Vg (t+1) =TIV, (1) + ;1 (PL, (1) — Py (D) + ¢,1, (PL, (1) = Py (1)) (3)

where I1is the inertia weight.

The inertia weight is introduced to regulate between the global and local search
abilities. A large inertia weight facilities global search (i.e., searching new area), while
a small one facilities local search (i.e., fine- tuning the current search area). A suitable
value for the inertia weight provides balance between the global and the local search
abilities and consequently results in reduction of the number of iterations required to
reach the optimum solution. The experimental results indicated that it is better to
initially set to a large value, in order to promote global exploration of the search space,
and gradually decreases to get more refined solutions [21]. The following relation is
usually utilized to perform the gradually decreasing of the inertia weight [13].

H — ”ma);: ﬂ-min t (4)

max

where 7. is the initial weight, 7 . is the final weight, and t_, is the maximum

max

iteration number.

Another free parameter called constriction coefficient is introduced with the hope
that it insure a PSA to converge [15]. The method of incorporating this factor in a PSA
defines in (5).

Vig (t+1) =K[Viy (1) + ¢,1, (PL, (1) — By (1) + ¢,1, (PLy (1) — Py ()] Q)

where K is a constriction coefficient and is a function of ¢; and ¢, as follows:

2
k= (6)
‘2 —¢V¢2—4¢‘
where ¢ =C, +C,, @>4

The PSA with the constriction factor can be considered as a special case of the PSA
with inertia weight while the three parameters are connected thought (6). The
constriction factor k controls the magnitude of the velocities, in a similar way to the
Vmax parameter. A better approach to use as a rule of thumb is to utilize the PSA with
constriction factor while limiting Vi to Prax the dynamic range of each dimension
[20].
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3. THE PROPOSED PSA-BASED LMN

In this section, the optimization problem of the proposed PSA-based LMN will be
investigated. First, the LMN will be briefly described. Second, the optimization
problem using the PSA will be detailed. Finally, the performance of the optimized
network using the PSA compared with GA in the modeling scheme will be
demonstrated.

3.1. The Proposed Local Model Network

Figure 1 depicts the structure of the proposed LMN. It consists of five layers that are
described as follows:

Layer -1: A node at this layer just transmits the input values to the next layer.

Layer -2: This layer consists of two groups, universes of discourse of the input fuzzy
variables and their wavelets. The former cover the universes of discourse of the input

variables by a set of triangular-shaped function H i (X; ). That is:
i

Z‘Xi —cij‘
My () =1= =l

7
5 ()

where Aji is the j™ fuzzy set of the i" input variable x; , and cij , and 5” are the center
and width of this fuzzy set respectively.

The latter is a wavelet function generated by dilating and translating the mother
2

wavelet function h(X) = (1 - x*) exp(— X?) . That is :

cpj(X):f[h(zjk) ®)

X, —m

where Z; = !

X , 1 is the number of their inputs, m and d are the translation and
ik

dilation parameters respectively.

Layer -3: The firing strength can be obtained using Larsen’s product at this layer [22]

as follows:

. n
wEHﬂﬁm) ©)
where, its normalized value is:
T = @ (10)
o'

9
i=1

Layer-4: A node at this layer is a sub-model that merges the normalized firing
strength of a TSK fuzzy rule with a wavelet. That is:
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yi'=@,(X)a' (11)

Layer -5: Based on the approximate Center Of Area (COA) defuzzification method,
the crisp output y,,, can be deduced. That is:

9 .
i
Yo = 2@ F,(X)®(X) (12)
i=l
Input term
Input Linguistic nodes
nodeI l
‘ Rule nodes Fertilization Output node
Xi ’ . . nodes
: : l f1(X)

. GO~

O "
o\
CORT

Xn

Input wavelet nodes

Fig. 1 The structure of the proposed LMN.

The network described above performs the following rule:
R' :IFx;is A/ and... and x,is A,' THEN y' =fi(X)« @, (X) (13)
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where,
f, (X) s a linear function of the TSK model. That is:

f(X) =W %X, +WL %X, +. . .+W *X, (14)

and, @, (X) is the wavelet function defined in (8).
Reforming (8), results an LMN defined below:

OO =W, *uk=D+. . +W, *uk-r)+w, *yk-D+ . . 4w *xyk-s) (15)

Substituting (15) in (12), results:
V.(K)=b *uk-D+. . +b, *uk-r)+a *yk-D+ . . .+a, *xyk-s) (16)

q . ) a .
where, by =Y W) @, (X)@', i=1,2,...r, &, =Y W) *®,(X)@’, h=12,...s (17)
i=l j=1

q is the number of rules generated, r and s are the orders of the plant input and output
respectively. Equation (16) represents the proposed LMN with the input and output
vectors defined below:

X=Tu(k-Duk-2)...ukr)yk1Dyk2)..., .yk-s)]"

Y=[y (K)]"

The optimization problem of the proposed LMN can be classified into two phases,
the structure phase and the parameter phase. The former should determine the optimal
number of the following seeds

e Fuzzy clusters of each fuzzy variable.
e  Wavelet nodes
e Fuzzy rules
While the latter optimizes their free parameters.

The clustering algorithms techniques can be employed to perform the structure
optimization of the proposed LMN. Among of these algorithms, the fuzzy ART
algorithm [18] is employed in this paper to perform this optimization stage. Basically,
the fuzzy ART was introduced to finding the parameters of an input membership

function (the center “Cj;,” and the width “o ji”)- This is equivalent to forming the
proper fuzzy hyperboxes clusters in the input space, which defines the number of fuzzy
rules and wavelet nodes. Forming these clusters requires the initial values of their

centers and widths. Determining the parameters of a fuzzy cluster (a fuzzy set),
includes the parameters of the corresponding wavelet function. That is

m; =a, *C;, d; =a,*J; (18)

where j =1,2, ... q (number of wavelet functions), i=1,2, . . . n (number of input
variables), Cj, o ji are the center and the width of the j™ fuzzy set of the i input , and
a,,a, are scaling factors.

In the parameter optimization stage, it should determine the optimum values of the
following parameters.
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e The fuzzy set parameters.
e The wavelet parameters.
e The rule consequent weights

Basically this optimization stage is a non-linear optimization problem. The main

objective of this paper is to investigate this optimization problem using the PSA and to
compare it with the GA as follows.

3.2. Optimizing The Parameters Of The LMN Using The PSA

The parameter optimization of the local model network using the PSA comprises two
major operators: evaluation and adaptation. Before describing these operators, the
issues of coding and initialization are presented. The coding concerns with the way that
the network parameters are represented by a set of particles, whereas initialization is
the proper assignment of optimization process before entering the evaluation process.
The overall optimization process of the proposed LMN by the PSA is described below:

Coding: A floating point coding scheme is employed in this paper. For the ARX-
LMN, suppose the number of the generated sub-models ( fuzzy rules) is q and the
number of the input nodes is n, and the total number of parameters (D) to be
optimized can be set as follows

D = the number of fuzzy sets nodes (2:n«q) + the number of wavelet nodes
(2+n+q) + the number of rule nodes (n«q) = 5« n«q.

Thus, the parameters of these nodes can be coded into a particle as follows.

]
P:[Fp W, Rp} (19)

where, F,, Wp, and R, are the vectors that represent the parameters of the fuzzy
set nodes (the center and the variance), the parameters of the wavelet nodes, and
the parameters of the rule nodes (rule consequent weights). Those are:

Fp:{ql...qﬂqz.. - Gpe - - Gye - .qmdl...5(1152...5(12...@...5(4,}T

T
W{ml...n&mz..n&...%...ngnql...dqlqz..dqz...qn...dqn}
R

§
p:{w11 C Wy W L Wy L WL .an}

Initialization: In this stage, a population of particles with random positions and
velocities was initialized. The position of each particle was assigned to the values
of the parameters to be optimized and the velocity was assigned to the change of
these parameters. As described above, each particle contains three groups of
parameters; the initialization of each group was achieved as follows.

The first and the second groups, which concern with the fuzzy sets parameters and
the wavelet parameters was initialized by using its initial values generated by the
fuzzy ART. Those are:
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¢l =rnd+*c; (0)

85 =rmd *5;(0)

]

(20)

mf =rnd *m; (0)

dji =rnd=d;(0)
where j=1,2,. . ., q, 1 =12, . . ., n, h=1,2, . . ., N (the size of population),

€;i(0),5;(0) are the center and the variance of the j™ fuzzy set of the i™ input
variable, which were generated by the fuzzy ART, m;(0), d;(0)are the

translation of the j™ wavelet function of the i™ input , which were given by (8),
and rnd is a uniformly distributed random number in [0,1].
The third group, which concerns the rule consequence weights, is randomly
assigned within the network output domain. For the purpose of generality, the
network output domain is normalized be in the range [-1, 1], then the rule
consequent weights are randomly initialized within [-1, 1].

e  Evaluation: For each particle, the fitness value is calculated. In this paper, the
fitness function that measures the quality of each particle is given by the
reciprocal of the Root Mean Square(RMS) errors as follows:

RMS =\/Nizs(yd (k) - y(K))?

S k=1

1
fi(R)= e @)
where i = 1,2,. . . N, yq (k), y(k) are the desired and the actual outputs of the
ARX-LMN at sample k , and Ng is the number of samples.

e  Adaptation: In this stage, the best position for each particle PL and the best
position swarm P, are calculated. The original PSA algorithm and the PSA
algorithm with the inertia weight are employed in this paper to adapt the position
and the velocity of each particle.

3.3. Modeling Simulations

In this sub-section, nonlinear single input single output and multivariable control
systems are employed to assure the soundness of the PSA-based LMN in the modeling
purposes.

Nonlinear System: A complex system is employed to assure the capabilities of the
optimized proposed LMN using the PSA in the dynamic systems modeling. The
discrete time difference equation of the system [23] is:

o 1) = YOOV DY (K= 2u(k = 1) *[y(k = 2) ~ 1]+ u(k);
1+y* (k=1 +y*(k-2)
The training signal u(k) is defined below:
u(k) = 0.8sin(2ITk /50) (23)

(22)



566 Nabila M. El-Rabaie and Tarek A. Mahmoud

The input and the output vectors of the network are:

X =[yk) yk-1 uk)'
Yy =Ly +D]'

In this example, the PSA with the inertia weight defined in (3), is employed and the
parameters 77 V4 crand ¢, are set to 0.99, 0.4, 2, and 2 respectively. Initially, 40

individuals are randomly generated in a population, i.e., the size of swarm = 40 and the
evolution is processed for 100 generation. To demonstrate the optimized result, two
different test signals u;(k) and u,(k), are used to assure the modeling capabilities of the

optimized network. Those are [23]:

sin(211k / 250) k <500
u, (k) = . . (24)
0.8sin(2I1k /250) + 0.2 sin(2I1k / 25) k >500

and

u, (k) = 0.8sin(2TTk / 200) + 0.2 sin(2ITk / 25) (25)

The outputs of the optimized network and the process using the two test signals
defined in (24) and (25) are depicted in Fig. 2 and Fig. 3. It is clear that the modeling
capabilities of the optimized network are outstanding.

For comparison reasons, the network is optimized by the GA to the same example.
In the GA, the population size and the initial individuals are the same as those used in
the PSA. The parents for crossover are selected from the whole population and the
roulette wheel selection method is used. The crossover probability and the mutation
probability are set to 0.85 and 0.05 respectively. Figure 4 depicts the best RMS errors
obtained using the PSA and the GA versus a set of generation. Best results are obtained
using the PSA compared with the GA. Moreover, computationally the former is
smaller than the latter. This is due to the computations needed in GA e.g. mutation and
crossover are eliminated in the proposed PSA. A notable feature using the PSA over
the GA is that each particle of the swarm has adaptable velocity according to the
information acquired from the particles in the search space.

network
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Fig. 2: The outputs of the system and the proposed network using the test signal us.
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Fig. 3: The outputs of the system and the proposed network using the test signal u,,
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Fig. 4: The best RMS error obtained using the PSA and the GA respectively

Multivariable Blood Control System Model

(nonlinear system).

Clinically, it is required to regulate simultaneously the cardiac output (CO) and the
mean arterial pressure (MAP) of a patient in hospital intensive care using various
drugs. Two typical drugs used are dopamine (DOP), which is an inotropic drug, and
sodium nitroprusside (SNP), which is a vasoactive drug. For the purpose of the
simulation study Linkens and Nie adopt the same model used in [24, 25] which is

given by [26]:

ACO
AMAP

|

1.0
0.6636

Kll_rls
—24.76] ST, +1
7638 | K,

sT, +1

-17,5
K12

sT, +1 [ul}
Kzz_TZS U,

sT, +1

(26)
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where ACO (ml/s) is the change in cardiac output to u; and u, ; AMAP (mmHg) is the
change in mean arterial pressure due to u; and u, ; u; (£g/Kg/min)is the infusion

rate of dopamine; u, (ml/h) is the infusion rate of sodium nitroprusside ; Ky, Ki5, Ky,
and K, are steady state-gains with nominal values of 8.44, 5.275, -0.09 and -0.15
respectively ; T, and 1, represent two time delays with nominal values of 7,= 60 s and
T7,= 30 s; and T, and T, are time constants with nominal values of 84.1 s and 58.75 s
respectively. In modeling this multivariable system using the ARX-LM network, the
input and the output vectors are:

X =[ACO(k —1) AMAB(k—1) u,(k—-d,) u,(k-d)]
Y =[ACO(k) AMAB(K)]

where ACO(K), AMAP(K) are the changes of the cardiac output and the blood
pressure at the k™ time step respectively, d; and d, are the discreet delay times.

The inputs training sequence consists of square pulses with random amplitudes in the
range [0, 2.5 ml/h]. The PSA with the inertia weight defined in (3) is also employed

and the parameterssz,_, ,7 . , ¢ and ¢, are set to 0.99, 0.4, 2, and 2 respectively.
Initially, 20 individuals are randomly generated in a population, i.e., the size of swarm
= 20 and the evolution is processed for 500 generation. The outputs of the optimized
network and the process and the inputs training sequence for 200 samples are depicted
in Fig. 5 and Fig. 6 respectively. It is clear that the modeling capabilities of the

optimized network are very effective.

Also, for the comparison reasons, the network is optimized by the GA to the same
example. The GA used has the same parameters as those used in PSA. Also, the
parents for crossover are selected from the whole population and the roulette wheel
selection method is used. The crossover probability and the mutation probability are set
to 0.85 and 0.05 respectively. Figure 7 depicts the best RMS error for the PSA and the
GA versus a set of generations. The figure shows the superiority of the PSA over the
GA in the network optimization for the second example.

——ACO ---ee- networkl | | | network ——AMAP
50 5
4 f—"\ g \
' N N ]
30 . / :&'1“__ A0 N
04 /= 45 [
10 '// \ -20
0 [ _25 &#\‘
0 20 40 60 80 100 120 140 160 180 200 %0
0 20 40 60 80 100120 140 160 180 200
samples samples

Fig. 5: The change of cardiac and the blood pressure outputs and the network outputs.
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3 25
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2 15
S 15 = 9
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0 0 — \
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Fig. 6: The training pulses.

——PSA GA
_;
0
0 50 100 150 200 250 300 350 400 450 500
Generation

Fig. 7: The RMS error obtained using the PSA and the GA respectively.
(Multivariable blood pressure control system)

Outstanding results obtained in modeling simulations, encourages us to extend the
proposed PSA-based LMN in control systems. An internal model control (IMC)
scheme based on the proposed PSA-based LMN is discussed in section 4.

4. DEVELOPMENT AN IMC USING THE PSA- based LMN

The IMC strategy can theoretically provide perfect control, such that the output of the
plant equals to the reference input signal. This is achieved by obtaining a perfect model
of the plant and then inverting this model to produce a controller. The basic structure of
the IMC depicted in Fig. 8, involves two models, the internal model of the plant, and
its inverse (controller). An IMC system possesses the dual stability, the perfect control
and zero offset properties [27]. The basic structure depicted in Fig. 8 is not applicable
for controlling the dynamic systems that have non-causal, non-minimum phase, and
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pure time delay dynamics. Having theses dynamics, leads to unstable and non-causal
inverse system model. Isabelle and Leon introduced a modified procedure for the IMC
scheme that can be used perfectly with the dynamics [28]. In this scheme, the
controller is implemented as the inverse of the model deprived from its delay to
eliminate the effect of the delay in the inverse of the model as depicted in Fig. 9. The
controller is then obtained by cascading this inverse model with rallying model, which
ensures the robustness of the stability of the control scheme. A change in the desired
regulation dynamic behavior or an improvement of the stability can be obtained by
simply tuning of the model. In this procedure, both the delay deprived model and its
inverse is structured by using a feed-forward neural network.

Yo

Yp

d
+
R—»Q—e> Inverse ] Plant
4 _ Model d
< Internal -
" Model Yin
Fig. 8: A typical structure of IMC.
R Rallvi Z: I
] ,C). allymg »| Inverse
x Model | —p| model Process
+ -

Internal model

Delay-

deprived d

(d-

1))

model

U‘

Fig. 9: The modified IMC scheme.

v

This paper adopts this IMC scheme by using the PSA- based LMN as in the following

subsection.

4.1. Design The PSA —Based LMN- Based IMC

Consider the system to be controlled is described by the following discrete-time
nonlinear model:

y, (k)= (Y, {0

k—d
ULk gms

27
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where y,(k) is the process output at instant k, Y, {k _, denotes the delayed output

{{y, (k=1 .. y,(k—n)}and similarly uf "’

—4_ms; denote the set of m past control

inputs {u(k—d) ... u(k—d—-m+1)},d >1 is the delay, A is the unknown

nonlinear function. Using the optimized ARX-LMN, the given system is defined
below:

Yu®=by *uk—d)+. . .40, *uk-d-m-D+a *y (k-D+ . . .+a *y,(k-n) (28)

where yn,(k) is the output of the model at a sample k. The model parameters a; and b;
can obtained using the optimized parameters using the PSA which are the fuzzy set, the
wavelet, and the rule consequent parameters as described in (17). Using these
parameters, the output of the delay deprived model Z(k) can be calculated using the
following ARX model.

Z(k+1)=buk—d)+. uk—-d-m+l+a,zZ(k)+. . .+a,Z(k—n) (29)

d+m
where: Z(k) = ynu(k+d)

Once the delay deprived model stage is constructed, the only problem to be solved is
how to develop the inverse model to be used as a controller. The parameters of this
inverse model (the controller) are estimated at each time step. That means that the
concept of developing an inverse model is deprived and replaced by a parameter
estimation scheme. That simplifies the structure of the IMC scheme and makes the
enhanced ARX-LMN-based IMC scheme promising for modeling and controlling real
process.

Consider the delay deprived model described by the proposed PSA- based LMN as
in 29, where the parameters a; and b; of the proposed network depends on the operating
point. Based on this model formulation, the following exact inverse control law can be
postulated:

u(k—d)=bi(Z(k+1)—aIZ(k)—aZZ(k—2)—. o)

-a,Z(k—-n)—b,uk —d -1). uk—d-m+1)

m+d

This is possible if and only if the operating point does not depend on u (k). So, a
novel approach is suggested to solve this problem by reforming (30) as follows:

uk-dy=a'Z(k+1)+azk)+a,Z(k—2)—.
+a' , Z(k-n)+buk—d-1). . .+b,

m+d-1

uk—-d-m+1) Gh

Using the same input-output data used in the learning the internal model, the
parameters @ and b’ can be estimated by using the Recursive Lease Square (RLS)

method described as follows. Suppose the weight and the input/output vectors are:
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B'=[Z(k+1) Z(k) . . . Z(k-n) u(k—d-1) . . . uk—d-m-1)]
O=[a, a ... a b b...b..T
The control law can be written as:
u(k) =p’ 0’ (32)
The linear parameters ' are recursively estimated by:
0'(k) = 0'(k — 1) + P'(k — DB'(k)e'(k)

Py = Pk 1y~ k= DB'(K)B' (K)P'(k — 1) -
1+ (K)P'(k = DB'(k)

where €'(K) is the error between the desired and the actual outputs of the inverse of
the delay deprived model respectively. That is:

e'(k) = (uy (k)—u (k) (34)

where uy(k) is the desired output of the inverse of the delay —deprived model network
which has been used in the internal model learning, and u(k) is the actual output of the
controller given by 32. Once the delay deprived model and its inverse are structured off
line, the on line structure depicted in Fig. 2 is applied. In the on line phase, the output
of the inverse of the delay-deprived model can easily be calculated as follows:

uk-dy=a'Z (k+)+a'zk)+a,Z(k-2)-.
+a/,Z(k—n)+buk —d -1). . .+b’

m+d-1

ulk—d-m+1) G3)

where Z,(k+1) is the output of the rallying model that can be tuned to improve the
system tracking and stability. Controlling the multivariable blood pressure control
system described in section III, assures the soundness of the modified IMC scheme.

4.2. Control Simulation Results

In this subsection, the simulation results of the IMC based on the proposed PSA- based
LMN for the multivariable blood pressure control system are described. The sampling
time is 30 second, and the set- points for CO and MAP was set to be 20 ml/s and -10
mmHg changing from nominal values of 100 ml/s and 120 mmHg respectively [29].
To investigate the effectiveness of the proposed scheme, four cases of the system
parameters are performed; these cases are listed as follows [Linkens and Nie, 1995]:
e The first case: The plant parameters (K;;, Kz, Ky1, Ky, 71, 75, T; and T, ) are set
to the nominal values.
e The second case: The plant parameters (K;;, Ky, 11, T2, T; and T,) are set to the
nominal values and the two parameters K;;, K;, were abrupt changed by 10%
from their nominal values.
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e The third case: The plant parameters (K, Ki, 71, 1o, T and T, ) are set to the
nominal values and the two parameters K,;, Ky, were abrupt changed by 10%
from their nominal values.

e The fourth case: The plant parameters (K;;, Ki2, Ky1, Ky, 71 and 1,) are set to
the nominal values and the two parameters T, and T, were abrupt changed by
10% from their nominal values.

Figure 10 shows the response of the process using the proposed predictive scheme
when the fourth case of the system parameters is presented. These dynamics are
acceptable according to the results published in [29].

Also, to show the effectiveness and efficiency of PSA in the control problem, the
GA is applied to the same control problem. The PSA-based LMN-based IMC is
compared with the GA- based LMN-based IMC in the sense of the RMS error defined
in 36. The RMS error obtained are depicted in Table. 1.

1 N
RMS = \/— 2 (ACO - ACO)>+(AMAP = AMAP)? (36)
N t=1

where N is the number of samples, ACO 4, AMAP 4 are the desired changes of ACO

and AMAP respectively. The table shows the superiority of the PSA over the GA in
the control scheme.
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Fig. 10: The change for both cardiac and blood pressure outputs using the proposed
PSA- based LMN —based IMC (case four).
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Table. 1
RMS errors
System cases
The GA- LMN-based IMC | The PSA- LMN-based IMC

Case one 1.951 0.326
Case two 3.164 1.178
Case three 2.231 1.145
Case four 1.953 0.324

5. CONCOLUSIONS

This paper introduced the PSA-based LMN for modeling and controlling dynamical
systems. Structurally, it merges the fuzzy set theory and the wavelets in a unified form.
The fuzzy ART algorithm was employed in structure learning of the proposed network,
while the PSA was used to optimize the parameters of the network. The main notable
feature of using the PSA compared with the GA is that its particles observe each other
in the search space and adapt themselves based on the information received from those
particles closed to the best solution. The philosophy of the IMC scheme was adopted in
this paper using the proposed PSA-LMN. Better results have been achieved using the
proposed PSA-based LMN in modeling and controlling nonlinear dynamic systems
compared with the GA-based LMN.
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