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In supply chains, the phenomenon of bullwhip effglce variance
amplification of order quantities observed in sypphain) has received a
considerable attention by companies as it leadsamendous losses and
poor customer services. This variance amplificatb@meurs according to
the necessity of using forecasting methods by compdo predict the
demand. To overcome this problem the businesstgaemorts to develop
what is called decision rules which show that théivihip effect is not
avoidable. This paper introduces a control engiiegrapproach called
Derivative Derived Generalized Predictive Contr@OGPC) together
with Genetic Algorithm GA to reduce this effecte Titoposed method
can reduce bullwhip effect. Moreover, stability antustness analyses of
the proposed technique are investigated. This wbald decision-makers
in supply chains management to reduce the negatimeequences of the
bullwhip effect.

KEYWORDS: Supply Chains, Bullwhip Effect, GA, Predictive Goht

1. INTRODUCTION
In 2004 IEEE Conference on Control Applicationsg ttontrol scientists have called
for a new control slogan and namedLibbk Around You The spirit of this slogan is
the main motif to introduce this paper. This pagleows to the business people that
using control engineering in supply chain managedroeunld have a significant impact
in solving complicated management problems. On¢hefnoticed problems by the
business society, is that fast changes in demamaisipmers normally leads to a great
loss either by slow response to this demand wigalld to product shortage or by extra
production that causes unwanted inventory stockss Pproblem has firstly been
analyzed in [1, 2] through the so called supplyichat was found that the increase of
orders occurs as one moving up the supply chaiter] R&G called this phenomenon
the bullwhip effect while in some industries it keown as the “whiplash” or the
“whipsaw” effect [3]. Lee et al [3] attributed tHaullwhip effect to the five major
causes: order batching, price fluctuation, ratigrand shortage gaming processing, the
use of demand forecast updating and non-zero leaest The adjusting of demand
forecast and as a result adjusting the paramefettsednventory replenishment rule
has shown over reactions to short term fluctmstman lead to variane@enmplification
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[4, 5]. In addition, they have shown that the ordprto polices always generate a
bullwhip effect, based on the control engineeripgraach. The analysis was based on
a transfer function for a particular order up tdigoafter using the so called causal
loop diagram. A special predictive control techmiqoalled Delayed Generalized
Predictive Control (DGPC) [6] was introduced totthaodel. The results showed the
strength of the DGPC in reducing the Bullwhip effg]. On the other hand, Sterman
[8] developed a new replenishment rule based ontitreal adjustments which
generated smooth order patterns. Although the nésvis considered as a successful
mechanism to dampen order fluctuations when detisiakers have to rely on
forecasts, variance amplification in orders walk shiservable and recovery from and
the time taken for the net stock to recover conayefrom this step input signal was
found to be longer. This indicates extra cost.

This paper proposes two different approaches tacedhe bullwhip effect namely
Genetic algorithm (GA) and Derivative Derived Gealeed Predictive Control
(DDGPC) [9]. GAs are searching algorithms basediaomlation of the human trial -
and —error procedure using the “survival of theefit” Darwinian principle [10] as they
have been successfully applied in many optimizghi@blems [10-12]. Therefore, they
can be used to minimize the difference betweerotters and the demands (bullwhip
effect). On the other hand, the main objectivehef DDGPC is to improve the system
performance in terms of the system overshoot withadding computational
complexity and with the ability to derive an anaigt solution to the control problem.
Therefore, this concept can be introduced to tipplgwchain to reduce bullwhip effect
in a robust manner in the presence of an inaccueai time, production time and
forecast estimates. The DDGPC controller incorgmamany advantages can be
summarized as follows: an optimizer with signifitatrength in reducing system
overshoot and it can be easily tuned to achievicedegree of stability, performance,
and robustness.

The paper is organized as follows. In section 2 basic DDGPC algorithm is
presented. The proposed replenishment rule anttaitsfer function with stability
analysis are given in section 3. In section 4, @#e technique is introduced to the
system. Then, in section 5, the controller is desigusing DDGPC, supported by
stability/robustness analyses and simulation exasa@@imulation results are presented
and discussed in section 6. The paper ends witlmsuynand conclusion in section 7.

2. THE OPTIMAL PREDICTION FOR DERIVATIVE DERIVED
GENERALIZED PREDICTIVE CONTROL (DDGPC)

The main design target of the DDGPC [9] is to clt®ia sequence of future control
signal in such a way that it minimizes a multistagmst function defined over a
horizon. This cost function includes a quadratiaction measuring the difference
between the predicted system output and certanhigiesl reference sequence over so-
called prediction horizon plus a quadratic functinaasuring the control efforts, plus
the derivative of the future output. This can béten as follows

& ]~ . ~[2 1 A~ . ~ . AT . 2
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where y(t+ j|t) is thej-step ahead prediction of the system on data up to time
w(t + j) is the future reference trajecto4.} denotes the expectation operator and

has been used to indicate that the control valhesen are calculated conditioned
upon the data available up to and including titmand presuming the stochastic
disturbance modeN;, N,, andN, are the minimum costing horizon, maximum costing
horizon and control horizons( j) anda ( j) are weighting function to penalize the error

and the control sequence respectivélys the sampling time.
To minimize the above function the future valuestitd output y(t+j) should be

obtained using the system model. For this purpasesider the following single-input-
single-output (SISO) plant:

Az Y)y(t) = Bz ut -1 +C(z ) S @

wherey(t) is the outputu(t) is the control sequencé(t) is the zero mean white noise,
A is the differencing operatdr-z™ andA, BandC are polynomials in the backward

shift operator(z™) .
Aiz')=1+az'+a,z% +---+a 2z
B(z")=by+ Bz +b, 27"+t by, 2™ (3)
C(zY)=1+cz'+cz %+ 4cC 2"
for simplicity theC polynomial is chosen to be 1 @' is truncated and absorbed into

A andB polynomials. The followindgiophantineequation can be used to generate the
predicted output:

1=E,(zY)A@Z )+ 2 F,(z7) (4)

where A(z') = A(Z*!)A . For a unique solution the degree of the polynésieand
F; should be wequal to j-1 and n, respectively. For simplicity,
N,=1,N,= N, = N,d=1andi(j)= 4.
The output predictions could be stated as:
y(t +1t) = G,Au(t) + FLy(t)
Y(t+2t) =G,Au(t+1) + F,y(t)

(5)
§(t+NJt) = GyAu(t +N) +Fy y(t)
which can be written as:
y=Gu+F(z)y(t)+G'(z™")Au(t-1) ©)

y =Gu +f

where f is the free response and Gu is the faasponse where
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y=[9t+1t) gt+2t) - JE+N D]

u=[Au(t) Aut+l) - Aut+N-1) (7)
% O - 0 F.(zY)
g=| & % Fezhy=| @)
Ous Gvz G Fu(2)
(G(Z")- @)z

G:(Z—l) — (G‘z(z_l) “%~-9 z )22

(G2~ - gz" ~0Eg,,z ")
Now the cost function in Equation (2) can be writées:
J=€e'e+D'D+Au'u
where
e=(Gu+f-w)
D=[(G,u+f,)—(Gu+f)]
and

G, is (N, - N,) x N, submatrix of the matrix G, consisting of its rowh numbers
from N, to N, -1.

G, is (N, - N,) x N, submatrix of the matrix G, consisting of its rowigh numbers
from (N, +1) toN,.
f, is (N, — N,) x1 subvector of the vector f, consisting of its elaetsewith numbers
from N, to N, -1.

f, is (N, = N,) x1 subvector of the vector f, consisting of its elatsewith numbers
from (N, +1) toN,.

w=wit+l) wit+2) - wit+N)

To minimize theJ, assuming that there are no constraints in theraosignals, is
found to be

U=-H3[G(F, ~1,)+G](f, ~1,)+G ™ (f ~w)] ®)
where

H=(GIG,-GIG,-GIG,+GIG,+G G+ I)
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the first elementAu(t), of the matrix u, will be applied to the systendanill be

repeated at every sampling period. In non-adaptdggn with a time invariant model,
this leads to a time invariant controller. In gexieto reduce the computation needed in
DDGPC, it is assumed that the control signals Wwal constant after the control
horizon. The performance analysis of the aboverobaws is summarized in the
following section.

3. THE REPLENISHMENT RULE-FOR ORDERING

In order up to polices, the bullwhip is unavoidabihen demand forecasting is
necessary [4]. Accordingly, Dejonkheere et al [4jogpsed a new general
replenishment rule to reduce variance amplificateMmen when demand should be
forecasted. The following exponential smoothinget@st method was used to predict
the demand

[3t = O'Dt + (1—0’) [31—1 (9)

It should be mentioned that the order decision &lenat the end of the period,
therefore the current demand can be used in tieedstD, . For the above exponential

smoothing the average age of the data in the fetésaqual tol, = l-a)/a [4].

The proposed new rule was able to derive smoothagrimg patterns compared to
those obtained by the order up to policies. Howeteould not eliminate the bullwhip
effect. This can be regarded to the selection efrtlie parameters and the limited
ability to deal with frequently switching demandamtities up an down. Therefore, the
right selection of those parameters using GA wédlltbe objective of the next section
while in this section a brief review of the so edlreplenishment rule is given.

The suggested replenishment rule can be describ&drds as "ordering quantities are
set equal to the sum of forecasted demand, adracti (17T,) of the discrepancy of
finished goods net stock, and a fractionrgl/of on order position discrepancy [4]. The
order quantity in periot] O, is given by

O, = [StTa +Ti(TNS! - NS)+Ti(DWIR -WIR) (20)
where
O is the ordering decision made at the end of period

6{6 is the demand forecast (using simple exponentialogining, see Equation (9)
with parameteil,.

TNS is atarget net stock level,

NS is the current net stock in period t,

DWIP is the desired WIP level, and

WIP, is the current work in process (or on order) fiasiin periodt. TNS is the
target net stock level, similar to the safety stotlorder-up-to policies. It is

updated every period according to the new demaretést and equald,™.
DWIP; is updated every period as welhwIP =Tp|5tTa.



864 H. W. Gomma

It should be mentioned that we only haleorders in WIP and,, T, andT, can be
regarded as the key parameters or controllerseofléitision rule. The decision rule of
Equation (10) and small variations of this rule éaddeen described by [13]. Analyzing
this replenishment rule from a control engineepegspective offers powerful insights
into the variance amplification issue.

Using the above equations has led to the followmragsfer function between the
demand and the orders
Q2 _ 2" (U AT,(0 +T) L+ 2+ 2+T)T2) (11)
D2 (L(1+2+ (T, +T, 1+ (+T,(1+ 2)77)

This has been achieved by obtaining the z-transflmmthe exponential smoothing
algorithm

_ D(2) _ a
D(2) 1-(-a)z™

The full sequence of the above process can beiséén 1.

F(2)

[i} a
Nominaldelay | 1— (L—a)z™?
TNS lo preserve

Ss correct order
of events

Figure 1: Block diagram for the order up to policy using
the fractional replenishment rule.

I. Stability analysis

In [4], the above model was analyzed in terms wietresponse, however a stability
analysis for the system was not investigated fdfexint values of the system
parameters. Therefore, to examine the system ityabit can be seen from

Equation (11) that the system multiple poles depeod T,. However, there is a

separate pole which is always stable as it achi#neefollowing condition

T
zZ= a <] (12)

which will hold for all values oT,. The stability of the other poles can be indivitiua
investigated using the following theorem.
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Theorem 1: If the replenishment rule transfer function (betwdhe demand and the
orders) is represented by Equation (11) and,, >|(T, - T,T,)| +|(T, = T,)| then
replenishment rule is stable.

Proof: From Rouche’s theorem, if the characteristic polgiad is represented as
follows
H(z)=a,z"+a,z""'+a,z""+--a

n

with a;>0, then for the system poles to lie in the umtleiit is sufficient that

n

ES RN

i=1
applying this theorem to Equation (11), thus th@eeishment rule is sable if

T, T, > [T, =TT +[(T, =T,) (13)
which completes the proof. This could hold for adevirange ofT,, and T,, which
indicates that the stability of the proposed systemld be guaranteed depending on

the selection of, andT,,. Note that in the following sections, and for slitipy, T, is
considered to be 1.

4. GENETIC ALGORITHM (GA)
GA is a general technique for searching a solutjgerce in a manner analogous to the
natural selection procedure in biological evolutiph0]. Conventional search
techniques are often incapable of optimizing noedr multi-modal functions
[11, 12, 14]. GA differs from many traditional opization algorithms in that the latter
usually suffer from myopia for highly complex seaspaces [11, 12]. In such cases, a
random search method might be required. Gas dais®@much knowledge about the
problem to be optimized and do not deal directl{hvthe parameters of the problem.
They work with codes, which represent parametdns. @arameters to be optimized are
usually represented in a string form since germirators are suitable for this type of
representation (binary or integer representatiothath.

I. Minimising the bullwhip effect

The GA is used to select the best parameters wdriehable to reduce the bullwhip
effect and compared with that mentioned in [4]. Tioowing cost function is
considered

M
Jg = Z e’ (k) (14)
k=0
TWmm S TW S T\Max
stqT, <T,<T (15)

Tamm S Ta S Tamax
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whereeg(K) is the difference between the desired demandfaéstimated orders. For
simulation purposes the parameters ByeandT,, and T, are subjected to the above
constraints.

ll. Simulation Example
Applying the GA to the above cost function (Equat{@4)) considering the system in
Equation (11), and using the following constraints

o] T, [100
0|< T, <|100 (16)
o] T, |100

a

the tuning parameters are found tods®.8365,T,=99.9717,T,= 6.2533, which have

provided the minimum bullwhip effect (error) ovéietsimulation time. It is clear that
the obtained parameters satisfy the developedlisgabondition in Theorem 1 (see
Equation 12) which will be the same. Examining tbiect of the determined

parameters on the bullwhip effect and comparingntivéth those suggested in [4]
(¢=0.1111,T,=8, T,,=8). Figure 2 shows the orders with respect to unit step in dema
(system step response).

It is clear that the determined parameters (usiy) Gas almost eliminated the
bullwhip effect especially if compared to that dbetal when using those mentioned in
[4] over the simulation time. HoweveFjgure 3 shows that the net stock required a
very long time to recover. This leads to an extist due to the time taken for the net
stock to recover completely from this step inpwingi. Consequently, the inventory
related costs will be larger. This can be regaritethe proposed cost function that
considers only(k) without paying any attention to the effect of tirae taken by the
net stock to recover from the demand. This argurigentorth trying to show that, in
case of using replenishment rule, there is a toingte off to be made between
minimizing inventory holding and shortage costs tbe one hand and production
switching cost on the other side. This can be aelieby adding a new term that
describes the effect of the recovery time to ttmppsed cost function as follows

M
'J BL = (z ez (k)] +Trecover (17)
k=0
TWmm S TW S T\Max
stqT, <T,<T
Tam\l‘l S Ta S Tamax

whereTcoveriS the time taken by net stock to recover fromittpait signal (demand).
Again, applying the GA to Equation (17), considgrthe same constraints in Equation
(16). The system tuning parameters are foor0.854,T,=6.1707,T,=4.5889. The
system response using the above parameters aren shéigures 4 and5. It can be
seen that the bullwhip effect is slightly increasdtle the recovery time is decreased.
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The new results are still not satisfactory. Themfadditional consideration should be
taken into account and a robust techniqgue such REHRL will be introduced to
Equation (11) using the lat latter results.

Quantity

o =0.1111Tr=4; Tw=4; —_—
o = 0.8365,Tn=99.9717,Tw=6.2533

D 1 1 1 1 1
a 10 20 30 40 50 B0 70 80 j=u] 100

Tirne

Figure 2: System Order with respect to step demand (GA and Eq. 14).

Cluantity

-1.5

-2 a=0.1111Tr=4; Tw=4 ; e 7
a=0.8365Tn=99..9717 Tw= 6.2533
2R .
3 f 1 L L L L L L

n] 10 20 a0 40 a0 (=10} 70 a0 a0 100
Tirme

Figure 3: Net stock response (GA and Eq. 14).
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Figure 4: System Order with respect to step demand using GA and Eq.17.

Cluantity
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Figure 5: Net stock response using GA and Eq.17.

5. CONTROLLER DESIGN
From the above it is clear that using GA has aiggmt impact on reducing the
bullwhip effect when the replenishment rule is uB®dhe ordering process. However,
the observed bullwhip effect may vary according tte system uncertainties.
Therefore, applying a robust control technique sasfbDGPC could lead to a better
response.
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The controller will be designed based on the ma@ilen in Equation (11) using the
above parametere=0.854, T,=6.1707, T,=4.5889 (GA model). The aim of the
controller is to produce a suitable control sigiizddmand signal) in a fashion that will
reduce the observed variance amplification. Howgvér useful to design a controller,
which provides not only acceptable performancetbetstability is also a paramount
issue which should be considered. Therefore, tlistian provides a sufficient
condition for stability. This condition will be iterms of controller's gains and system
transfer function. It is understandable that thesens are functions of design
parameters. Thus, stable systems can be obtainadjlsting these parameters.
Theorem 2: In DDGPC if the closed loop system for the nominahnt

(replenishment rule model% can be represented as follow

_ B(zY _ _
y(t) = A(z‘l)[Q(Z DY+ K ZY) Y+ € o )f] (18)

where
y(t) =G(z)u(t)

—-na

Ko(z_l) = ko,oz_l + ko,lz_2 oot kO,naZ
Kl(z_l) = klo z*"+ kl,lz_z *--t kl,naz_(nb+l)
R(2)=rnz+ 1,z +-..r 2"
For stability, it is sufficient that
A n
-S| < — OO0<w<— 19
Q-s/<% z (19)
Proof
The characteristic equation closed loop systemnbeanritten as:
B B
F=1-—Q-S— 20
A Q Y (20)

It is worth mentioning that the shift operatar’ has been dropped for clarity. For the
closed stability, the characteristic equation nsasisfy the following:

B B
1-—Q-—5S
A% A

z0 0O]74=z21 (21)
which holds if

> 0 (22)

B B
1-—Q-—5
AT A

which will hold if

Q - S| <

A
E‘ (23)
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which provides sufficient condition for stable @dsloop system and completes the
proof.

Robustness to system uncertainties

The robustness of closed loop system is a vitalkeiss the design of control systems.
This section investigates the robustness of thpgeed controller when applied to the
proposed replenishment rule model. The most unoeparameter in the proposed
model isT,. It is clear from above that different valuesigfleads to different number
of poles. To investigate this uncertainty, it is@sed that the real replenishment rule

B.(zY) . .
model ——= is related to the nominal model by
A(Z7)
B,(z') _  kB(z")

Az A(ZHAZY 4

where A" (z'l) contains the unmodeled poles due to uncefgiandk is added in
the numerator so there are no discrepancies bettheestatic gain of the real model
and the nominal one. The following Lemma studiesittiluence of unmodeled poles
on the system stability.

Lemmal
In DDGPC the control signal is found to be

) = [QZH W9+ 2 e+ Rw()]

and the replenishment-rule real model can be repted as in Equation (24), where

A" contains unmodeled poles due to uncertgiror stability it is sufficient that
BQ- BS T
M < |A|+ O0O0< w < —
A T

Proof
The characteristic equation closed loop systemnbeanritten as:

B B

AT A Q AT A
It is worth mentioning that the shift operatar' has been dropped for clarity and the
gaink in Equation (24) has been absorbed in the polynd®ikor the closed stability,
the characteristic equation must satisfy the foihgwy

B B
1- - S|£#0 jz=1
AT A Q AT A | Z|

which holds if

F=1 S
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B B
1- - S| >0
‘ A AT AT A
which will hold if
|BQ—BS|<‘A+
Al

which provides sufficient condition for stable adsloop system and completes the
proof.

6. SIMULATION RESULTS

Considering the above, the DDGPC controller will lkerived here for the
parametersl, =1N, = 3N, =3, =1 andA=6. The designed controller will be applied

to the replenishment rule [4] and a comparison Wil conducted between the
controlled model and the uncontrolled ones.

I. Time response analysis

Figure 6 shows the step responses for replenishment rullerée cases, namely, the
controlled GA model, GA model and the original miod@@ejonkheere et al [4]).

It should be mentioned that the simulation of thevipus section is repeated here for
clarification. It is clear that the controlled syst provides the least overshoot for the
generated orders, while the uncontrolled one hagtiaeable overshoot. This indicates
the ability of the controller to minimize the bulp effect. On the other hand,
Figure 7 shows that the controlled system when comparel thig uncontrolled GA
model takes slightly longer to recover from thispsinput signal. However, it has a
significant improvement when compared with the D&fweere model. This indicates
that the controlled GA system satisfy the bestdraff between minimizing inventory
holding and shortage costs and the production Bimgccosts.

To support the above results, frequency analysistlie above model will be
introduced in the next section to show the efficielof each model in providing a
global bullwhip effect reduction over the wholeduency range.

Il. Analysis using frequency response

The analysis of the bullwhip can be done usingftequency response [4, 5]. It is
shown that the conventional way (ratio of the vac&of the orders being generated to
the variance of the demand input) to measure thieviip is exactly the frequency
response of the system transfer function (outpowtin Therefore, the bullwhip effect
can be detected from the frequency response fderdift demand frequencies.
However, as the real demands are rarely pure domlsd is preferred to determine the
area under squared frequency response curve dsamnattric for the bullwhip effect.

Using the above, it can be seen frémgure 8, that the controlled system would
provide less bullwhip for most range of frequencies
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Figure 6: System Order with respect to step demand.
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Figure 7: Net stock.
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Figure 8: Frequency response.
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This can be supported by calculating the area uthgecurve for all cases considering.
In order to achieve this task a numerical approfmehthe integration (trapezoidal
summation with 0.01 step) for frequency range f@no 1tis used. This shows that,
the areas under the curve are 4.2044, 1.5337 ab@44.for the GA model,
Dejonkheere model, and the controlled GA respelgtivéhis indicates that the
DDGPC controller is able to reduce the bullwhipeeffwhich sustains the results of
the time response.

7. CONCLUSION

In this paper, the GA has been introduced to tipenésshment rule. The GA has
successfully reduced the unavoidable result inllvhip effect when demand has to
be forecasted. However, the GA has not managedaiotain low inventory cost.
Hence, the DDGPC is proposed to overcome this daakbrhe DDGPC has shown a
significant ability in solving conventional suppbhains problems without adding
complexity to the model. In addition, analyses ltd system stability and robustness
have been also investigated to avoid any drawb#dekismay appear due to system
uncertainties.
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