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In supply chains, the phenomenon of bullwhip effect (the variance 
amplification of order quantities observed in supply chain) has received a 
considerable attention by companies as it leads to tremendous losses and 
poor customer services. This variance amplification occurs according to 
the necessity of using forecasting methods by companies to predict the 
demand. To overcome this problem the business society resorts to develop 
what is called decision rules which show that the bullwhip effect is not 
avoidable. This paper introduces a control engineering approach called 
Derivative Derived Generalized Predictive Control (DDGPC) together 
with Genetic Algorithm GA to reduce this effect. The proposed method 
can reduce bullwhip effect. Moreover, stability and robustness analyses of 
the proposed technique are investigated. This would help decision-makers 
in supply chains management to reduce the negative consequences of the 
bullwhip effect. 
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1.  INTRODUCTION 

In 2004 IEEE Conference on Control Applications, the control scientists have called 
for a new control slogan and named it “Look Around You”. The spirit of this slogan is 
the main motif to introduce this paper. This paper shows to the business people that 
using control engineering in supply chain management could have a significant impact 
in solving complicated management problems. One of the noticed problems by the 
business society, is that fast changes in demand by customers normally leads to a great 
loss either by slow response to this demand which leads to product shortage or by extra 
production that causes unwanted inventory stocks. This problem has firstly been 
analyzed in [1, 2] through the so called supply chains. It was found that the increase of 
orders occurs as one moving up the supply chain. Later, P&G called this phenomenon 
the bullwhip effect while in some industries it is known as the “whiplash” or the 
“whipsaw” effect [3]. Lee et al [3] attributed the bullwhip effect to the five major 
causes: order batching, price fluctuation, rationing and shortage gaming processing, the 
use of demand forecast updating and non-zero lead times. The adjusting of demand 
forecast and as a result adjusting the parameters of the inventory replenishment rule 
has  shown over reactions to short term  fluctuations can lead  to variance amplification 
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[4, 5]. In addition, they have shown that the order up to polices always generate a 
bullwhip effect, based on the control engineering approach. The analysis was based on 
a transfer function for a particular order up to policy after using the so called causal 
loop diagram. A special predictive control technique called Delayed Generalized 
Predictive Control (DGPC) [6] was introduced to that model. The results showed the 
strength of the DGPC in reducing the Bullwhip effect [7]. On the other hand, Sterman 
[8] developed a new replenishment rule based on fractional adjustments which 
generated smooth order patterns. Although the new rule is considered as a successful 
mechanism to dampen order fluctuations when decision makers have to rely on 
forecasts, variance amplification in orders was still observable and recovery from and 
the time taken for the net stock to recover completely from this step input signal was 
found to be longer. This indicates extra cost. 
 

This paper proposes two different approaches to reduce the bullwhip effect namely 
Genetic algorithm (GA) and Derivative Derived Generalized Predictive Control 
(DDGPC) [9]. GAs are searching algorithms based on simulation of the human trial -
and –error procedure using the “survival of the fittest” Darwinian principle [10] as they 
have been successfully applied in many optimization problems [10-12]. Therefore, they 
can be used to minimize the difference between the orders and the demands (bullwhip 
effect). On the other hand, the main objective of the DDGPC is to improve the system 
performance in terms of the system overshoot without adding computational 
complexity and with the ability to derive an analytical solution to the control problem. 
Therefore, this concept can be introduced to the supply chain to reduce bullwhip effect 
in a robust manner in the presence of an inaccurate lead time, production time and 
forecast estimates. The DDGPC controller incorporates many advantages can be 
summarized as follows: an optimizer with significant strength in reducing system 
overshoot and it can be easily tuned to achieve certain degree of stability, performance, 
and robustness. 
 

The paper is organized as follows. In section 2, the basic DDGPC algorithm is 
presented. The proposed replenishment rule and its transfer function with stability 
analysis are given in section 3. In section 4, the GA technique is introduced to the 
system. Then, in section 5, the controller is designed using DDGPC, supported by 
stability/robustness analyses and simulation examples. Simulation results are presented 
and discussed in section 6. The paper ends with summary and conclusion in section 7. 
 

2.  THE  OPTIMAL  PREDICTION  FOR  DERIVATIVE  DERIVED 
GENERALIZED  PREDICTIVE  CONTROL  (DDGPC) 

 

The main design target of the DDGPC [9] is to calculate a sequence of future control 
signal in such a way that it minimizes a multistage cost function defined over a 
horizon. This cost function includes a quadratic function measuring the difference 
between the predicted system output and certain predicted reference sequence over so-
called prediction horizon plus a quadratic function measuring the control efforts, plus 
the derivative of the future output. This can be written as follows  
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where $( | )y t j t+  is the j-step ahead prediction of the system on data up to time t, 

w t j( )+ is the future reference trajectory, E{.} denotes the expectation operator and 
has been used to indicate that the control values chosen are calculated conditioned 
upon the data available up to and including time t and presuming the stochastic 
disturbance model. N1, N2, and Nu are the minimum costing horizon, maximum costing 
horizon and control horizon, δ ( )j andλ ( )j are weighting function to penalize the error 
and the control sequence respectively. Ts is the sampling time. 
To minimize the above function the future values of the output )(ˆ jty +  should be 
obtained using the system model. For this purpose, consider the following single-input-
single-output (SISO) plant: 
 

∆
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where y(t) is the output, u(t) is the control sequence, )(tζ  is the zero mean white noise, 

∆  is the differencing operator 11 −− z  and A, B and C are polynomials in the backward 
shift operator )( 1−z . 
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for simplicity the C polynomial is chosen to be 1 or 1−C  is truncated and absorbed into 
A and B polynomials. The following Diophantine equation can be used to generate the 
predicted output: 
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where ~( ) ( )A z A z− −=1 1 ∆ . For a unique solution the degree of the polynomials Ej and 
Fj should be equal to 1−j  and na respectively. For simplicity, 

N N N Nu1 21= = =, , δ = 1  and λ λ( )j = . 
The output predictions could be stated as: 
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which can be written as: 
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where  f  is the free response and Gu is the force response where 
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Now the cost function in Equation (2) can be written as: 
 

J e e D D u uT T T= + + λ  
 

where 
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and 
 

G 1  is ( )N N Nu2 1− ×  submatrix of the matrix G, consisting of its rows with numbers 
from N1  to N2 1− . 

G 2  is ( )N N Nu2 1− ×  submatrix of the matrix G, consisting of its rows with numbers 
from ( )N1 1+  to N2. 

f 1  is ( )N N2 1 1− ×  subvector of the vector f, consisting of its elements with numbers 
from N1  to N2 1− . 

f 2  is ( )N N2 1 1− ×  subvector of the vector f, consisting of its elements with numbers 
from ( )N1 1+  to N2. 
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To minimize the J, assuming that there are no constraints in the control signals, is 
found to be 
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the first element, )(tu∆ , of the matrix u, will be applied to the system and will be 
repeated at every sampling period. In non-adaptive design with a time invariant model, 
this leads to a time invariant controller. In general, to reduce the computation needed in 
DDGPC, it is assumed that the control signals will be constant after the control 
horizon. The performance analysis of the above control laws is summarized in the 
following section. 
 

3.  THE  REPLENISHMENT  RULE-FOR  ORDERING 
 

In order up to polices, the bullwhip is unavoidable when demand forecasting is 
necessary [4]. Accordingly, Dejonkheere et al [4] proposed a new general 
replenishment rule to reduce variance amplification even when demand should be 
forecasted. The following exponential smoothing forecast method was used to predict 
the demand 
 

             1
ˆ)1(ˆ

−−+= ttt DDD αα                                                                      (9) 
 

It should be mentioned that the order decision is made at the end of the period, 
therefore the current demand can be used in the forecast tD̂ . For the above exponential 

smoothing the average age of the data in the forecast is equal to αα /)1( −=aT  [4]. 

The proposed new rule was able to derive smoother ordering patterns compared to 
those obtained by the order up to policies. However, it could not eliminate the bullwhip 
effect. This can be regarded to the selection of the rule parameters and the limited 
ability to deal with frequently switching demand quantities up an down. Therefore, the 
right selection of those parameters using GA will be the objective of the next section 
while in this section a brief review of the so called replenishment rule is given. 
 

The suggested replenishment rule can be described in words as "ordering quantities are 
set equal to the sum of forecasted demand, a fraction of (1/Tn) of the discrepancy of 
finished goods net stock, and a fraction (1/Tw) of on order position discrepancy [4]. The 
order quantity in period t, Ot, is given by 
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where 
 

Ot  is the ordering decision made at the end of period t. 
Ta
tD̂  is the demand forecast (using simple exponential smoothing, see Equation (9) 

with parameter Ta. 
TNSt  is a target net stock level, 
NSt  is the current net stock in period t, 
DWIP is the desired WIP level, and 
WIPt  is the current work in process (or on order) position in period t. TNSt is the 

target net stock level, similar to the safety stock in order-up-to policies. It is 
updated every period according to the new demand forecast and equals Ta

tD . 

DWIPt is updated every period as well, Ta
tpt DTDWIP ˆ= . 
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It should be mentioned that we only have Tp orders in WIP and Ta, Tn and Tw can be 
regarded as the key parameters or controllers of the decision rule. The decision rule of 
Equation (10) and small variations of this rule have been described by [13]. Analyzing 
this replenishment rule from a control engineering perspective offers powerful insights 
into the variance amplification issue. 
 

Using the above equations has led to the following transfer function between the 
demand and the orders 
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This has been achieved by obtaining the z-transform for the exponential smoothing 
algorithm 
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The full sequence of the above process can be seen in Fig. 1. 
 
 

 

 

 

 

 

 
 

Figure 1: Block diagram for the order up to policy using  
the fractional replenishment rule. 

 
 
 

I. Stability analysis 
 

In [4], the above model was analyzed in terms of time response, however a stability 
analysis for the system was not investigated for different values of the system 
parameters. Therefore, to examine the system stability, it can be seen from       
Equation (11) that the system multiple poles depends on Tp. However, there is a 
separate pole which is always stable as it achieves the following condition 
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which will hold for all values of Ta. The stability of the other poles can be individually 
investigated using the following theorem. 
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Theorem 1: If the replenishment rule transfer function (between the demand and the 

orders) is represented by Equation (11) and )()( nwwnnwn TTTTTTT −+−>  then 

replenishment rule is stable. 
Proof: From Rouche’s theorem, if the characteristic polynomial is represented as 
follows 
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applying this theorem to Equation (11), thus the replenishment rule is sable if 
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which completes the proof. This could hold for a wide range of Tn and Tw  which 
indicates that the stability of the proposed system could be guaranteed depending on 
the selection of Tn and Tw . Note that in the following sections, and for simplicity, Tp is 
considered to be 1.  
 

4.  GENETIC  ALGORITHM  (GA) 
GA is a general technique for searching a solution space in a manner analogous to the 
natural selection procedure in biological evolution [10]. Conventional search 
techniques are often incapable of optimizing non-linear multi-modal functions         
[11, 12, 14]. GA differs from many traditional optimization algorithms in that the latter 
usually suffer from myopia for highly complex search spaces [11, 12]. In such cases, a 
random search method might be required. Gas do not use much knowledge about the 
problem to be optimized and do not deal directly with the parameters of the problem. 
They work with codes, which represent parameters. The parameters to be optimized are 
usually represented in a string form since genetic operators are suitable for this type of 
representation (binary or integer representation method). 
 
I. Minimising the bullwhip effect 
 

The GA is used to select the best parameters which are able to reduce the bullwhip 
effect and compared with that mentioned in [4]. The following cost function is 
considered 
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where e(k) is the difference between the desired demand and the estimated orders. For 
simulation purposes the parameters are Ta, and Tw and Tn are subjected to the above 
constraints. 
 
II. Simulation  Example 
Applying the GA to the above cost function (Equation (14)) considering the system in 
Equation (11), and using the following constraints  
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the tuning parameters are found to be α=0.8365, Tn=99.9717, Tw= 6.2533, which have 
provided the minimum bullwhip effect (error) over the simulation time. It is clear that 
the obtained parameters satisfy the developed stability condition in Theorem 1 (see 
Equation 12) which will be the same. Examining the effect of the determined 
parameters on the bullwhip effect and comparing them with those suggested in [4] 
(α=0.1111, Tn=8, Tw=8). Figure 2 shows the orders with respect to unit step in demand 
(system step response). 
  

It is clear that the determined parameters (using GA) has almost eliminated the 
bullwhip effect especially if compared to that obtained when using those mentioned in 
[4] over the simulation time. However, Figure 3 shows that the net stock required a 
very long time to recover. This leads to an extra cost due to the time taken for the net 
stock to recover completely from this step input signal. Consequently, the inventory 
related costs will be larger. This can be regarded to the proposed cost function that 
considers only e(k) without paying any attention to the effect of the time taken by the 
net stock to recover from the demand. This argument is worth trying to show that, in 
case of using replenishment rule, there is a tough trade off to be made between 
minimizing inventory holding and shortage costs on the one hand and production 
switching cost on the other side. This can be achieved by adding a new term that 
describes the effect of the recovery time to the proposed cost function as follows  
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where Trecover is the time taken by net stock to recover from the input signal (demand). 
Again, applying the GA to Equation (17), considering the same constraints in Equation 
(16). The system tuning parameters are found α=0.854, Tn=6.1707, Tw=4.5889. The 
system response using the above parameters are shown in Figures 4 and 5. It can be 
seen that the bullwhip effect is slightly increased while the recovery time is decreased. 
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The new results are still not satisfactory. Therefore, additional consideration should be 
taken into account and a robust technique such as DDGPC will be introduced to 
Equation (11) using the lat latter results. 
 
 

 
 

Figure 2: System Order with respect to step demand (GA and Eq. 14). 
 
 

 
 

Figure 3: Net stock response (GA and Eq. 14). 
 

α = 0.1111, Tn=4; Tw = 4; 

α = 0.8365, Tn=99.9717, Tw=6.2533 

 

α = 0.1111, Tn=4; Tw=4 ; 

α = 0.8365, Tn=99..9717, Tw= 6.2533 
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Figure 4: System Order with respect to step demand using GA and Eq.17. 

 

 
Figure 5: Net stock response using GA and Eq.17. 

 
 

5.  CONTROLLER  DESIGN 
From the above it is clear that using GA has a significant impact on reducing the 
bullwhip effect when the replenishment rule is used for the ordering process. However, 
the observed bullwhip effect may vary according to the system uncertainties. 
Therefore, applying a robust control technique such as DDGPC could lead to a better 
response.  

 α = 0.854, Tn = 6.1707, Tw = 4.5889 
    

α = 0.1111, Tn = 4, Tw = 4 

 α = 0.854, Tn = 6.1707, Tw = 4.5889 
 α =  0.1111, Tn = 4, Tw = 4 
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The controller will be designed based on the model given in Equation (11) using the 
above parameters α=0.854, Tn=6.1707, Tw=4.5889 (GA model). The aim of the 
controller is to produce a suitable control signal (Demand signal) in a fashion that will 
reduce the observed variance amplification. However, it is useful to design a controller, 
which provides not only acceptable performance but the stability is also a paramount 
issue which should be considered. Therefore, this section provides a sufficient 
condition for stability. This condition will be in terms of controller’s gains and system 
transfer function. It is understandable that these gains are functions of design 
parameters. Thus, stable systems can be obtained by adjusting these parameters. 
Theorem 2: In DDGPC if the closed loop system for the nominal plant 

(replenishment rule model) 
B

A
 can be represented as follow 
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For stability, it is sufficient that 
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Proof 
The characteristic equation closed loop system can be written as: 
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It is worth mentioning that the shift operator 1−z  has been dropped for clarity. For the 
closed stability, the characteristic equation must satisfy the following: 
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which provides sufficient condition for stable closed loop system and completes the 
proof.  
 
Robustness to system uncertainties 
The robustness of closed loop system is a vital issue in the design of control systems. 
This section investigates the robustness of the proposed controller when applied to the 
proposed replenishment rule model. The most uncertain parameter in the proposed 
model is Tp. It is clear from above that different values of Tp leads to different number 
of poles. To investigate this uncertainty, it is assumed that the real replenishment rule 

model 
B z

A z
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where A z+ −( )1  contains the unmodeled poles due to uncertain Tp and k is added in 
the numerator so there are no discrepancies between the static gain of the real model 
and the nominal one. The following Lemma studies the influence of unmodeled poles 
on the system stability. 
 
Lemma 1  
In DDGPC the control signal is found to be 
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and the replenishment-rule real model can be represented as in Equation (24), where 

A+  contains unmodeled poles due to uncertain Tp. For stability it is sufficient that 
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Proof 
The characteristic equation closed loop system can be written as: 
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It is worth mentioning that the shift operator 1−z  has been dropped for clarity and the 
gain k in Equation (24) has been absorbed in the polynomial B. For the closed stability, 
the characteristic equation must satisfy the following: 
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      1 0− − >+ +
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which will hold if 
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which provides sufficient condition for stable closed loop system and completes the 
proof.  
 

6.  SIMULATION  RESULTS 
 

Considering the above, the DDGPC controller will be derived here for the 
parameters 3,3,1 21 === uNNN , 1=δ  and λ=6. The designed controller will be applied 
to the replenishment rule [4] and a comparison will be conducted between the 
controlled model and the uncontrolled ones. 
 
I. Time response analysis 
 

Figure 6 shows the step responses for replenishment rule in three cases, namely, the 
controlled GA model, GA model and the original model (Dejonkheere et al [4]).  
 

It should be mentioned that the simulation of the previous section is repeated here for 
clarification. It is clear that the controlled system provides the least overshoot for the 
generated orders, while the uncontrolled one has a noticeable overshoot. This indicates 
the ability of the controller to minimize the bullwhip effect. On the other hand,   
Figure 7 shows that the controlled system when compared with the uncontrolled GA 
model takes slightly longer to recover from this step input signal. However, it has a 
significant improvement when compared with the Dejonkheere model. This indicates 
that the controlled GA system satisfy the best trade off between minimizing inventory 
holding and shortage costs and the production switching costs.  
 

To support the above results, frequency analysis for the above model will be 
introduced in the next section to show the efficiency of each model in providing a 
global bullwhip effect reduction over the whole frequency range.  
 
II.  Analysis using frequency response 
 

The analysis of the bullwhip can be done using the frequency response [4, 5]. It is 
shown that the conventional way (ratio of the variance of the orders being generated to 
the variance of the demand input) to measure the bullwhip is exactly the frequency 
response of the system transfer function (output/input). Therefore, the bullwhip effect 
can be detected from the frequency response for different demand frequencies. 
However, as the real demands are rarely pure sinusoidal, it is preferred to determine the 
area under squared frequency response curve as another metric for the bullwhip effect. 
 

Using the above, it can be seen from Figure 8, that the controlled system would 
provide less bullwhip for most range of frequencies. 



H. W. Gomma 
________________________________________________________________________________________________________________________________ 
872 

 
Figure 6: System Order with respect to step demand. 

 

 
Figure 7: Net stock. 

 
 

Figure 8: Frequency response. 
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This can be supported by calculating the area under the curve for all cases considering. 
In order to achieve this task a numerical approach for the integration (trapezoidal 
summation with 0.01 step) for frequency range from 0 to π is used. This shows that, 
the areas under the curve are 4.2044, 1.5337 and 1.2644 for the GA model, 
Dejonkheere model, and the controlled GA respectively. This indicates that the 
DDGPC controller is able to reduce the bullwhip effect which sustains the results of 
the time response.  
 

7. CONCLUSION 
In this paper, the GA has been introduced to the replenishment rule. The GA has 
successfully reduced the unavoidable result in a bullwhip effect when demand has to 
be forecasted. However, the GA has not managed to maintain low inventory cost. 
Hence, the DDGPC is proposed to overcome this drawback. The DDGPC has shown a 
significant ability in solving conventional supply chains problems without adding 
complexity to the model. In addition, analyses of the system stability and robustness 
have been also investigated to avoid any drawbacks that may appear due to system 
uncertainties.  
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�) ا���ج '&% �$#�م !� � ا���ط وھ� ا�����ات ا����� 	� أوا�� ا���ج 	� ��

/��6  	�اھ����� ��24ا �0 ا�4�5�ت ��� 3�122 �0 /��.� 	�د,� و����ى !*�( 
و693ث ھ@ه ا�����ات ا����� ��<� ���ورة ا���6ام ط�ق 3�&: �9��ب . ا�*��ء

�ن  و�BE FB��B% ھ@ه ا���2B�ت C>BD. ط2B�ت ا���جH,�2ن وا��B��*ا��	ري  �ع ا��<�KLا�
�ا6E ا��Lار وا��O أظ#�ت 6Eم ا�6Lرة BE% ا���MB �0 23*�ت & %E63 (.�6ام و����'

�@ا 6LDم ھ@ا ا�T92 ط�6D6S �LDة وھ� /R�B �0 ا��PQ9 ا��$�!�B ا���&*� . !� � ا���ط
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