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This paper proposes the application of fuzzy amdgre-fuzzy techniques
to the control of an open loop unstable magnetgpsasion system using
genetic algorithms (GA's) as a tuning algorithmMamdani type fuzzy
PID controller is investigated. The proposed colittoemploys a two-
stage control structure, where the fuzzy Pl cofgraleasonably aims to
suppressing steady state errors and the fuzzy Pirater provides
stabilizing action. The membership functions' paetars for both
controllers are determined by the GA's. A Takagi€Sw-Kang (TSK)
controller using parallel distributed compensati¢gRDC) approach is
presented. The proposed controller, which is nadimis fuzzy blending
of individual piecewise linear controllers designesing pole placement
technique. A neuro-fuzzy controller is proposednf®ecement learning
along with GA's was used to train the neuro-fuzmytoller.

KEYWORDS: Fuzzy control, Two-stage fuzzy PID controller, Rizia
distributed compensation, Genetic algorithms, nefuzzy.

1. INTRODUCTION

Magnetic suspension techniques are being utilimedrious fields such as, industrial,
transportation and aerospace projects. Magnetigrigsa which are the most important
industrial application of magnetic suspension,wsed in applications where ordinary
bearings meet difficulties. Contact free bearingsaa attractive technology for special
applications which imply high speed rotation, minimfriction or clean environments
such turbo compressors and high speed milling sggndHowever, the design of a
control system for magnetic suspension systems ifficult and constitutes a
challenging task due to the highly nonlinear anfienrently open-loop unstable
electromagnetic dynamics in the relationship betwtdee lift force and the air gap
distance. Until now in industrial applications, matjc bearings' control has been
realized with classic (PID) or modern (Q-parametgion, H.) controllers [1, 2]. Such
linear control techniques depend on linearizing thenamics of the magnetic
suspension system about a nominal operating pbivetse control approaches provide
very good design solutions by linear ternrmdyoin a limited small region dhe
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nominal design condition. To avoid such deficienegpst industrial magnetic
suspension systems, which adopt conventional lioeatrol techniques, use only small
portion of the available air gap during operatid#owever, in some industrial
applications, it is desirable to use a larger portf the available air gap. Nonlinear
control techniques, such as sliding mode, are quoteplicated compared to linear
controller design. It takes great numerical eftorsolve nonlinear equations and such
controllers are sensitive to modeling errors. Ewdren a system can be described
exactly it is not always possible to find a nonéineolution so that the closed loop
system is stable. On the other hand, fuzzy logk teen considered as a potentially
useful means of designing controllers for nonlinegstems, which shown better
performance and easier implementation in contmliihese nonlinear systems than
conventional methods [3].

This paper presents three architectures for ncalifiezzy controller. The first
architecture is a Mamdani type fuzzy PID controllgimilar in construction to the
conventional PID controllers, there have been sdwgpes of fuzzy PID controllers
proposed for different situations. A two-stage fu#2D controller, which is composed
of fuzzy PD and fuzzy PI controllers in parallaljmvestigated in this paper. The fuzzy
PD section presents the derivative action (D) fiavides stabilizing action which is
essential in the case of open loop unstable syageim magnetic suspension to achieve
stability. And the fuzzy Pl section presents théegnal action (I) which aims to
suppressing steady state errors. However, oneeoédhly steps of designing a fuzzy
controller is to represent system knowledge in $eoh fuzzy linguistic terms and
hence assigning membership functions to systenabias. In most cases, the designer
has to make two design decisions; the first istenrtile base of the fuzzy system. In
most applications, this problem is solved by expigithe knowledge of an expert and
forming the rule-base by a trial-and-error approatich depends on the simplicity of
the system or by using another optimization alganitlike GA's, to form the rule base
[4]. For the two-stage fuzzy PID controller propodeere, the separation between the
two sections of the controller makes it much easitgrpret the rules as it makes it
very logical. Secondly, the geometrical forms oé tmembership functions such as
triangular, trapezoidal, etc. and the parametertho$e membership functions. The
problem of tuning the membership functions hasettrd so much attention [5].

The integration of fuzzy logic control (FLC) andnggic algorithms (GA's) has
generated a lot of interest since it is widely &edid that the two methods complement
each other. GA's are used to optimize the desidgi_0fs, whereas the well established
area of fuzzy control has provided a main streapliegttion area for the GA's. GA's
are general purpose optimization algorithms withprababilistic component that
provides a mean to search poorly understood aedular spaces. GA's can be used in
various ways to optimize a fuzzy controller depegdon which design parameters are
to be optimized. They can be used to tune the meshipefunctions' parameters. GA's
also can be applied to tune the scaling factoteetontroller [6]. Tuning the rule-base
is another important application of GA's in theigasof fuzzy controllers. Finally,
some or all the design parameters can be tunedtameously by the GA's. In this
paper GA-based reinforcement learning scheme altigan external reinforcement
signal from the controlled system has been usetline the membership functions'
parameters in the fuzzy PID controller. The extemeanforcement signal will be
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available at the end of an evaluation cycle to pheyrole of the fitness function, and
the reciprocal of the performance index (ITAE) basn used as the fithess function.

The second architecture is a Takagi-Sugeno-KandKY E®ntroller using parallel
distributed compensation (PDC) approach. This otletr achieves nonlinearity
through piece-wise linear approximation. The maai of this controller design is to
divide the operating air gap into a limited humbglocal piecewise linear models and
derive a control rule for each model by linear contechniques, feedback control via
pole placement was used here, and fuzzy logic &l ue smoothly schedule each
control rule over the entire air gap so as to campte for operating point dependence
nonlinearity.

Neuro-fuzzy systems combine the learning featufesenral networks with the
linguistic rule interpretation of fuzzy inferencgsgems. Among several existing neuro-
fuzzy systems, few have been widely used: ANFISaftitve Network based Fuzzy
Inference System) [7], NEFCON (NEural Fuzzy CON&nl [8, 9], this one well
suited to control applications, and NN-FLC (NeuNgtwork based Fuzzy Logic
Controller) [10]. This paper employs a hybrid nefunzy-genetic system based on a
modified version of NN-FLC model as a basis andegieralgorithm for reinforcement
learning. The GA's learning starts with the defamt of the chromosome's
representation, which is formed by the parameteeach membership function of the
input and output variables. The membership funstiparameters are adjusted so that
a suitable performance may be obtained. The fitfiesstion of each individual is
calculated as the reciprocal of the performancexr{¢tlTAE).

2. MAGNETIC SUSPENSION SYSTEM
The single axis magnetic suspension system, wharhponents are shown in
Figure 1, consists of a ball bearing of masg fplaced underneath an electromagnet at
distance X). When a current flows through the electromagneait it will generate an
attractive electromagnetic force in the verticakdiion. The difference between the
electromagnetic force and the gravitational for@ imduce an up or down motion on
the ball bearing.

Magnetic Coil

current Power Amplifier

|

b

Infrared L
Light Source 3-.;,_.
Iron Ball :

Controller

Figure 1: Magnetic Suspension System.

Equations of Motion

The magnetic circuit, as shown Figure 1, consists of the ball bearing and the
electromagnet. The electromagnet coil has N tuangposs which there is an
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instantaneous voltageand through which a currenis flowing. A decrease alx in
the air gap length gives an instantaneous increas@ergy input okidt and stored
magnetic energy of(5 fdL) whereL is the inductance of the coil. fifis the force at
the air gap faces, then the mechanical work exemettie ball is-fdx).

The differential equation describing the motiortled massnis;
d?x
m =mg - f 1)
dt g

-\ 2
I
where f :C(_j (2)
X

andx is measured from the magnetic ball face [1]. Theeoequation of motion is
obtained from the voltage balance in the electraratig circuit. The total voltage is
balanced by the voltage drop due to the resistandethe inductive reactance of the
coil. Therefore,

d(Li)

a 3)

e=Ri +

where

acceleration of gravity.

attractive force of the electromagnet.
distance from the electromagnet.
voltage across the coil.

coil current.

coil resistance.

coil inductance.

Since is always kept around the close neighbortodad , L can be considered as a
constant. This will greatly simplify the system nebavithout losing much accuracy.
Therefore, equation (3) can be rewritten as;

e=Ri +L 3 (4)
dt

—g 0 X —Q

Equations (1, 4) represent the differential equestithat describe the dynamics of the
magnetic suspension system [1]. A Matlab/Simulinkgmetic suspension nonlinear
model based on HUMUSOFT CE 152 Magnetic SusperSimtem was used in this

paper.
3. MAMDANI TYPE FUZZY PID CONTROLLER

Fuzzy controllers can be classified according &dbntrol action and the controller
architecture into three categories, fuzzy PD, fuRkand fuzzy PID. The realization of
fuzzy PID controller is usually proposed in thenfoof three inputs controller. The

inputs are usuallye, Y e e or eAeA,e. This implementation is difficult for

parameters' tuning and in most cases it will ngathtdzation for the rule base, besides
it loses the physical point of view. Rather, lettake in account that the proportional
action P is the natural control action, the denaaaction D provides stabilizing action

and integral | aims to suppressing steady statg<erstill, it is necessary to stress the
fact that the I-portion of the controller in itsetfiuses instability and slows the
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Figure 2: Structure of a fuzzy PID controller.

controlled process down, while the D-portion spetiscontrolling action up. Thus
the classical PID controller compared to the Pl aceelerates the transient response.
Knowing this information, we would rather build tifigzzy PID controller in such a
way, in which we could separately influence thenges of P, | and D components in
some natural way. That is why we propose to buile fuzzy PID controller as a
parallel combination of two fuzzy controllers: IcaRD or Pl and PD which can be
defined as;

U(kT) = up, (k=1T) +Aug, (KT) +up (KT) (5)
where Au,, (KT) = ko, €KT) +k, AgKT) (6)
and Upg (KT) = Kop &(KT) + K, AKT) @)

see [11]. The structure of this controller is shawfigure 2. Besides the simplicity of
this architecture, it will keep the most importéesiture of the fuzzy control which the
informal nature of the control design process.

A. Controller Description

As illustrated previously, the proposed controttensists of two parallel sections
PD andPlI. First inputs to the controller will be the ersignal;

gkT) = x, (KT) = XKT) (8)
where x, (kT) is the desired position angkT) is the sphere position at tirk&. The
second input is the derivative of the error whidh be defined as;

ce(kT) = (ekT) —e((k -T))/T 9)
The controller output is the sum aof  (kT), the PD section output, and the integration
of du,, (kT), the Pl section output. And will be written as;

U(KT) = Upp (KT) + g, ((k =DT) + dug, (KT) (10)
Two sets of fuzzy rules are to be used to map tter &(kT) and rate of change of the
error cgkT) into changes in the controller action with bothsection, i.e. changes in
Upo (KT) @ndduy, (kT) . These fuzzy rules will be in the form of;
If gkT) is LP andcekT) is ZE thenuy is LP

where LP, ZE are short notations for large positiwel zero respectivelylable 1
illustrates the rule base used for the PD sectitis Tule base consists of 49 rules.
Table 2 illustrates the rule base for the PI section. Thile base consists of 5 rules.
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Table 1: FIS rule base for the PD section.

- LP MP SP | ZE SN [ MN LN

LP LP LP LP LP MP | MP SP
MP LP LP MP SP | ZE SN [ MN
SP MP | MP SP SP | ZE SN SN
ZE MP | MP SP | ZE SN [ MN [ MN
SN SP SP | ZE SN | SN | MN | MN
MN MP SP | ZE SN | MN | MN | MN
LN SN | MN | MN | LN LN LN LN

Table 2: FIS rule base for the PI section.

MP SP ZE SN MN
ce

ZE LP MP ZE MN LN

For fuzzy conjunction, implication, aggregation adefuzzification certain design
decisions have been made to achieve the best ggitiormance. Thain operator
was used as a fuzzy conjunction, tipping method for fuzzy implication, thmax
operator for fuzzy aggregation and ttemtroidmethod for defuzzification.

The next step in the controller design is to tume membership function so as to
achieve our certain goals; in this paper the GA#sawised to accomplish this task. The
following sections describe in details the stepsusing GA's to optimize a fuzzy
control system.

B. Genetic Algorithms

Genetic algorithms are probabilistic optimizati@utines modeled after Darwinian's
theory of natural evolution. Genetic algorithms ¢atel nature performing genetic
operations over a finite set (population) of pa@nsolutions (individuals). Genetic
algorithms operate by function evaluation as comgdo other optimization routines
based on gradient evaluation. As a result, GA':ghown the ability to optimize
systems with multi-modal objective functions andnhwionlinear parameters. Here, the
GA's are used to tune the membership functionsirpeters for both the input and
output spaces by using the reinforcement signah fitte model as the fitness function,
while in other researches GA's have been usedtothe rule base itself [12]. Roughly
speaking, GA’s manipulate strings of binary digit&s and 0's, called chromosomes
which represent multiple points in the search sp#u®ugh proper encoding
mechanism. GA’s carry out simulated evolution opylations of such chromosomes.
Bit string encoding is the most common encodingnégue used by GA's researchers
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because of its ease of creating and manipulatirmgyveder, with a binary string
encoding the resulting search time is much longan tthat of using real-value string
encoding used here [13]igure 3 illustrates the behavior of standard genetic dtlyor
during one tuning cycle. Next, we will briefly detee the basic operators in a GA.

Genetic I nitial Population of
Strings Using Random Number
Generator

\ 4

Evaluate Fitness of Stringsin
the Population

A 4

Arethe
Stopping
Criteria

Satisfied?

Yes

Create an | ntermediate
Population Using
Reproduction Operator

\ 4

Recombine Strings Using
Crossover

\ 4 A 4

Introduce Diversity Using
Mutation Stop

Figure 3: The Standard Genetic Algorithm.

Mutation is the random alteration of one or more genes wifitobabilityP . In a

real value string, mutation is the random selectiod alteration ofth gene by the
addition of random value. Mutation is usually colesed the innovative genetic
operator which allows GA's to search new pattevhsation probability is nominally
small within 0.0001 <P, < 1. In some applications, mutation is set to gdawvalue at

the beginning (to explore new patterns) and isceddater (to help reach a converging
solution). And even in more complex studies, défdrstrategies have been used to
specify mutation rates during the learning pro¢#4s As the mutation rate increases,
the algorithm behaves more like a random seardineu

Reproduction is the act of generating exact replicas of anviddial | of a given
population and placing the replicas among an ingeliate population according to a
certain algorithm. Following the theme of survivall the fittest, the highest fit
individual is assigned higher probabilRy to reproduce, where
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f

>t
i=1

andn is the size of the population. In some elitisatggies, the highest fit set of
individuals in the population is directly placedtime next population, bypassing the
intermediate population. Roulette wheel is onehef most popular election methods,
and it will be used in this dissertation.

Crossover is the recombination of strings among two randonsiglected
individuals in the intermediate population to ceeatew offspring from the next
generation. Every pair of individuals will resulh itwo individuals in the next
population. The crossover rapg determines where crossovers occur and is usually
much higher tharpy, i.e. 0.1 <p. < 0.9 as it encourages recombination among already
found patterns. Crossover can occur in one or IpON&s.

Interpretation Function is the transformation function between the repregeon
(genotype) space and the evaluation (phenotypegspdost of the current researches,
as in this paper, concentrate on optimizing pararsetf the domain knowledge. The
domain knowledge consists of membership functiod ame base. Membership
function parameters include the general membershinztion shape (Triangular,
Trapezoidal, Sigmoidal, Gaussian, etc.) and thénohef points (Center, Max Right,
Min Left, etc.). Rule base parameters like fuzzgoagative memory, fuzzy operators
like disjunctive (OR) and conjunctive (AND).

In this paper only defining point of the membershipctions are chosen to be
optimized. This was a design decision which was enee@hsidering the fact that in
control of most physical systems, including the n&ig suspension, rules can often be
derived either intuitively as in our system or tigh operator experience as in process
control systems, and for this controller the twoallel sections made it much easier to
derive rules for each section separately.

Fitness Function Design is a very important aspect of design of GA's siGd€s
depend on fitness function to guide the directidrit® search. Obviously, a fithess
function needs to include all the pertinent parametwhich need to be
minimized/maximized. Due to the similarities whiGlAA's share with nature, the fitness
function is often designed such that the more dbkrsolutions correspond to higher
fitness. So, the GA's optimization is usually reigar as a search for parameters which
maximize the fitness function. In this paper theipeocal of the performance index
(ITAE), which is described as;

P. = (11)

n

ITAE = [[e(t)| t dt (12)
0

will be used as the fitness function. Whetjeig a period of time during the simulation
is run with the current string parameters' valuesapplied to the fuzzy controller. An

additional bonus will be added to the fitness vatuease the controller could stabilize
the sphere till the end of the test perity this helps in distinguishing desirable and
undesirable strings (specially at the beginningheftuning process). The value of the
ITAE is not to be available for calculations excefier 0.2 sec. to avoid the divide by
zero error.
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C. Optimization of Fuzzy Systems Using GA

Table 3: Parameterized Membership

Functions.
Member_shl Parameters
p Function
LN - Bo Co
MN = b, C
SN & 22 G
ZE a3 b3 Cs
SP & b, Ca Figure 4: Representation of a Fuzzy Set
MP % bs Gs with 7 Membership Functions.
LP 3 be -

Each of the fuzzy variables is represented by ayfset. Fuzzy sets consist of a
number of membership functions which are often lmamepresented by mathematical
functions. Triangular membership function has beedely used in fuzzy control
problems and will be used in this papEigure 4 illustrates the representation of a
fuzzy set with 7 membership functionsable 3 shows the membership function
representation of one fuzzy variable with paramstelr membership functions. Each
membership function is represented by three paemhdt, b, andc). Triangular
membership function is specified by three pararsedsrfollows:

0 x<a
(x-a)/(b-a) a<x<hb (13)
(c=x)/(c-b) b=sx=sc

0 X>c

triangular(x: a,b,c) =

In the same manner a fuzzy set witmembership functions can be represented by
(3n — 2) parametric genes, where the paramedgrof the leftmost membership
function and the parametas) (©f the rightmost membership function are constavrith
large negative and positive values respectively diromosome, which represents the
potential solution in the problem space will cohsisthe parametric representations of
the fuzzy sets specified for each input and ougpriaible.

Membership function integrity is very important for the GA's, and it must be
checked and enforced at the beginning of each c¥tlere are two types of integrity
errors, out of boundary errors and non-definitioroes. Such errors violate the two
basic membership functions' principles. First, eaegmbership function overlaps only
with the closest neighboring membership functioecahdly, for every input variable,
any possible input value must have a membershigevalore than zero.

These two kinds of errors could occur either in ithigal population, during the
crossover process, or during the mutation prodéesabership function integrity must
be checked in every stage. The integrity requiregméar the triangular membership
function are the following:

1. a<b<g
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wherei is the membership function number in the fuzzy aetla ,b , andc are the
triangular membership function's parameters.

For each membership functiom ) in the fuzzy set where2 > 0 and+2 < n-1.:
Ci2 <@ andc; < a

n

Lower limit of the fuzzy set 4.
Upper limit of the fuzzy set b1

N o oA W
Y
A
o
<
A
A
O
=

wheren is the number of the membership functions in texy set, and where fuzzy
membership function number (0) is the leftmost mersbip function and membership
function numberrf) is the rightmost membership function.

Parameters encoding is the process of formulating the membership fiomst
parameters into the chromosomes. As stated eatfiercontroller system has two
inputs, the errorg) and the error derivativec§), and two outputs, the PD section
output (Up ) and the PI section outputl(,, ) which is to be integrated and summed

with the first output.
Each input and output in this system will have azjuset of 7 membership

functions, except the PD section output{) will have a fuzzy set of 5 membership

functions. To decrease the number of parametersisge asymmetric membership
functions, except for the function associated wittle zero input, which must be
centered in the zero valuiégure 5 illustrates this parameterization scheme. So the 7
membership functions fuzzy set will be describethwi parameters.

For the output @, ) fuzzy set, another scheme was used to parametéezfuzzy

set, in this method each membership function wall represented with both (its
center) andv (its width). This method will give the system mdiexibility in order to
represent the nonlinearity of the system besiddedteases the number of parameters
associated with each membership function. For thigput the center of the
membership function labeled ZE will be at the vabiethe nominal voltage of the
system at that specific operating poiof)(Figure 6 illustrates this parameterization
scheme. For the outpudi, ), the same parameterization scheme will be usedptx

that the value of the membership function labelBdmll be at zero value.

Figure 5: Parameterization scheme for Figure 6: Parameterization scheme for
the inputs e, ce. the output (u,, )-



INTELLIGENT CONTROL OF MAGNETIC SUSPENSION SYSTEMS 885

D. Simulation Results

A Matlab/Simulink magnetic levitation model was dsduring this study and the
parameters of that model are as the following:

Ball mass in) = 0.00837 kg
Coil resistanceR) = 1.0 Q

Coil inductancel() = 3 mH
Constant¢) = 2.16e-6 N.A1AZ
Power Amplifier Gain = 0.3 ANV
D/A gain = 5

Position sensor gain = 1000 V/m
A/D gain = 0.2

Operating air gap = 1-6 mm

The fuzzy control architecture and GA's optimizatior fuzzy controllers were
discussed in previous sections. In this sectior, dbove mentioned controller is
simulated for the control of the magnetic suspansigstem. Through simulation, we
will show the utility of fuzzy control architecturand GA's optimization in this
application.

An initial population of 100 real-valued chromosaweill be randomly initialized,
the size of population is a critical design decidiecause it affects the evaluation time,
some researches uses fuzzy reasoning to tune thdapion size [15]. Then each
chromosome will be checked for membership functiotegrity, and if any one
violates the integrity conditions that chromosonik lbe randomly regenerated till the
conditions are met. Then an interpreter takes esahvalued string and uses it to set
the parameters in the fuzzy controller, ad runsiheulation for a specified time period
(TIME = 2 sec.) during which the performance of ttantroller is to be evaluated.
Fitness function, used in this paper, which isrmdias 1 ITAE (see equation 12) and

0 =t = TIME. To avoid the divide-by-zero problem at trery beginning the value of
the ITAE is not to be available for calculations excepemfl.2 sec. An additional
bonus will be added to the fithess value in casectintroller could stabilize the sphere
till the end of the test period TIME, this helps dhistinguishing desirable and
undesirable strings.

When each string in the population has been evaduand given fitness value the
reproduction process takes place. The roulette Whiide used here for reproduction
process. Multi-point crossover will be used heredose of its capability of solving
one major problem of the simple crossover; thisfem is that one-point crossover
cannot combine certain combinatioof features encoded on chromosomesthe
proposed GA algorithm Nc = 2. And the mutation dolity will be set to 0.9. Since
we use real-value encoding scheme, we use a iiatiigh mutation probability = 0.1
in our algorithm. This is different from the tradinal GA's that use binary encoding
scheme. The latter are largely driven by recominanhot mutation. And the mutation
variable will be randomly generated factor of treue of gene to be mutated. The
above learning process continues to new generatintisthe number of generations
meets a predetermined stop criterion. The stograit used here is the maximum
number of generations generated. After the whobdueNion process is stopped the
chromosome with the largest fitness value in th& Igeneration is selected and
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encoded in the final fuzzy controllefigure 7 illustrates the fithess of the system
during the learning processigure 8 illustrates the step response of the system.
Figure 9 illustrates the response of the system with a stepe equals 150% of the
ball weight.Figure 10.a illustrates the system response to a sinusoidggdtory with 1

Hz frequency and 0.5 mm amplitudégure 10.b illustrates the system response to a
square trajectory with 1 Hz frequency and 0.5 mrplaade. Testing the controller for
robustness has been performed by investigatingytsiem'’s response to an increase in
the ball mass with 30% of the ball mass and checltie step responsigure 11.a,
and system response to a step noise with the efj5@f% of ball weightfigure 11.b.
The system step response with 30% increase indiénductance value, sdeure
1l.c. Figure 12.a illustrates the fuzzy set for the input variabk), (figure 12.b
illustrates the fuzzy set for the input variabde)( figure 12.c illustrates the fuzzy set
for the output variable ), figure 12.d illustrates the fuzzy set for the output

variable (duy, ) after tuning.

Max. and Average Fittness Plot During Learning Process System step response
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4. TAKAGI-SUGENO-KANG (TSK) CONTROLLER

The main motivation for developing TSK model isremluce the number of rules
that would otherwise be required if the Mamdani Mloid to be used, especially for
complex and nonlinear problems. Toward this gda, TSK model replaces the fuzzy
sets in the consequent of Mamdani rule with a liregpuation of the input variables.
The concept of PDC approach is to design a compamgaing linear control design
techniques for each operating range. The resutiiregall fuzzy controller, which is
nonlinear, is a fuzzy blending of each individualehr controller. In this sense, the
TSK model-based control approach akin to the notibgain scheduling technique in
conventional control engineeringigure 13 illustrates the block diagram of the PDC
architecture.

A. Parallel Distributed Compensation

The most useful way of dealing with nonlinearitytibé plant is to linearize it about a
single nominal equilibrium point (namely local mé)diem order to use linear control
techniques. This approach, however, is generafsctbe only in a limited region of
the nominal design condition, because the variatalg vary in a wide range far away
from the equilibrium point. In contrast, a globabael describes the system's input-
output relationship for the entire input space.phbrticular, it is well known that
nonlinear global model can often be approximatea Isgt of linear local models. The
linear local models which can be described by;

X = Ax+ Bl (14)

Nonlinear
Magnetic

Levitation

Fuzzy Logic
Scheduling

Piecewise Linear [ g
Controller

Figure 13: Block Diagram of PDC approach.

In this paper, state feedback control design vie ptacement was used for each
local piecewise linear system. Although being ofmap unstable in nature, magnetic
suspension system is completely controllable sittise controllability matrix
Wc=[B AB| has a full rank of 2. Thus linear state feedbackassible and we shall

choose the control signal to be;
U=KX (15)
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where k :[kl K, ks], and the control parameteks k,, andk; are selected so that all

design requirements are satisfied. Tthefuzzy control rule of the controller takes the
form;

IF x is (ith region) THEN u= -K; X (16)
Each of the rules can be viewed as describing eal'lostate-feedback controller

associated with the corresponding "local" lineab-swdel of the systems to be
controlled.

B. System Linearization

The first step in our approach is to linearizesiistem at different operating points
to cover all the operating range. Three operatiigtp at 2, 3.5 and 5mm were defined
here.

The linearized equations describing the variatromfthe Taylor series expansion;
if the variables of the operating point are expedswith the subscript "0" and the
variables at the neighborhood of the operating tpmia represented with the subscript
"1" then the linearized equations are;

fy =k +kX (17)
where
=2 =2t (18)
difi=. X
X=X,
of - 2ci.”
k ==— = 19
X ox i=i. )(o3 ( )
X=X,
Then we get,
2ci.. 2ci.’
fi=—7Fh-——5X (20)
X X
) di
=Ri,+L=—> 21
€ =Rl at (21)
d2
== (22)
where
.12
f.=mg= c{l—q (23)
X

C. Augmented State Equation with Integral Control

There have been numerous ways proposed to deal disthrbances rejection
problems and to achieve robustness such as classidaadaptive control. Most of
these techniques lead to difficulties when theesuancertainties in the systems model.
On the other hand, fuzzy logic has been considased potentially useful means for
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designing nonlinear controllers. So, we will aim neerge the two advantages of
nonlinearity and robustness to achieve better pmdace.

For each sub-system, now have we a single inpgfiesioutput system. Being a
linearized third order system, the three physieaiables are;

x(t) displacement, and denoted>iyt) .
v(t) velocity, and denoted by2(t).
i(t) currentin the coil and denoted lag(t) .

which are selected as state variable, i.e.;

Xt =[x vt) i)

And the open loop system for each linear sub-systghive described by;

X, 0 1 O 0
. Ki. -k
X, |=|— 0 — [X+|0| U (24)
« mx m 1
° 0 0 -R L
L L |
ly]=ft 0 o]x (25)
In vector form,
X =AX +BU (26)
where
0O 1 O
A= & __k
mx m
0 O -R
L L |
and
BT—[O 0 1}
L
y=CX (27)
where
c=1 0 0

To get the augmented equation, we start with ahoadsolution to integral control
by augmenting the state vector with the desiredadhyos. For the system given, we
can take the integral of the errog £ r —y) wherer is the desired operating point,

as well as the state tifie plantx, by augmenting the plant state with extra (intBgra
state X, , which obeys the differential equatian=r -CX .

The augmented state equations become;
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e J Lol

and the feedback law is;

X
U= K{_} = KX oy (29)
XI
whereK =[k, k, k, k,] (30)

With this revised definition of the system, we @pply full state feedback control
design techniques. In this paper, damping ratjo=0.7) and natural frequency

(w, =90) were set as design requirements.

0 1 0
Ki. -k
mx m
Aug = _R (31)
0o 0 —
L
-1 0 O
1
Bl,,=[0 O T 0( (32)

Let us assume that certain specifications are todtdor its transient response, i.e.,
the desired closed loop dominant poles are locatdg a = j£3), the third and the

fourth closed loop pole should lie &ty). The characteristic equation of the desired
closed loop system is;

A+ Qa+2)) X +@Gay+y* +a® + )N +y(2a® +2[3* +2ay)A+y*(a* + f*) =0 (33)
If we apply full state feedback, i.e. the contrigihal is;
U =KX (34)
where K = [kl K, K, k4]
then we get the state equation for the feedbadksyas;
Xaug = (Aug * BaygK) X g (35)

The characteristic equation of the closed loopesysh terms of system parameters
and state feedback gain is;

‘/” -(A,, *+B,, K)‘:/]4+ R_k3j/]3+ &_kil 22 + M+& /]—&:O (36)
9 9 L mL  mx mx L mL mL

From the characteristic equation of the desiredsedoloop system and the
characteristic equation of the closed loop systerterms of system parameters and

state feedback gain we can obtain the feedbacls dairk,,k, and k,. In the same

manner we can get the state feedback gains for @#zdystem associated with each
operating point.

The fuzzy rules then will take the following form:
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Rule #1:
IF x is near THEN
Vv =7386.34*x +34.2 * x' —3.158 *4191804.9* ¢

Rule #2:
IF x is medium THEN
v =12319.6 * x + 59.5 * x' — 3.158 *4335695.65

Rule #3:
IF x is far THEN
v=17251.5*x + 84.7 * X' — 3.158 *+479541.8

D. Simulation Results

The step response of the system is showfigirre 14. The response of the system
to a step noise equals 200% of ball weight is shiowigure 15. System response to a
sinusoidal trajectory with frequency 1 Hz and amoole 0.5 mm is illustrated in
figure 16.a. System response to a square trajectory with énegu 1l Hz and amplitude
0.5 mm is illustrated ifigure 16.b. Testing the controller for robustness has been
performed by investigating the system's responsntmcrease in the ball mass with
30% of the ball mass and checking the step resptipsee 17.a, and system response
to a step noise with the value of 150% of ball wei§igure 17.b. The system step
response with 50% increase in the coil inductaradeey sedigure 17.c.

Step response of the system je to step noise 200% of ball weight
1 T T T T 1 T T
1.5 : 15
2 2
E 25 £25
T3 T3 |
£ 5
£ 35 £ 35
|5 5 ¥
£ 4 £ :
3 3
) T
T 45f B 451
& a
5 5
55 55
5 i L H i i i L H i 5 i i i i L i i i i
0 100 200 300 400 500 BOD 700 800 900 1000 0 00 200 300 400 500 KOO 700 8OO0 800 1000
Time, (mSec) Tirne, (mSec)
Figure 14 Figure 15
System response to sinusoidal trajectory Sysiem response to square trajectory
1 : ; 1 -
15 1 TR . (VPR o NSRS,
2 5 L
£ 25 € 25]
E Bar
£ £
s s
= ot 1| S| RESSPR | SR p——: [SROTORRRRTY)| SRR | ( —
= €
5 5
£ Eap e Dusomabies Do
3 3
o s
a & 45 ( ...............................
[=1 [=}
Tl ORI : ST . SN . SO SO
55 | SRR SV, WSS [N . ST |
5 ; ‘ ; ; : 5 ‘ ‘ ‘ ‘ ‘
0 500 1000 1500 2000 2600 3000 0 00 1000 1500 2000 2500 3000
Time, (mSec) Time, (mSec)

Figure 16.a Figure 16.b



INTELLIGENT CONTROL OF MAGNETIC SUSPENSION SYSTEMS 893

System response to step noise of 150% of bail mass
with increase of 30% in bail mass

Step response with 30% increase in ball weight
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Step response with 50% increase in coil inductance
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5. NEURO-FUZZY CONTROLLER

Most of the supervised learning algorithms for wefuzzy systems require precise
training data sets for setting the weights andctbrenectivity of the links for various
applications. For some real-world applications,ce data for training/learning are
usually difficult, if not impossible, to obtain. Fthis reason, there has been a growing
interest in reinforcement learning algorithms feuro-fuzzy systems.

One of the approaches to reinforcement learnifyy ithe use of GA'’s. This paper
attempts to use GA's to tune a neuro-fuzzy comrdibr control of the magnetic
suspension system. All of the parameters of thérolder are simultaneously tuned by
GA's.

A. Controller Description

The proposed is a feedforward five layered systenth wthe structure
2 x 14 x 49 x 14 x 2 as shown figure 18. The controller will have two inputs,
error (€) and error derivativede) as described by equations (8, 9), respectivehd A
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outputs of the controller ard,, (KT) providing the PD action andu,, (KT) which
provides the PI action of the controller. We shedkt describe the functions of the
nodes in each of the following five layers of thegosed system. In the followinfis
an integration function of a node, which combinesivation from other nodes to
provide net input for this node, andl is an activation function of a node. In the
following equations, superscript is used to indictite layer number. The nodes in

layer one are the input nodes, which represergtitoe € and the change of errae.

(
)
f ,\*f,// ]
o) \ / N
.. 4 W
“o&Zalfi\ /////

Layer 1
Layer 2
Layer 3

Layer 5

Figure 18: Proposed Neural-Network-Based Fuzzy Logic Controller.

Layer 1:
The nodes in this layer transmit input values diyeto the next layer. That is;

O'=1=x',x, =e or ce (37)
where () is the number of inputs to the controller andiiit be 2 in this case. From
(37), the link weight (") is unity.

Layer 2:

If we use a single node to perform a simple mentiyeriinction, then the output
function of this node should be this membershigtam.

|J.2:wij2.0} or IJ.Z:OJ.1 (38)
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For example, for a triangular function defined as;

0 X <g
_J. _|x-a)ih -a) & <x < 139
f_Tx (ai’bl’cli)_ (C”‘_Xi)/(clj_blj) qjsxﬂscj
0 % >G
and OF = f(I7) (40)

wherea\j b, and c, are respectively, the left point, the center drertght point of the
triangular function of thgth linguistic value of theth linguistic variable. Weights of
this layer will be unity.

Layer 3:
Nodes in this layer are used to perform the pret@mdmatching of fuzzy logic
rules. Hence, the rule nodes should perform theyf@éND operation.

1® =min; (w; .07) (41)
and O = (1) =1} (42)
where () is the number of fuzzy rules. The link weightater three ist).

Layer 4:
The links at layer four should perform the fuzzy Operation to integrate the fired
rules which have the same consequence.

e =max (W .O) (43)
and O =f'(15)=1/ (44)
where (K) is the number of the consequent values for tleedutputs. The link weight
at layer four (v}) is unity.

Layer 5:
The nodes in this layer transmit the decision dgyta out of the network. The
nodes and the layer-five links attached to themaacthe defuzzifier. Iy 's are the

centers of the triangular membership functions tiherfollowing function can be used
to simulate thédeightdefuzzification method.

o =>"w,,.Of (45)
k

|5
and O’ ==

= ZOI:‘
k

Here the link at layer fivewlfm) is b, and () is the number of output nodes[7, 16].

(46)

B. Optimization of Neuro-Fuzzy Controllers Using GA

As stated earlier, the proposed neuro-fuzzy systensists of five layers. Layer 1
only transmits the input values and has nothinigetduned as the links' weights of this
layer are unity. Layer 2 contains nodes represgnthre triangular membership
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functions describing the fuzzy set of the inputiafles, and the seven fuzzy sets
describing each input will be distributed evenlythe universes of discourse and
constant during optimization procesgure 19, and also no parameters to be tuned in
this layer as the links' weights are unity for thager. Layer 3 represents the rule
nodes, the link of this layer has weight matig [w;........wZ,], where the links coming

from the same node in the previous layer will hlhgesame weights, i.e.
W =g =W =W =W =W =W =W

Wo = Wo = Wo = Wy = Wy = Wog = Wy, =W

V\.’932=W933=W934=W935=W36=Wg7=w938 =\Nli

In this approach, the matrix of parameters to beinoped for this layer is
W2 =W2 W2 W2 L. w2, Layer 4 which perform the fuzz@R operation has unity

links' weights and nothing for tuning. Layer 5 whicontains the output nodes
performs the defuzzification function. This layerash links' weights matrix
We =W W,y W, .... W3] which simulates the centers of the output sevemyfisets

associated with each of the two outputs.

In this manner, the total number of parameters ¢ooptimized will be 28
parameters. The chromosome, which represents tieat@d solution in the problem
space will consist of the parametric representatmfrthe fuzzy sets specified for each
input and output variable, ségure 20.

w, W,3|W 3|W43|W53 | ....................... |W1§ I

Representation for Layer #3 Representation for Layer #5
Parameters Parameters

e

'

Chromosome #1

Figure 19: Representation of a Fuzzy Set Figure 20: Encoding Neuro-fuzzy
with 7 Membership Functions Distributed System Parameters into the
Evenly in The Universe of Discourse. Chromosome

C. Simulation Results

In this section, the above mentioned neuro-fuzzytrotler is simulated for the
control of the magnetic suspension system. Thrasigiulation, we will show the
utility of neuro-fuzzy control architecture and G{stimization.

Parameters Initialization of layer 3 link weight matrix/® parameters starts with
initializing them as a random value between 0.2 h®, while parameters of layer 5
link weight matrix associated with the first outpull be a random value between 0
and 1 taking into account the logic order of thezfuset membership function centers,
i.e. the center of LP membership function mustdéhe right of (or greater than) the
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center of MP membership function. Parameters aatutiwith the second output in
the same layer will be initialized to be betweel®30and 0.03, taking into account the
logic order of the fuzzy set membership functiossdescribed earlier. An initial
population of 100 real-valued chromosomes will éedomly initialized. Then each of
the string will be checked for membership functietegrity, and if any string violates
the integrity conditions that string will be randigmegenerated till the conditions are
met. Then an interpreter takes each real-valueaysind uses it to set the parameters
in the fuzzy controller, and run the simulation far pre-specified time period
(TIME = 2.5 sec.) during which the performancela tontroller is to be evaluated.

The fitness function, used in this paper, whictdéined as 1 ITAE Again to
avoid the divide-by-zero problem at the very begignthe value of théTAE is not to
be available for calculations except after 0.2 gecadditional bonus will be added to
the fitness value in case the controller couldibzabthe sphere till the end of the test
period (TIME); this helps in distinguishing desil@land undesirable strings especially
at the beginning of the tuning process.

When each string in the population has been eweduand given fitness value the
reproduction process takes place. The roulette Whilde used here for reproduction
process. Multi-point crossover will be used heredose of its capability of solving
one major problem of the simple crossover; thisofmm is that one-point crossover
cannot combine certain combinations of featureso@ed on chromosomes. In the
proposed GA algorithm Nc = 2. And the mutation doibty will be set to 0.9. Since
we use real-value encoding scheme, we use a iiatiigh mutation probability = 0.1
in our algorithm. This is different from the tradinal GA's that use binary encoding
scheme. The latter are largely driven by recomimnanot mutation. And the mutation
variable will be randomly generated factor of treue of gene to be mutated. The
above learning process continues to new generatiotisthe number of generations
meets a predetermined stop criterion. The stograit used here is the maximum
number of generations generated. Finally, aftemthele evaluation process is stopped
the string with the largest fithess value in thst eneration is selected and encoded in
the final fuzzy controllerFigure 21 illustrates the fitness of the system during the
learning processsigures 22 illustrate the step response of the system foba@ unit
step at the operating point. System responsesitsaidal and square trajectory with
amplitude 0.5 mm and frequency 1 Hz respectivedyilustrated infigures 23 (a, b)
Figure 24 illustrates the response of the system to a stegerequals 150% of the ball
weight.
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Figure 21 Figure 22
System response to sinusoidal trajectory System response to square trajectory
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Testing the controller for robustness has beeropedd by investigating the system's
response to an increase in the ball mass with 6D#eoball mass and checking the
step responsdigure 25.a, and system response to a step noise with a \ejuals
125% of ball weightfigure 25.b. The system step response with 33% increase in the
coil inductance value, ségure 25.c.

6. CONCLUSIONS
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For the Mamdani type fuzzy PID controller, we hgw®posed an alternative
method to build the fuzzy PID controller which keepe physical point of view, and
we used GA's for parameters selection. SimulatEsults of step response of the
magnetic suspension system showed a short risezerwd steady state error. The
controller also showed fast tracking performance aary small error in case of
sinusoidal and square position trajectories. Alke,controller is capable of rejecting
disturbances and compensating the effect of sudbdange in the suspended object's
mass. The controller has been tested for robustaesdsit showed good step response
in case of increased ball mass and coil inductantezero steady state error. We can
conclude that the fuzzy logic is effective for niagar systems, with unknown
parameters and disturbances. This methods turreay foontrollers design for this
system into a systematic method, by using the finaand PD rule base for different
systems and accomplish parameters tuning by theatd GA's.

We also proposed TSK fuzzy controller, with the cadled parallel distributed
compensation (PDC) technique to facilitate the glesif gain scheduling controllers
and also to provide a systematic approach to bhgndiles. Simulation results of step
response of the magnetic suspension system shogeddastep response with a short
rise and settling time. Using different values/pfand ¢,, it will be obvious that the

dynamic response of the system depends totalhherdésign constrains set for each
subsystem. The controller showed delayed trackerfopmance. The controller also

showed a very good capability to compensate foretwogl errors and uncertainties and
could reject step noises under these conditions.

The third and the last method proposed here is diffred version of NN-FLC
structure. This approach had a reduced number rafmpeters (weights) to be tuned
online by GA's, which means shorter training cy@nd also employs fuzzy if-then
rules. The controller also showed fast trackingfqgrerance and almost zero steady
state error in case of sinusoidal and square pasitajectories. Also, the controller is
capable of rejecting disturbances and compenstimegffect of sudden change in the
suspended object's mass. The controller has betsdtéor robustness also, and it
showed good step response with zero steady stateiercase of increased ball mass
and coil inductance.

Figure 26 indicates the integral time absolute error (ITABIue for the step
response and the square and sinusoidal positipectoaies for the three proposed
approaches. The time span chosen for comparis®rséeonds corresponding to 3000
samples.

It is clear that neuro-fuzzy controller which ug@A's to accomplish parameters
tuning gave to some extent better results thantwhe other controllers for step
response. And both the fuzzy PID and neuro-fuzzytrotlers showed very close
tracking performance for the tested trajectorieshilgVthe TSK fuzzy controller
showed a relatively slow tracking performance, ifetould achieve a good step
response.

From the tests accomplished to check the threeaters' behavior against noise
rejection, the TSK fuzzy controller gave the bestults hence it could compensate for
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200% of ball mass step noise. The three controfjare good results when tested for
robustness.
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Figure 26: ITAE of step response and two different trajectories.

REFERENCES

[1] Amer Abd El-Fattah "Analysis and design of magnegwitation control
systems"”, Master of science thesis, Assiut Unitgrsbo4.

[2] Abd El-Fattah M. Mohamed "Optimal control desigrdaronlinear dynamics of
magnetic bearings systems", Doctor of philosoprgselitation, University of
Maryland, USA, 1990.

[3] Basil Hamed "Comparison of fuzzy logic and cladsmantroller designs for
nonlinear systems", Doctor of philosophy disseotatiNew Mexico State
University, USA, 1999.

[4] P.T. Chan, W.F. Xie, A.B. Rad "Tuning of fuzzy capiter for an open-loop
unstable system: a genetic approach”, Elseviegn8ei Ltd., Fuzzy Sets and
Systems, Volume 111, Issue 2, Pages 137-152, 2000.

[5] Mohamed-Reza Akbarzadeh-Totonchi "Fuzzy control amssolutionary
optimization of complex systems", Doctor of philphy dissertation, New
Mexico State University, USA, 1999.

[6] Guo-Min Li "Robust control strategies for motor \8ersystems”, Doctor of
philosophy dissertation, The Hong Kong Polytechdigversity, Hong Kong,
1999.

[7] John Yen and Reza Langari "Fuzzy logic: intelligermontrol, and information”,
Prentice Hall, 1999.

[8] Andreas Nurenberger and Rudolf Kruse "Neuro-fuzeghhiques under
Matlab/Simulink applied to a real plant”, Fuzzy t&yss Proceedings, 1998.



INTELLIGENT CONTROL OF MAGNETIC SUSPENSION SYSTEMS 901

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

IEEE World Congress on Computational Intelligenc&he 1998 IEEE
International Conference on Volume 1, May 1998 Pgger2 - 576 vol.1.

J. F. M. Amaral, M. M. Vellasco and M. A. C. Pacbé@ neuro-fuzzy-genetic
system for automatic setting of control strategie6SA World Congress and
20th NAFIPS International Conference, 2001. JoittV@lume 3, 25-28 July
2001 Page(s):1553 - 1558 vol.3

C.T. Linand C. S. George Lee "Reinforcement stmgparameter learning for
neural-network-based fuzzy logic controllers”, RuzzSystems, |EEE
Transactions, Volume 2, Issue 1, Feb. 1994 Pagé(sp3.

Petr Pivdika "Comparative Analysis of Fuzzy PI/PD/PID CorigplBased on
Classical PID Controller Approach”, In Proc. oéth002 IEEE World Congress
on Computational Intelligence, USA, 2002, pp. 54865

M.H. Lim*, S. Rahardja, B.H. Gwee "A GA paradignr fearning fuzzy rules",
Fuzzy Sets and Systems, Volume 82, Issue 2, Septeh®96, Pages 177-186,
Elsevier Science, 1996.

D. Whitley and T. Starkweather, "Optimizing smatunal networks using a
distributed genetic algorithm" Int. Joint Conf. NaluNetworks, 1990.

D T Pham and D Karaboga. "Genetic algorithms wdhiable mutation rates:
application to fuzzy logic controller design”, IMdg€, 1997, Proc. Instn. Mech.
Engrs. Vol. 211 Part I.

Chin-Chih Hsu, Shin-Ichi Yamada, Hideji FujikawaydaKoichiro Chida "A
fuzzy self-tuning parallel genetic algorithm for topization" Computers &
Industrial Engineering, Vol. 30, pp. 883-893, Eise\science Ltd., 1996.

S. Rajasekaran, G. A. Vijayalakshmi Pai "Neuralwweks, fuzzy logic, and
Genetic algorithms synthesis and applications"ntee Hall of India, 2003.

(rkiliiall galail) aUSH S1Y) aSal)

plbad aSatll e Aanll el Apiaall 5 A el Aaml) 3oudat sl Caall 13a
i a8 oy e SIS dial) iy jle sll) alasil e ¢ el cdalizall @alal)
Ay iz (52l s Mamdani 4 53 e et laldi — Lol — ol aSadie Caay
L] ) sl Ll — i) e Al aSatiall Coagy s Al jal) A5 aSa
O sl Jany aadl Laliill — sl o jall aSaiall o 68y e Aledll pua gl Una
PRl (e oSt I Al gl Ul g gl iy AL
Takagi-Sugeno-Kang dze st (= s aSalia J i oy LS dgial) cilady jle )
sobe sa (ha Y aSaie s ) adiall wSaiall i) (o) sial) S A8yl aladiuly
a_x.bsl\ &yuﬁu@ﬂq&d&ﬁa\q@adﬁ%&@w&&&
N ALYl el o il iy G e — aae pSat e L a1y L

Saiall oyl Al ey e Sl



