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 This paper proposes the application of fuzzy and neuro-fuzzy techniques 
to the control of an open loop unstable magnetic suspension system using 
genetic algorithms (GA's) as a tuning algorithm. A Mamdani type fuzzy 
PID controller is investigated. The proposed controller employs a two-
stage control structure, where the fuzzy PI controller reasonably aims to 
suppressing steady state errors and the fuzzy PD controller provides 
stabilizing action. The membership functions' parameters for both 
controllers are determined by the GA's. A Takagi-Sugeno-Kang (TSK) 
controller using parallel distributed compensation (PDC) approach is 
presented. The proposed controller, which is nonlinear, is fuzzy blending 
of individual piecewise linear controllers designed using pole placement 
technique. A neuro-fuzzy controller is proposed. Reinforcement learning 
along with GA's was used to train the neuro-fuzzy controller.  
 
KEYWORDS: Fuzzy control, Two-stage fuzzy PID controller, Parallel 
distributed compensation, Genetic algorithms, neuro-fuzzy. 

 
1.  INTRODUCTION 

Magnetic suspension techniques are being utilized in various fields such as, industrial, 
transportation and aerospace projects. Magnetic bearings, which are the most important 
industrial application of magnetic suspension, are used in applications where ordinary 
bearings meet difficulties. Contact free bearings are an attractive technology for special 
applications which imply high speed rotation, minimum friction or clean environments 
such turbo compressors and high speed milling spindles. However, the design of a 
control system for magnetic suspension systems is difficult and constitutes a 
challenging task due to the highly nonlinear and inherently open-loop unstable 
electromagnetic dynamics in the relationship between the lift force and the air gap 
distance. Until now in industrial applications, magnetic bearings' control has been 
realized with classic (PID) or modern (Q-parameterization, H∞) controllers [1, 2]. Such 
linear control techniques depend on linearizing the dynamics of the magnetic 
suspension system about a nominal operating point. These control approaches provide 
very  good  design  solutions  by  linear  terms  only  in  a  limited  small  region  of the 
a  
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nominal design condition. To avoid such deficiency, most industrial magnetic 
suspension systems, which adopt conventional linear control techniques, use only small 
portion of the available air gap during operation. However, in some industrial 
applications, it is desirable to use a larger portion of the available air gap. Nonlinear 
control techniques, such as sliding mode, are quite complicated compared to linear 
controller design. It takes great numerical effort to solve nonlinear equations and such 
controllers are sensitive to modeling errors. Even when a system can be described 
exactly it is not always possible to find a nonlinear solution so that the closed loop 
system is stable. On the other hand, fuzzy logic has been considered as a potentially 
useful means of designing controllers for nonlinear systems, which shown better 
performance and easier implementation in controlling these nonlinear systems than 
conventional methods [3].  

This paper presents three architectures for nonlinear fuzzy controller. The first 
architecture is a Mamdani type fuzzy PID controller. Similar in construction to the 
conventional PID controllers, there have been several types of fuzzy PID controllers 
proposed for different situations. A two-stage fuzzy PID controller, which is composed 
of fuzzy PD and fuzzy PI controllers in parallel, is investigated in this paper. The fuzzy 
PD section presents the derivative action (D) that provides stabilizing action which is 
essential in the case of open loop unstable system as in magnetic suspension to achieve 
stability. And the fuzzy PI section presents the integral action (I) which aims to 
suppressing steady state errors. However, one of the early steps of designing a fuzzy 
controller is to represent system knowledge in terms of fuzzy linguistic terms and 
hence assigning membership functions to system variables. In most cases, the designer 
has to make two design decisions; the first is on the rule base of the fuzzy system. In 
most applications, this problem is solved by exploiting the knowledge of an expert and 
forming the rule-base by a trial-and-error approach which depends on the simplicity of 
the system or by using another optimization algorithm, like GA's, to form the rule base 
[4]. For the two-stage fuzzy PID controller proposed here, the separation between the 
two sections of the controller makes it much easier interpret the rules as it makes it 
very logical. Secondly, the geometrical forms of the membership functions such as 
triangular, trapezoidal, etc. and the parameters of those membership functions. The 
problem of tuning the membership functions has attracted so much attention [5]. 

The integration of fuzzy logic control (FLC) and genetic algorithms (GA's) has 
generated a lot of interest since it is widely believed that the two methods complement 
each other. GA's are used to optimize the design of FLCs, whereas the well established 
area of fuzzy control has provided a main stream application area for the GA's. GA's 
are general purpose optimization algorithms with a probabilistic component that 
provides a mean to search poorly understood and irregular spaces. GA's can be used in 
various ways to optimize a fuzzy controller depending on which design parameters are 
to be optimized. They can be used to tune the membership functions' parameters. GA's 
also can be applied to tune the scaling factors of the controller [6]. Tuning the rule-base 
is another important application of GA's in the design of fuzzy controllers. Finally, 
some or all the design parameters can be tuned simultaneously by the GA's. In this 
paper GA-based reinforcement learning scheme along with an external reinforcement 
signal from the controlled system has been used to tune the membership functions' 
parameters in the fuzzy PID controller. The external reinforcement signal will be 
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available at the end of an evaluation cycle to play the role of the fitness function, and 
the reciprocal of the performance index (ITAE) has been used as the fitness function. 

The second architecture is a Takagi-Sugeno-Kang (TSK) controller using parallel 
distributed compensation (PDC) approach. This controller achieves nonlinearity 
through piece-wise linear approximation. The main idea of this controller design is to 
divide the operating air gap into a limited number of local piecewise linear models and 
derive a control rule for each model by linear control techniques, feedback control via 
pole placement was used here, and fuzzy logic is used to smoothly schedule each 
control rule over the entire air gap so as to compensate for operating point dependence 
nonlinearity. 

Neuro-fuzzy systems combine the learning features of neural networks with the 
linguistic rule interpretation of fuzzy inference systems. Among several existing neuro-
fuzzy systems, few have been widely used: ANFIS (Adaptive Network based Fuzzy 
Inference System) [7], NEFCON (NEural Fuzzy CONtroller) [8, 9], this one well 
suited to control applications, and NN-FLC (Neural Network based Fuzzy Logic 
Controller) [10]. This paper employs a hybrid neuro-fuzzy-genetic system based on a 
modified version of NN-FLC model as a basis and genetic algorithm for reinforcement 
learning. The GA's learning starts with the definition of the chromosome's 
representation, which is formed by the parameters of each membership function of the 
input and output variables. The membership functions' parameters are adjusted so that 
a suitable performance may be obtained. The fitness function of each individual is 
calculated as the reciprocal of the performance index (ITAE). 
 

2.  MAGNETIC  SUSPENSION  SYSTEM 
The single axis magnetic suspension system, which components are shown in 

Figure 1, consists of a ball bearing of mass (m) placed underneath an electromagnet at 
distance (x). When a current flows through the electromagnetic coil, it will generate an 
attractive electromagnetic force in the vertical direction. The difference between the 
electromagnetic force and the gravitational force will induce an up or down motion on 
the ball bearing. 

 

 
 

Figure 1:  Magnetic Suspension System. 

 
Equations of Motion 
The magnetic circuit, as shown in Figure 1, consists of the ball bearing and the 
electromagnet. The electromagnet coil has N turns, across which there is an 
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instantaneous voltage e and through which a current i is flowing. A decrease of dx in 
the air gap length gives an instantaneous increase in energy input of eidt and stored 
magnetic energy of (0.5 i2dL) where L is the inductance of the coil. If f is the force at 
the air gap faces, then the mechanical work exerted on the ball is (-fdx).  
The differential equation describing the motion of the mass m is; 

fmg
dt

xd
m −=

2

2

          (1) 

where     
2








=
x

i
cf                                                                                      (2) 

and x is measured from the magnetic ball face [1]. The other equation of motion is 
obtained from the voltage balance in the electromagnetic circuit. The total voltage is 
balanced by the voltage drop due to the resistance and the inductive reactance of the 
coil. Therefore, 

dt

Lid
Rie

)(+=        (3) 

where  
g acceleration of gravity. 
f attractive force of the electromagnet. 
x distance from the electromagnet. 
e voltage across the coil. 
i coil current. 
R coil resistance. 
L coil inductance. 
Since is always kept around the close neighborhood of 

o
x , L can be considered as a 

constant. This will greatly simplify the system model without losing much accuracy. 
Therefore, equation (3) can be rewritten as;  

  
dt

di
LRie +=         (4) 

Equations (1, 4) represent the differential equations that describe the dynamics of the 
magnetic suspension system [1]. A Matlab/Simulink magnetic suspension nonlinear 
model based on HUMUSOFT CE 152 Magnetic Suspension System was used in this 
paper. 

3.  MAMDANI  TYPE  FUZZY  PID  CONTROLLER 
Fuzzy controllers can be classified according to the control action and the controller 

architecture into three categories, fuzzy PD, fuzzy PI and fuzzy PID. The realization of 
fuzzy PID controller is usually proposed in the form of three inputs controller. The 
inputs are usually ∑ ∆eee ,,  or eee 2,, ∆∆ . This implementation is difficult for 

parameters' tuning and in most cases it will need optimization for the rule base, besides 
it loses the physical point of view. Rather, let us take in account that the proportional 
action P is the natural control action, the derivative action D provides stabilizing action 
and integral I aims to suppressing steady state errors. Still, it is necessary to stress the 
fact that the I-portion of the controller in itself causes instability and slows the  
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controlled process down, while the D-portion speeds the controlling action up. Thus 
the classical PID controller compared to the PI one accelerates the transient response. 
Knowing this information, we would rather build the fuzzy PID controller in such a 
way, in which we could separately influence the changes of P, I and D components in 
some natural way. That is why we propose to build the fuzzy PID controller as a 
parallel combination of two fuzzy controllers: I and PD or PI and PD which can be 
defined as; 

)()())1(()( kTukTuTkukTu PDPIPI +∆+−=        (5) 

where   )()()( kTekkTekkTu IPIPI ∆+=∆          (6) 

and  )()()( kTekkTekkTu DPDPD ∆+=          (7) 
see [11]. The structure of this controller is shown in figure 2. Besides the simplicity of 
this architecture, it will keep the most important feature of the fuzzy control which the 
informal nature of the control design process. 

A.  Controller  Description 
As illustrated previously, the proposed controller consists of two parallel sections 

PD and PI. First inputs to the controller will be the error signal; 
)()()( kTxkTxkTe d −=         (8) 

where )(kTxd  is the desired position and )(kTx  is the sphere position at time kT. The 

second input is the derivative of the error which will be defined as;  
TTkekTekTce /)))1(()(()( −−=       (9) 

The controller output is the sum of )(kTuPD
, the PD section output, and the integration 

of )(kTduPI
, the PI section output. And will be written as; 

)())1(()()( kTduTkukTukTu PIPIPD +−+=      (10) 
Two sets of fuzzy rules are to be used to map the error )(kTe and rate of change of the 
error )(kTce  into changes in the controller action with both its section, i.e. changes in 

)(kTuPD
 and )(kTduPI

. These fuzzy rules will be in the form of; 

If )(kTe  is LP and )(kTce  is ZE then PDu  is LP 
where LP, ZE are short notations for large positive and zero respectively. Table 1 
illustrates the rule base used for the PD section. This rule base consists of 49 rules. 
Table 2 illustrates the rule base for the PI section. This rule base consists of 5 rules.  
 

PI 

u(kT)  

PD 

)(kTe∆ 

)(kTe 

∑ F F-1 

RB F F-1 

RB 

Figure 2: Structure of a fuzzy PID controller. 
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Table 1: FIS rule base for the PD section. 
 

e 
ce LP MP SP ZE SN MN LN 

LP LP LP LP LP MP MP SP 

MP LP LP MP SP ZE SN MN 

SP MP MP SP SP ZE SN SN 

ZE MP MP SP ZE SN MN MN 

SN SP SP ZE SN SN MN MN 

MN MP SP ZE SN MN MN MN 

LN SN MN MN LN LN LN LN 

 
 

Table 2: FIS rule base for the PI section. 
 

e 
ce MP SP ZE SN MN 

ZE LP MP ZE MN LN 

 
 

For fuzzy conjunction, implication, aggregation and defuzzification certain design 
decisions have been made to achieve the best possible performance. The min operator 
was used as a fuzzy conjunction, the clipping method for fuzzy implication, the max 
operator for fuzzy aggregation and the centroid method for defuzzification. 

The next step in the controller design is to tune the membership function so as to 
achieve our certain goals; in this paper the GA's were used to accomplish this task. The 
following sections describe in details the steps for using GA's to optimize a fuzzy 
control system. 

B. Genetic Algorithms 
Genetic algorithms are probabilistic optimization routines modeled after Darwinian's 
theory of natural evolution. Genetic algorithms emulate nature performing genetic 
operations over a finite set (population) of potential solutions (individuals). Genetic 
algorithms operate by function evaluation as compared to other optimization routines 
based on gradient evaluation. As a result, GA's have shown the ability to optimize 
systems with multi-modal objective functions and with nonlinear parameters. Here, the 
GA's are used to tune the membership functions' parameters for both the input and 
output spaces by using the reinforcement signal from the model as the fitness function, 
while in other researches GA's have been used to tune the rule base itself [12]. Roughly 
speaking, GA’s manipulate strings of binary digits, 1's and 0's, called chromosomes 
which represent multiple points in the search space through proper encoding 
mechanism. GA’s carry out simulated evolution on populations of such chromosomes. 
Bit string encoding is the most common encoding technique used by GA's researchers 
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because of its ease of creating and manipulating. However, with a binary string 
encoding the resulting search time is much longer than that of using real-value string 
encoding used here [13]. Figure 3 illustrates the behavior of standard genetic algorithm 
during one tuning cycle. Next, we will briefly describe the basic operators in a GA. 

 

 
Figure 3: The Standard Genetic Algorithm. 

 
Mutation is the random alteration of one or more genes with a probability mP . In a 

real value string, mutation is the random selection and alteration of ith gene by the 
addition of random value. Mutation is usually considered the innovative genetic 
operator which allows GA's to search new patterns. Mutation probability is nominally 
small within 0.0001 < mP < 1. In some applications, mutation is set to a larger value at 

the beginning (to explore new patterns) and is reduced later (to help reach a converging 
solution). And even in more complex studies, different strategies have been used to 
specify mutation rates during the learning process [14]. As the mutation rate increases, 
the algorithm behaves more like a random search routine.  

Reproduction is the act of generating exact replicas of an individual I of a given 
population and placing the replicas among an intermediate population according to a 
certain algorithm. Following the theme of survival of the fittest, the highest fit 
individual is assigned higher probabilityriP  to reproduce, where 

Genetic Initial Population of 
Strings Using Random Number 

Generator 

Evaluate Fitness of Strings in 
the Population 

Create an Intermediate 
Population Using 

Reproduction Operator 

 

Recombine Strings Using 
Crossover 

Introduce Diversity Using 
Mutation 

  Are the 
Stopping 
Criteria 
Satisfied? 

Stop 

Yes 

No 
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and n is the size of the population. In some elitist strategies, the highest fit set of 
individuals in the population is directly placed in the next population, bypassing the 
intermediate population. Roulette wheel is one of the most popular election methods, 
and it will be used in this dissertation. 

Crossover is the recombination of strings among two randomly selected 
individuals in the intermediate population to create new offspring from the next 
generation. Every pair of individuals will result in two individuals in the next 
population. The crossover rate pc determines where crossovers occur and is usually 
much higher than  pm, i.e. 0.1 < pc < 0.9 as it encourages recombination among already 
found patterns. Crossover can occur in one or more points. 

Interpretation Function is the transformation function between the representation 
(genotype) space and the evaluation (phenotype) space. Most of the current researches, 
as in this paper, concentrate on optimizing parameters of the domain knowledge. The 
domain knowledge consists of membership function and rule base. Membership 
function parameters include the general membership function shape (Triangular, 
Trapezoidal, Sigmoidal, Gaussian, etc.) and the defining points (Center, Max Right, 
Min Left, etc.). Rule base parameters like fuzzy associative memory, fuzzy operators 
like disjunctive (OR) and conjunctive (AND). 

In this paper only defining point of the membership functions are chosen to be 
optimized. This was a design decision which was made considering the fact that in 
control of most physical systems, including the magnetic suspension, rules can often be 
derived either intuitively as in our system or through operator experience as in process 
control systems, and for this controller the two parallel sections made it much easier to 
derive rules for each section separately. 

Fitness Function Design is a very important aspect of design of GA's since GA's 
depend on fitness function to guide the direction of its search. Obviously, a fitness 
function needs to include all the pertinent parameters which need to be 
minimized/maximized. Due to the similarities which GA's share with nature, the fitness 
function is often designed such that the more desirable solutions correspond to higher 
fitness. So, the GA's optimization is usually regarded as a search for parameters which 
maximize the fitness function. In this paper the reciprocal of the performance index 
(ITAE), which is described as;  

 

dttteITAE
t

∫=
0

)(          (12) 

 

will be used as the fitness function. Where (t) is a period of time during the simulation 
is run with the current string parameters' values are applied to the fuzzy controller.  An 
additional bonus will be added to the fitness value in case the controller could stabilize 
the sphere till the end of the test period (t), this helps in distinguishing desirable and 
undesirable strings (specially at the beginning of the tuning process). The value of the 
ITAE is not to be available for calculations except after 0.2 sec. to avoid the divide by 
zero error. 
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C. Optimization of Fuzzy Systems Using GA 
 

Table 3: Parameterized Membership 
Functions. 

 

Membershi
p Function Parameters 

LN - b0 c0 

MN a1 b1 c1 

SN a2 a2 c2 

ZE a3 b3 c3 

SP a4 b4 c4 

MP a5 b5 c5 

LP a6 b6 - 
 

 
Figure 4: Representation of a Fuzzy Set 

with 7 Membership Functions. 

 
 

Each of the fuzzy variables is represented by a fuzzy set. Fuzzy sets consist of a 
number of membership functions which are often can be represented by mathematical 
functions. Triangular membership function has been widely used in fuzzy control 
problems and will be used in this paper. Figure 4 illustrates the representation of a 
fuzzy set with 7 membership functions. Table 3 shows the membership function 
representation of one fuzzy variable with parameterized membership functions. Each 
membership function is represented by three parameters (a, b, and c). Triangular 
membership function is specified by three parameters as follows: 
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<

=
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cxbbcxc
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)/()(

)/()(

0

),,:(
     (13) 

 

In the same manner a fuzzy set with n membership functions can be represented by 
(3n – 2) parametric genes, where the parameter (a) of the leftmost membership 
function and the parameter (c) of the rightmost membership function are constants with 
large negative and positive values respectively. The chromosome, which represents the 
potential solution in the problem space will consist of the parametric representations of 
the fuzzy sets specified for each input and output variable. 

 

Membership function integrity is very important for the GA's, and it must be 
checked and enforced at the beginning of each cycle. There are two types of integrity 
errors, out of boundary errors and non-definition errors. Such errors violate the two 
basic membership functions' principles. First, each membership function overlaps only 
with the closest neighboring membership function. Secondly, for every input variable, 
any possible input value must have a membership value more than zero. 

 

These two kinds of errors could occur either in the initial population, during the 
crossover process, or during the mutation process. Membership function integrity must 
be checked in every stage. The integrity requirements for the triangular membership 
function are the following: 
1. ai < bi < ci 

  
MN LN   ZE   SN   MP   SP LP 

b0,
a1  

c0,
b1'  

a2 

c1,
b2'  

a3 

c2,
b3'  

a4 

c3,
b4'  

a5 

c4,
b5'  

a6 

c5,
b6'  
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where i is the membership function number in the fuzzy set, and a ,b , and c are the 
triangular membership function's parameters. 

2. For each membership function ( i ) in the fuzzy set where i-2 > 0 and i+2 < n-1: 

 ci-2 < ai and ci < ai+2  

3. a0 < a1 < ….. < an-1 

4. b0 < b1 < ….. < bn-1 

5. c0 < c1 < ….. < cn-1 

6. Lower limit of the fuzzy set < b0. 

7. Upper limit of the fuzzy set > bn-1. 

where n is the number of the membership functions in the fuzzy set, and where fuzzy 
membership function number (0) is the leftmost membership function and membership 
function number (n) is the rightmost membership function. 

Parameters encoding is the process of formulating the membership functions' 
parameters into the chromosomes. As stated earlier, the controller system has two 
inputs, the error (e) and the error derivative (ce), and two outputs, the PD section 
output ( PDu ) and the PI section output (PIdu ) which is to be integrated and summed 
with the first output. 

Each input and output in this system will have a fuzzy set of 7 membership 
functions, except the PD section output (PDu ) will have a fuzzy set of 5 membership 
functions. To decrease the number of parameters we used asymmetric membership 
functions, except for the function associated with the zero input, which must be 
centered in the zero value, figure 5 illustrates this parameterization scheme. So the 7 
membership functions fuzzy set will be described with 7 parameters. 

For the output ( PDu ) fuzzy set, another scheme was used to parameterize the fuzzy 
set, in this method each membership function will be represented with both c (its 
center) and w (its width). This method will give the system more flexibility in order to 
represent the nonlinearity of the system besides it decreases the number of parameters 
associated with each membership function. For this output the center of the 
membership function labeled ZE will be at the value of the nominal voltage of the 
system at that specific operating point (c4). Figure 6 illustrates this parameterization 
scheme. For the output (

PIdu ), the same parameterization scheme will be used except 
that the value of the membership function labeled ZE will be at zero value. 

 

 
 

Figure 5: Parameterization scheme for 
the inputs e, ce. 

Figure 6: Parameterization scheme for 
the output (

PDu ). 

 w2 
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D. Simulation Results 
A Matlab/Simulink magnetic levitation model was used during this study and the 
parameters of that model are as the following: 

Ball mass (m) =   0.00837  kg 
Coil resistance (R) =  1.0  Ω 
Coil inductance (L) =  3  mH 
Constant (c) =   2.16e-6  N.m2/A2 
Power Amplifier Gain =  0.3  A/V 
D/A gain =   5 
Position sensor gain =  1000  V/m 
A/D gain =   0.2 

Operating air gap =  1 – 6 mm 

The fuzzy control architecture and GA's optimization for fuzzy controllers were 
discussed in previous sections. In this section, the above mentioned controller is 
simulated for the control of the magnetic suspension system. Through simulation, we 
will show the utility of fuzzy control architecture and GA's optimization in this 
application. 

An initial population of 100 real-valued chromosomes will be randomly initialized, 
the size of population is a critical design decision because it affects the evaluation time, 
some researches uses fuzzy reasoning to tune the population size [15]. Then each 
chromosome will be checked for membership function integrity, and if any one 
violates the integrity conditions that chromosome will be randomly regenerated till the 
conditions are met. Then an interpreter takes each real-valued string and uses it to set 
the parameters in the fuzzy controller, ad run the simulation for a specified time period 
(TIME = 2 sec.) during which the performance of the controller is to be evaluated. 
Fitness function, used in this paper, which is defined as 1 / ITAE (see equation 12) and 
0 ≤  t ≤  TIME. To avoid the divide-by-zero problem at the very beginning the value of 
the ITAE is not to be available for calculations except after 0.2 sec. An additional 
bonus will be added to the fitness value in case the controller could stabilize the sphere 
till the end of the test period TIME, this helps in distinguishing desirable and 
undesirable strings. 

When each string in the population has been evaluated and given fitness value the 
reproduction process takes place. The roulette wheel will be used here for reproduction 
process. Multi-point crossover will be used here because of its capability of solving 
one major problem of the simple crossover; this problem is that one-point crossover 
cannot combine certain combinations of features encoded on chromosomes. In the 
proposed GA algorithm Nc = 2. And the mutation probability will be set to 0.9. Since 
we use real-value encoding scheme, we use a relatively high mutation probability = 0.1 
in our algorithm. This is different from the traditional GA's that use binary encoding 
scheme. The latter are largely driven by recombination, not mutation. And the mutation 
variable will be randomly generated factor of the value of gene to be mutated. The 
above learning process continues to new generations until the number of generations 
meets a predetermined stop criterion. The stop criterion used here is the maximum 
number of generations generated. After the whole evaluation process is stopped the 
chromosome with the largest fitness value in the last generation is selected and 
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encoded in the final fuzzy controller. Figure 7 illustrates the fitness of the system 
during the learning process. Figure 8 illustrates the step response of the system. 
Figure 9 illustrates the response of the system with a step noise equals 150% of the 
ball weight. Figure 10.a illustrates the system response to a sinusoidal trajectory with 1 
Hz frequency and 0.5 mm amplitude. Figure 10.b illustrates the system response to a 
square trajectory with 1 Hz frequency and 0.5 mm amplitude. Testing the controller for 
robustness has been performed by investigating the system's response to an increase in 
the ball mass with 30% of the ball mass and checking the step response, figure 11.a, 
and system response to a step noise with the equals 150% of ball weight, figure 11.b. 
The system step response with 30% increase in the coil inductance value, see figure 
11.c. Figure 12.a illustrates the fuzzy set for the input variable (e), figure 12.b 
illustrates the fuzzy set for the input variable (ce), figure 12.c illustrates the fuzzy set 
for the output variable (PDu ), figure 12.d illustrates the fuzzy set for the output 

variable ( PIdu ) after tuning. 
 
 
 

 
 

Figure 7. Figure 8. 

  
Figure 9. Figure 10.a 
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Figure 10.b. Figure 11.a 

  
 

Figure 11.b 
 

Figure 11.c 
 

  
 

Figure 12.a: Fuzzy Set for the Input 
Variable (e). 

 

Figure 12.b: Fuzzy Set for the Input 
Variable (ce). 

 

  
 

Figure 12.c: Fuzzy Set for the Output 
Variable (

PDu ). 

 

Figure 12.d: Fuzzy Set for the Output 
Variable (

PIdu ). 
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4. TAKAGI-SUGENO-KANG (TSK) CONTROLLER 
The main motivation for developing TSK model is to reduce the number of rules 

that would otherwise be required if the Mamdani Model is to be used, especially for 
complex and nonlinear problems. Toward this goal, the TSK model replaces the fuzzy 
sets in the consequent of Mamdani rule with a linear equation of the input variables. 
The concept of PDC approach is to design a compensator using linear control design 
techniques for each operating range. The resulting overall fuzzy controller, which is 
nonlinear, is a fuzzy blending of each individual linear controller. In this sense, the 
TSK model-based control approach akin to the notion of gain scheduling technique in 
conventional control engineering. Figure 13 illustrates the block diagram of the PDC 
architecture. 

A. Parallel Distributed Compensation 
The most useful way of dealing with nonlinearity of the plant is to linearize it about a 
single nominal equilibrium point (namely local model) in order to use linear control 
techniques. This approach, however, is generally effective only in a limited region of 
the nominal design condition, because the variable may vary in a wide range far away 
from the equilibrium point. In contrast, a global model describes the system's input-
output relationship for the entire input space. In particular, it is well known that 
nonlinear global model can often be approximated by a set of linear local models. The 
linear local models which can be described by;  
 

uBAxx ~+=&         (14) 

 

 
Figure 13: Block Diagram of PDC approach. 

 
In this paper, state feedback control design via pole placement was used for each 

local piecewise linear system. Although being open-loop unstable in nature, magnetic 
suspension system is completely controllable since the controllability matrix 

[ ]ABBWc=  has a full rank of 2. Thus linear state feedback is possible and we shall 
choose the control signal to be;  

 

XKU =          (15) 

Nonlinear 

Magnetic 

Levitation Fuzzy Logic 
Scheduling 

Piecewise Linear 
Controller 
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where [ ]321 kkkK = , and the control parameters k1, k2, and k3 are selected so that all 

design requirements are satisfied. The ith fuzzy control rule of the controller takes the 
form; 

 

IF  x  is  (ith region)  THEN  u  =  - Ki x     (16) 
 

Each of the rules can be viewed as describing a "local" state-feedback controller 
associated with the corresponding "local" linear sub-model of the systems to be 
controlled. 
 
B.  System  Linearization 

The first step in our approach is to linearize the system at different operating points 
to cover all the operating range. Three operating points at 2, 3.5 and 5mm were defined 
here.  

The linearized equations describing the variation from the Taylor series expansion; 
if the variables of the operating point are expressed with the subscript "0" and the 
variables at the neighborhood of the operating point are represented with the subscript 
"1" then the linearized equations are; 

111 xkikf xi +=         (17) 
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Then we get, 
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C. Augmented State Equation with Integral Control  
There have been numerous ways proposed to deal with disturbances rejection 

problems and to achieve robustness such as classical and adaptive control. Most of 
these techniques lead to difficulties when there are uncertainties in the systems model. 
On the other hand, fuzzy logic has been considered as a potentially useful means for 
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designing nonlinear controllers. So, we will aim to merge the two advantages of 
nonlinearity and robustness to achieve better performance.  

For each sub-system, now have we a single input single output system. Being a 
linearized third order system, the three physical variables are; 

)(tx  displacement, and denoted by )(1 tx . 

)(tv  velocity, and denoted by )(2 tx . 

)(ti  current in the coil and denoted by )(3 tx . 

which are selected as state variable, i.e.; 
XT(t) = [ ])()()( titvtx  

And the open loop system for each linear sub-system will be described by;  
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[ ] [ ]Xy 001=         (25) 
In vector form, 

UBXAX +=&         (26) 
where  
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XCy =          (27) 
where 

[ ]001=C  
 

To get the augmented equation, we start with an ad hoc solution to integral control 
by augmenting the state vector with the desired dynamics. For the system given, we 
can take the integral of the error, ( yre −= ) where r  is the desired operating point, 
as well as the state of the plant x , by augmenting the plant state with extra (integral) 
state Ix , which obeys the differential equation XCrxI −=  . 

 

The augmented state equations become;  



INTELLIGENT  CONTROL OF  MAGNETIC  SUSPENSION  SYSTEMS 
________________________________________________________________________________________________________________________________ 

 

891 

U
B

x

X

C

A

x

X

II








+
















−
=









00

0

&

&

      (28) 

and the feedback law is;  

aug
I
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x
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where [ ]4321 kkkkK =        (30) 

With this revised definition of the system, we can apply full state feedback control 
design techniques. In this paper, damping ratio ( 7.0=η ) and natural frequency  
( 90=nω ) were set as design requirements. 
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Let us assume that certain specifications are to be met for its transient response, i.e., 
the desired closed loop dominant poles are located at ( βα j±− ), the third and the 

fourth closed loop pole should lie at )( γ− . The characteristic equation of the desired 
closed loop system is;  

 

0)()222()4()22( 22222222234 =+++++++++++ βαγλαγβαγλβαγαγλγαλ  (33) 
 

If we apply full state feedback, i.e. the control signal is; 

augXKU =          (34) 

where [ ]4321 kkkkK =   

then we get the state equation for the feedback system as;  

augaugaugaug XKBAX )( +=&       (35) 

The characteristic equation of the closed loop system in terms of system parameters 
and state feedback gain is;  
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From the characteristic equation of the desired closed loop system and the 
characteristic equation of the closed loop system in terms of system parameters and 
state feedback gain we can obtain the feedback gains 321 ,, kkk  and 4k . In the same 

manner we can get the state feedback gains for each subsystem associated with each 
operating point. 

 

The fuzzy rules then will take the following form: 
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Rule #1: 
IF x is near THEN 
 v = 7386.34 * x + 34.2 * x' – 3.158 * i – 191804.9 * eI 

Rule #2: 
IF x is medium THEN  
v = 12319.6 * x + 59.5 * x' – 3.158 * i – 335695.6 eI 

Rule #3:  
IF x is far THEN  
v = 17251.5 * x + 84.7 * x' – 3.158 * i – 479541.8 eI 

 
D. Simulation Results 

The step response of the system is shown in figure 14. The response of the system 
to a step noise equals 200% of ball weight is shown in figure 15. System response to a 
sinusoidal trajectory with frequency 1 Hz and amplitude 0.5 mm is illustrated in   
figure 16.a. System response to a square trajectory with frequency 1 Hz and amplitude 
0.5 mm is illustrated in figure 16.b. Testing the controller for robustness has been 
performed by investigating the system's response to an increase in the ball mass with 
30% of the ball mass and checking the step response, figure 17.a, and system response 
to a step noise with the value of 150% of ball weight, figure 17.b. The system step 
response with 50% increase in the coil inductance value, see figure 17.c. 

 
 

  
 

Figure 14 
 

 

Figure 15 

  
 

Figure 16.a 
 

Figure 16.b 
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Figure 17.a 
 

Figure 17.b 
 

 
 

Figure 17.c 
 

 

5. NEURO-FUZZY CONTROLLER 
Most of the supervised learning algorithms for neuro-fuzzy systems require precise 

training data sets for setting the weights and the connectivity of the links for various 
applications. For some real-world applications, precise data for training/learning are 
usually difficult, if not impossible, to obtain. For this reason, there has been a growing 
interest in reinforcement learning algorithms for neuro-fuzzy systems. 

One of the approaches to reinforcement learning is by the use of GA’s. This paper 
attempts to use GA's to tune a neuro-fuzzy controller for control of the magnetic 
suspension system. All of the parameters of the controller are simultaneously tuned by 
GA's.  
 
A. Controller Description 

The proposed is a feedforward five layered system with the structure  
2 × 14 × 49 × 14 × 2 as shown in figure 18. The controller will have two inputs, 
error (e) and error derivative (ce) as described by equations (8, 9), respectively. And 
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outputs of the controller are )(kTuPD  providing the PD action and )(kTduPI  which 
provides the PI action of the controller. We shall next describe the functions of the 
nodes in each of the following five layers of the proposed system. In the following, f is 
an integration function of a node, which combines activation from other nodes to 
provide net input for this node, and o  is an activation function of a node. In the 
following equations, superscript is used to indicate the layer number. The nodes in 
layer one are the input nodes, which represent the error e and the change of error ce. 

 

 
 

Figure 18: Proposed Neural-Network-Based Fuzzy Logic Controller. 

 
Layer 1: 

The nodes in this layer transmit input values directly to the next layer. That is; 
 

ceorexxIO iiii === ,111
          (37) 

 

where (i ) is the number of inputs to the controller and it will be 2 in this case. From 
(37), the link weight ( 1

iw ) is unity. 
 

Layer 2: 
If we use a single node to perform a simple membership function, then the output 

function of this node should be this membership function.  
12122 . jjjijj OIorOwI ==                       (38) 
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For example, for a triangular function defined as; 
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and  )( 22
jj IfO =          (40) 

where 
ijij ba ,  and 

ijc  are respectively, the left point, the center and the right point of the 

triangular function of the jth linguistic value of the ith linguistic variable. Weights of 
this layer will be unity. 
 

Layer 3: 
Nodes in this layer are used to perform the precondition matching of fuzzy logic 

rules. Hence, the rule nodes should perform the fuzzy AND operation. 

).(min 233
jjljl OwI =        (41) 

and  
3333 )( llll IIfO ==         (42) 

where (l ) is the number of fuzzy rules. The link weight at layer three is ( 3
lw ). 

 

Layer 4: 
The links at layer four should perform the fuzzy OR operation to integrate the fired 

rules which have the same consequence. 

).(max 344
llklk OwI =        (43) 

and    4444 )( kkkk IIfO ==                                                                                           (44) 

where (k ) is the number of the consequent values for the two outputs. The link weight 
at layer four ( 4

kw ) is unity. 
 

Layer 5: 
The nodes in this layer transmit the decision signals to out of the network. The 

nodes and the layer-five links attached to them act as the defuzzifier. If 
kb 's are the 

centers of the triangular membership functions then the following function can be used 
to simulate the Height defuzzification method. 
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∑

=

k
k

m
m O

I
O

4

5
5         (46) 

Here the link at layer five ( 5
kmw ) is kb , and (m ) is the number of output nodes[7, 16].  

 

B. Optimization of Neuro-Fuzzy Controllers Using GA 
As stated earlier, the proposed neuro-fuzzy system consists of five layers. Layer 1 

only transmits the input values and has nothing to be tuned as the links' weights of this 
layer are unity. Layer 2 contains nodes representing the triangular membership 
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functions describing the fuzzy set of the input variables, and the seven fuzzy sets 
describing each input will be distributed evenly in the universes of discourse and 
constant during optimization process, figure 19, and also no parameters to be tuned in 
this layer as the links' weights are unity for this layer. Layer 3 represents the rule 
nodes, the link of this layer has weight matrix [ 3

49
3
2

3
1 ,.......,, www ], where the links coming 

from the same node in the previous layer will have the same weights, i.e. 
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In this approach, the matrix of parameters to be optimized for this layer is 
]....[ 3

14
3

3
3

2
3

1
3 WWWWW = . Layer 4 which perform the fuzzy OR operation has unity 

links' weights and nothing for tuning. Layer 5 which contains the output nodes 
performs the defuzzification function. This layer has links' weights matrix 

]....[ 5
14

5
3

5
2

5
1

5 WWWWW =  which simulates the centers of the output seven fuzzy sets 

associated with each of the two outputs. 
In this manner, the total number of parameters to be optimized will be 28 

parameters. The chromosome, which represents the potential solution in the problem 
space will consist of the parametric representations of the fuzzy sets specified for each 
input and output variable, see figure 20.  

 
 

 

 
Figure 19: Representation of a Fuzzy Set 
with 7 Membership Functions Distributed 
Evenly in The Universe of Discourse. 

Figure 20: Encoding Neuro-fuzzy 
System Parameters into the 
Chromosome 

 

C. Simulation Results 
In this section, the above mentioned neuro-fuzzy controller is simulated for the 

control of the magnetic suspension system. Through simulation, we will show the 
utility of neuro-fuzzy control architecture and GA-optimization. 

Parameters Initialization of layer 3 link weight matrix 3W  parameters starts with 
initializing them as a random value between 0.25 and 1.5, while parameters of layer 5 
link weight matrix associated with the first output will be a random value between 0 
and 1 taking into account the logic order of the fuzzy set membership function centers, 
i.e. the center of LP membership function must be to the right of (or greater than) the 

Representation for Layer #3 
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Representation for Layer #5 
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center of MP membership function. Parameters associated with the second output in 
the same layer will be initialized to be between -0.03 and 0.03, taking into account the 
logic order of the fuzzy set membership functions as described earlier. An initial 
population of 100 real-valued chromosomes will be randomly initialized. Then each of 
the string will be checked for membership function integrity, and if any string violates 
the integrity conditions that string will be randomly regenerated till the conditions are 
met. Then an interpreter takes each real-valued string and uses it to set the parameters 
in the fuzzy controller, and run the simulation for a pre-specified time period  
(TIME = 2.5 sec.) during which the performance of the controller is to be evaluated. 

The fitness function, used in this paper, which is defined as 1 / ITAE. Again to 
avoid the divide-by-zero problem at the very beginning, the value of the ITAE is not to 
be available for calculations except after 0.2 sec. An additional bonus will be added to 
the fitness value in case the controller could stabilize the sphere till the end of the test 
period (TIME); this helps in distinguishing desirable and undesirable strings especially 
at the beginning of the tuning process.  

When each string in the population has been evaluated and given fitness value the 
reproduction process takes place. The roulette wheel will be used here for reproduction 
process. Multi-point crossover will be used here because of its capability of solving 
one major problem of the simple crossover; this problem is that one-point crossover 
cannot combine certain combinations of features encoded on chromosomes. In the 
proposed GA algorithm Nc = 2. And the mutation probability will be set to 0.9. Since 
we use real-value encoding scheme, we use a relatively high mutation probability = 0.1 
in our algorithm. This is different from the traditional GA's that use binary encoding 
scheme. The latter are largely driven by recombination, not mutation. And the mutation 
variable will be randomly generated factor of the value of gene to be mutated. The 
above learning process continues to new generations until the number of generations 
meets a predetermined stop criterion. The stop criterion used here is the maximum 
number of generations generated. Finally, after the whole evaluation process is stopped 
the string with the largest fitness value in the last generation is selected and encoded in 
the final fuzzy controller. Figure 21 illustrates the fitness of the system during the 
learning process. Figures 22 illustrate the step response of the system for a 2.5mm unit 
step at the operating point. System responses to sinusoidal and square trajectory with 
amplitude 0.5 mm and frequency 1 Hz respectively are illustrated in figures 23 (a, b) 
Figure 24 illustrates the response of the system to a step noise equals 150% of the ball 
weight. 

  



Gamal  Abd-El-Raheem, et al 
________________________________________________________________________________________________________________________________ 
898 

 

Figure 21 
 

Figure 22 

  
Figure 23.a 

 
Figure 23.b 

  
Figure 24 

 
Figure 25.a 

  
Figure 25.b Figure 25.c 

 
Testing the controller for robustness has been performed by investigating the system's 
response to an increase in the ball mass with 60% of the ball mass and checking the 
step response, figure 25.a, and system response to a step noise with a value equals 
125% of ball weight, figure 25.b. The system step response with 33% increase in the 
coil inductance value, see figure 25.c. 

 
6. CONCLUSIONS 
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For the Mamdani type fuzzy PID controller, we have proposed an alternative 
method to build the fuzzy PID controller which keeps the physical point of view, and 
we used GA's for parameters selection. Simulation results of step response of the 
magnetic suspension system showed a short rise and zero steady state error. The 
controller also showed fast tracking performance and very small error in case of 
sinusoidal and square position trajectories. Also, the controller is capable of rejecting 
disturbances and compensating the effect of sudden change in the suspended object's 
mass. The controller has been tested for robustness, and it showed good step response 
in case of increased ball mass and coil inductance with zero steady state error. We can 
conclude that the fuzzy logic is effective for nonlinear systems, with unknown 
parameters and disturbances. This methods turned fuzzy controllers design for this 
system into a systematic method, by using the same PI and PD rule base for different 
systems and accomplish parameters tuning by the standard GA's.  

 

We also proposed TSK fuzzy controller, with the so called parallel distributed 
compensation (PDC) technique to facilitate the design of gain scheduling controllers 
and also to provide a systematic approach to blending rules. Simulation results of step 
response of the magnetic suspension system showed a good step response with a short 
rise and settling time. Using different values of η  and nω , it will be obvious that the 

dynamic response of the system depends totally on the design constrains set for each 
subsystem. The controller showed delayed tracking performance. The controller also 
showed a very good capability to compensate for modeling errors and uncertainties and 
could reject step noises under these conditions.  

 

The third and the last method proposed here is a modified version of NN-FLC 
structure. This approach had a reduced number of parameters (weights) to be tuned 
online by GA's, which means shorter training cycle, and also employs fuzzy if-then 
rules. The controller also showed fast tracking performance and almost zero steady 
state error in case of sinusoidal and square position trajectories. Also, the controller is 
capable of rejecting disturbances and compensating the effect of sudden change in the 
suspended object's mass. The controller has been tested for robustness also, and it 
showed good step response with zero steady state error in case of increased ball mass 
and coil inductance. 

 

Figure 26 indicates the integral time absolute error (ITAE) value for the step 
response and the square and sinusoidal position trajectories for the three proposed 
approaches. The time span chosen for comparison is 3 seconds corresponding to 3000 
samples.  

 

It is clear that neuro-fuzzy controller which uses GA's to accomplish parameters 
tuning gave to some extent better results than the two other controllers for step 
response. And both the fuzzy PID and neuro-fuzzy controllers showed very close 
tracking performance for the tested trajectories. While the TSK fuzzy controller 
showed a relatively slow tracking performance, yet it could achieve a good step 
response.  

 

From the tests accomplished to check the three controllers' behavior against noise 
rejection, the TSK fuzzy controller gave the best results hence it could compensate for 
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200% of ball mass step noise. The three controllers gave good results when tested for 
robustness. 
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Figure 26: ITAE of step response and two different trajectories. 
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