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    This paper describes the design and implementation of various 
type of controllers, used in controlling the double integrator system with 
input saturation none linearity. Two different types of controllers for the 
double integrator system will be discussed, conventional or classical 
controllers and intelligent controllers. The double integrator plant, which 
is one of the most fundamental systems in control applications, is 
considered here. Some of applications of the double integrator plant are, 
satellite control system  [1], [2], single-degree-of-freedom translational 
 [4], single-axis spacecraft rotation, alpha joint of Space station, inverted 
pendulum system with an on-off actuator, and, conventional hard disk 
drive with a single voice-coil-motor (VCM) actuator. First, the design of 
different conventional controllers for the double integrator plant with 
saturation nonlinearity will be presented. Then, the design and 
implementation of two types of Fuzzy Logic Controller (FLC) will be 
presented. Finally, PID controller for the Double Integrator system that is 
tuned using genetic algorithms will be presented. It was found that PID 
controller for the double integrator system that is tuned using genetic 
algorithms is better than the other controller.  

 
1- INTRODUCTION              

 The input saturation problem is intrinsic to automatic control technology  [7]. 
In fact no technological advance can circumvent rate and amplitude constraints on 
electromechanical actuators, furthermore, cost constraints often force control engineers 
to extract the best possible performance from components with limited capability, thus 
increasing the occurrence of saturation. The importance and pervasiveness of 
saturation is reflected by extensive research devoted to the problem.  
The block diagram of the double Integrator plant under nominal conditions is shown in 
Fig. 1. 
 

           It is clear from Figure 1 that the equations of the double integrator are given by 
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Fig. 1:  The block diagram of the double Integrator plant under nominal conditions. 

 
 

position and velocity, respectively, of a body having mass m, and the saturation and 
sign functions are defined as 
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 It is assumed that the control begins at time t=0 with initial conditions 

1 10 2 20(0) (0)x x and x x= = . The saturation function, which enforces a unity 
constraint on the allowable input amplitude, provides a practically meaningful bound 
on control authority common to all controllers. 
  
2- CONVENTIONAL CONTROL OF DOUBLE INTEGRATOR SYSTEM 
 In this section, the following controllers will be designed for the double 
integrator plant with saturation nonlinearity: 

(1) the Proportional-Derivative (PD), Linear quadratic Gaussian (LQG), and  
trap door, as examples for Linear Controllers. 

(2) Minimum time, minimum energy, discontinuous sliding mode, continuous 
sliding mode, saturation, homogeneous, and direct adaptive, as examples for 
Nonlinear Controllers. 

 

2.1-The Proportional-Derivative (PD) Controller  [6]  
 The Proportional-Derivative (PD) controller is given by  
    1 1 2 2( )u t k x k x= +  ,                                                                                                  (3)                                                                                                       

Nominal tuning was performed by setting  2 1k = −  and 1 1.25k = − . It is clear from 
Eq. (3) that   ( )u t  is linear time-invariant control. 
 

2.2- Linear quadratic Gaussian (LQG)  [2] [5] 
 The LQG regulator consists of an optimal state-feedback gain and a Kalman 
state estimator. To form the LQG regulator, simply connect the Kalman filter and LQ-
optimal gain LQG  regulator has the following state space equations 

2 1 2ˆ ˆ[ ]x A K C BK x K y= − − +&    ,and           1ˆ ˆu K x= −                                                (4)                                       

It is clear from Eq. (4), that  ̂( )u t  is linear time-invariant control. 
 

2.3- Trap Door Controller  [9] [10] 
 The trap door controller state-space model: 

( ) ( ) ( )c c c cx t A x t B y t= +&                                                                              (5)                                                  
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( ) ( ) ( ) ( ) ( )c c cu t C t x t D t y t= +                                                                        (6)                                             
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 It is clear from Eqs.(5), and (6), that, ( )u t  the controller is linear time-varying 
controller . 
 
2.4- Minimum Time Controller  [2] 
 It is required to finding the optimal control signal defined by  

( ) 1u t ≤ which transfers the double integrator system described by 

1 2 2( ) ( ), ( ) ( )x t x t x t u t= =& &  from any initial state 0x  to the origin in minimum 
time. let us define the switching function ( ( )),s x t  as 

                          1 2 2

1
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2
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Thus, in terms of this switching function the optimal control law is 
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It is clear from Eq. (7), that * ( )u t  is nonlinear time-invariant control. 
 
2.5- Minimum Energy Controller  [1] 
It is desired to find the optimal control ( )u t∗  which minimize the energy of control 
given by the performance  index, 

2
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It is clear from Eq. (8), that  ( )u t∗ is nonlinear time-varying control. 
 
2.6- Saturation Controller  [6]   

For the double integrator system Saturation Controller given in [9] can be written as                        

max 2 1 2( ) [ ( ( / ) ]uu t sat bmx sat amx a b mxε= − + +                                                  (9) 

Where max, , ,u a and bε are constants. It is clear from Eq. (9), that  ( )u t is nonlinear 
time-invariant control. Nominal tuning of the controller was performed by choosing 
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0.49ε = . And max 1u = , 1a b= = , and the mass m was set to its nominal value 
of 1m = . 
 
2.7- Discontinuous Sliding Mode Controller  [3] 
 The discontinuous Sliding mode controller For the double integrator system 
can be written as :     

sgn( ) sgn( )u x k x x x k x xλ λ λ λ= − − + = − − +& &% % % & &                                     (10)                                 

Where ( ) ( ) ( )dx t x t x x t= − =%  ,and 0dx = . It is clear from Eq. (10), that  ( )u t is 
nonlinear time-invariant control. 
 
2.8- Homogeneous Controller  [11] 
 A smooth finite-time controller yielding homogeneous closed-loop dynamics 
for a chain of integrators was given in [15]. For the double integrator, this controller is 
given by    

            2
1 2 2 2 1 1u = ( , ) = -sign( ) - sign( )x x x x x x

αα
αφ −                                              (11)                                     

for (0,1),α ∈  the feedback law u renders the origin finite time stable for the double 
integrator. It is clear from Eq. (11), that ( )u t  is nonlinear time-invariant control. 
 
2.9- Direct Adaptive Controller  [12] 
 A direct adaptive controller  [12], for second-order systems in companion form 
with full state feedback is given by 

2 2
1 1 1 1 12 1 2 12 2( ) ( )[ ( ) ( ) ( ) ( ) ( )],k t sign b px t p x t x t x tλ λ λ λ= − + + +&                           (12)          

2 2
2 12 1 12 2 1 2 2 2( ) ( )[ ( ) ( ) ( ) ( ) ( )],k t signb px t p x t x t x tλ λ λ λ= − + + +&                          (13)            

3 1 2( ) ( ) [ ( ) ( )],t sign b px t x tφ λ= − +&                              (14)                 

 Where  1 12

12 2

( / )
λ λ
λ λ
 

Λ Γ 
 

   is positive definite and 3 0λ λ >  

And ( ) ( ) ( ) ( )u t K t x t tφ= + , Nominal tuning was performed empirically by setting 

1 0.25λ =  , 2 1λ = , 0.3p = , and 12 0λ = . It is clear that ( )u t  is nonlinear time-
invariant control. 
 
2.10- Nominal Phase Portraits of The Controlled Double Integrator 

System 
The nominal value of the mass is 1m = . For this nominal value, each controller 

is tuned to have good response with a unity saturation constraint enforced. Some of the 
controllers are “overturned” in the sense that the control signal u (prior to saturation) 
may have a magnitude greater than unity, in which case the saturation constraint is 
active.  

 

The tuning is performed for a collection of 20 initial conditions equally spaced 
on a circle of radius 5 about the origin in the x1, x2 phase plane. The Achieved Settling 
Time (AST) is the maximum time for the trajectory to reach and remain within a circle 
of radius 0.01, about the origin for the given collection of initial conditions. The 
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nominal tuning objective is to minimize the Nominal Achieved Settling Time (NAST), 
which is the achieved settling time under nominal conditions. The block diagram of the 
double integrator system under nominal conditions is shown in figure 1. It is clear 
from Fig. 2, that, the double integrator system with these controllers is globally 
asymptotically stable, and the minimum time controller gives minimum NAST which 
equal to 13.02 sec. 
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Fig. 2: Nominal phase portraits for the double integrator system with 
 

(a) Proportional-Derivative (PD),       (b) Linear quadratic Gaussian (LQG) full state feed back, 
(c) Linear quadratic Gaussian (LQG) output feed back,  (d) Minimum time,  (e) minimum energy, 
(f) saturation,    (g) trap door,    (h)discontinuous sliding mode,    (i) homogeneous,                            
and  (j)  direct adaptive, controllers. 
 
  

2.11- Off-Nominal Stabilization for The Double Integrator System 
 The block diagram of the double Integrator plant under off-nominal conditions 
is shown in Fig. 3. The off-nominal conditions for the Double Integrator plant, include 
inertia perturbation, real and imaginary pole perturbations, measurement delay, 
unmodeled dynamics, and input nonlinearities, the disturbance rejection and 
command-following abilities.  
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Fig. 3: The block diagram of the double Integrator plant under off-nominal conditions. 



               Mohamed M. M. Hasan ;  Amer A.  Ali ; and  Mostafa A. A. Abd El_Rahman 
________________________________________________________________________________________________________________________________ 
942 

2.11.1- Robustness to Mass Variation 
 The robustness due to mass variation of the double integrator system designed 
using different Controllers is measured by degradation of the Achieved Settling Time 
(AST) of the system due to variation in the mass, which has nominal value 1m = . 
Tests were conducted for true mass values {0.1, 0.25, 0.5, 1, 1.5, 2}m = , and the 
resulting degradation in the Achieved Settling Time (AST) for different controllers is 
dissipated in Fig. 4. It is clear from the figure that all controllers result in nearly the 
same AST. It is also clear from the Fig. 3, that PD, and LQG with full state feedback 
controllers result in least AST for values of  1m >  , and  1m < ,  respectively. 

 

The robustness due to pole location variation of the double integrator system 
designed using different controllers is measured by degradation of the Achieved 
Settling Time (AST) of the system due to variation in the Pole Location on the 
imaginary axis, and real axis, the plant  transfer function are respectively given by: 

2 2

1
( )p

n

G s
s ω

=
+

  ,   with [1,6]nω ∈ ,    and 
2

1
( )

( )
pG s

s a
=

+
  ,                               (15)   

 with [ 0.2,0.2]a∈ − , the resulting degradation in the Achieved Settling Time (AST) 
are shown in Fig. 5a, and b. It is clear from Fig. 5a, that, the saturation and 
discontinuous sliding mode controllers fared better than the rest incase of variation in 
imaginary part of the poles location, and from Fig. 5b that, the saturation and 
minimum time controllers fared better than the rest incase of variation in real part of 
the poles location. 
 
2.11.2- Command Following 
 The command following performance of the nominal double integrator system 
designed using different controllers is measured by applying a reference input signal 
see figure 1, and figure 2, namely steps, to the system and the output time response are 
computed and compared for different controllers used. The resulting output time 
responses are shown in Fig. 6. It is clear from the figure that all responses exhibit zero 
steady-state error for the nominal plant. It is also clear from the figure that the output 
response of the system designed with minimum time controller has the fastest 
response, nearly without overshoot, and with settling time equal 2 sec. 
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Fig. 4:  Achieved Settling Time (AST) degradation due to mass  variation 
Robustness to Pole Location Variation. 
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Fig. 5:  Achieved Settling Time (AST) degradation due to (a) the imaginary part of, and 

(b) the real part of pole location. 
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Fig. 6:  The step response of the double integrator system with different controllers  . 
 
 
2.11.3- Disturbance rejection 
 The disturbance rejection performance of the double integrator system 
designed using different controllers, is measured by applying a disturbance signal see 
figure 6, namely steps of magnitude 5, and a sinusoid of magnitude 0.5 and frequency 
0.1 Hz, but an integrator loop is added to the system, and the output time response are 
computed and compared for controllers used. The resulting output time response is 
depicted in Fig. 7, and Fig. 8. it is clear from the figure that the system designed with 
minimum time controller fared best, canceling all of the disturbances completely. 
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Fig. 7:  disturbance rejection performance of the double integrator system designed 
using different controllers due to step disturbance of magnitude 5. 
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Fig. 8:  Disturbance rejection performance of the double integrator system designed 
using different controllers due to sinusoid disturbance of magnitude 0.5 and frequency 
0.1 Hz. 

 
2.11.4- Unmodeled Dynamics 
 The unmodeled dynamics are due to a flexible appendage  [4]. Additional mass 
m  is appendage to the original mass through spring with stiffness valuesk . The 
transfer function of double integrator system with unmodeled dynamics is obtained 
from equation as 

2
1

2 2 2

( )

( ) ( )

Q s s M k

u s s m s M k s Mk

 +=  + + 
                                                                    (16)                                              

The appendage mass values 0.2M = , were considered, and stiffness values k were 
considered in the range [0.4,1.4]k ∈ . It is clear from Fig. 9 that the LQG output 
feedback, and minimum energy closed-loop controllers performed poorly. Of the 
successful controllers, the PD and LQG full state feedback, and saturation controllers 
performed the best. 
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Fig. 9:  Achieved Settling Time (AST) degradation due to flexible appendage. 

 
 

3- INTELLIGENT CONTROL OF DOUBLE INTEGRATOR SYSTEM 
  

 In this section the following types of intelligent controllers will be designed for 
the double integrator system  

(1) Adaptive Fuzzy Logic Control  [13] [14]. 
(2) PID Controller Tuning using Genetic Algorithms. 

 
3.1- Adaptive Fuzzy Logic Control (FLC) For The Double Integrator 
System  [15] [16] [17] 
 

 Adaptive control covers a set of techniques which provide a systematic 
approach for automatic adjustment of the controllers in real time, in order to achieve or 
to maintain a desired level of performance of the control system when the parameters 
of the process dynamic model are unknown and/or change in time, as shown in Fig. 10 
adaptive control system is nonlinear since the parameters of the controller will depend 
upon measurements of system variables through the adaptation loop. In the case of PID 
controller the adaptation scheme will set the three gains of the controller. FLC contains 
a number of sets of parameters that can be altered to modify the controller 
performance. These are: 

(1) The scaling factor for each variable. 
(2) The fuzzy set representing the meaning of linguistic values. 
(3) The If-THEN rules. 
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Fig. 10:  An adaptive control system. 
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 The following types of Fuzzy Logic Controller (FLC) will be designed for the 
double integrator system:  

(1) Proportional-Derivative-Self-Tuning Fuzzy Logic Controller (PDSTFLC) . 
(2) Proportional-Derivative-Self-Tuning-Scaling Factors Fuzzy Logic Controller 

(PIDSTSFFLC). 
 
3.1.1- PD Self-Tuning Fuzzy Logic Controller (PDSTFLC)  [16] 
  The basic structure of the controller proposed here is identical to the 
conventional fuzzy PD controller except the self-tuning operation, which is shown in  
FigFig. 11, The proposed controller is tuned dynamically by adjusting its output 
scaling factor (SF) in each sampling instance by an updating factor Fα . The value of 

Fα  �is determined by fuzzy rules defined on e  and e∆ . The concentration is only on 
the tuning of output SF due to its strong influence on the performance and stability of 
the system. The output SF of the controller is modified by a self-tuning mechanism, 
which is shown by the dotted boundary in  Fig. 11. The memberships (MF’s) for the 
controller inputs, i.e. Ne  and Ne∆  and incremental change in controller output, i.e. 

Nu∆  are defined in the common normalized domain [-1,1], whereas the MF’s for Fα  
defined in the normalized domain [0,1]. as shown in Fig. 12. 
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Fig. 11:  The self-tuning PD Controller. 
 
 

 

Fig. 12:  Membership functions of    a) e , e∆ , u∆  and  b) gain updating factor Fα . 
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 The relationships between the scaling factors ( , , )e e uK K K∆ ∆ , and the input 
and output variables of the Self-Tuning Fuzzy PD-type Controller STFPDC are as 
follows: 

. ,N ee K e=                                                                                                   (17) 

. ,N ee K e∆∆ = ∆                                                                                                      (18) 

         ( . ). ,F u Nu K uα ∆∆ = ∆                                                                                          (19)

( ) ( 1) ( ).u k u k u k= − + ∆                                                                                       (20) 
In this equation k  is a sampling instance and u∆  is an incremental change in the 
controller output, which is determined by the rules being of the form: 

: , .uR IF e is LE and e is L E THEN u is LU∆ ∆ ∆&   

The rule -base in is used for the computation of u∆ . The gain-updating factor Fα  is 
calculated by fuzzy rules, which are of the form: 

: , .
F F FR IF e is LE and e is L E THEN is Lα α α∆&   

 
3.1.2-   PID Type Fuzzy Controller With Self-Tuning Scaling Factors  

(PIDSTSFFLC)  [15], [17] 
 The conventional fuzzy PID controller needs three inputs and the rule base has 
three dimensions, it is more difficult to design the rule-base. However, the fuzzy PID 
type controller has just two inputs and the rule-base is two dimensions. Its performance 
is also better than the fuzzy Pl and fuzzy PD controllers. 
 Fuzzy control design is composed of three important stages, namely, 

(1) knowledge base design,  
(2) Control tuning parameters, and 
(3) Membership functions. 

 In order to make the fuzzy controller achieve the prospective target, we have to 
adjust these three stages of the fuzzy controller. But only the scaling factor adjustment 
can achieve the requisite of real time control. Therefore, if we want to apply the fuzzy 
control, the scaling factor of the fuzzy controller which can be adjusted is a necessary 
requirement because the changing of the membership functions is hard to improve the 
transient state. To design a PID fuzzy logic controller the PI fuzzy logic controller 
and the PD fuzzy logic controller must be connected in parallel, as shown in Fig.13. 
 

Fuzzy Logic
Controller-

e eK

eK ∆

uK

∫∆uK

Process

e∆
ry y

+

+
u

u∆
cu

 
 

Fig. 13:  PID fuzzy logic controller. 

 
 The output of the PID type fuzzy controller cu  is calculated by 

: , .i i i iR IF e is LE and e is L E THEN u isC∆ ∆&                                                 (21) 

( ) ( )i LELi L Ee eα µ µ ∆= ∧ &                                                                           (22) 
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'
ii

i CC
µ α µ= ∧                                                                                                    (23) 

'( )i iu COG C∆ =                                                                                                 (24) 

 1

1

N

i i
i

N

i
i

u

u

α

α

=

=

∆
∆ =

∑

∑
                                                                                       (25) 

The COG( '
iC ) is the value obtained by defuzzifying 'iC  with center-of-gravity 

method. The membership functions of the error, change rate of the error and the 
controller output are shown in Fig.  14 , and the control rule is shown in Fig. 15. 
 

NB NS ZO PS PBNM PM

-1 10

1

 
 

Fig. 14:  The membership functions of e , e∆  and u . 
  
 There are on-line tuning methods of the fuzzy controller, but there are a few 
real-time scaling factor tuning methods. A self-tuning fuzzy controller is represented 
by the block diagram as shown in Fig. 15. There are several methods to tune the rules 
or control gains by complicated computing process but just changing the membership 
functions is hard to improve the transient state. Therefore, based on the same idea in 
the parameter adaptive method, define the functions ( ( ))ef e t∆ and ( ( ))uf e t∆  as given 
below. 
 

1 2( ( )) ( ) ,uf e t a e t a∆ = +                                                                                               (26)

1 2( ( )) (1 ( ) )ef e t b e t b∆ = − +                                                                                        (27) 

where 1a , 2a , 1b and 2b are all positive constants. 
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Fig. 15:  The PID type fuzzy control system with function tuner. 
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The self-tuning scaling factors changing with time are described as follows: 
 

( ) ( ( ))e e eoK t f e t K∆ ∆ ∆=                                                                                                (28) 

( ) ( ( ))u u uoK t f e t K∆ ∆ ∆=                                                                                               (29) 
 

where eoK ∆  and uoK ∆  are the initial values of the scaling factors eK ∆ and uK ∆  

respectively . The objective of the function ( ( ))uf e t∆  is to decrease the uK ∆ with the 

change of error. In the other words, the error will be zero and ( ( ))uf e t∆  will eventually 

be equal to 2a . However, the function ( ( ))ef e t∆  is the inverse objective, in the steady 

state, the ( ( ))ef e t∆  will be equal to 1 2( )b b+ . In the beginning 1e = , and in the steady 

state 0e = . From these conditions the parameters 1a , 2a , 1b and 2b are determined as 
follows: 
 

max
1 2( )u uoK b b K∆ ∆= + , 

max min
min

2 1
u u

u uo
uo

K K
K b K b

K
∆ ∆

∆ ∆
∆

−
= ⇒ =                                      (30)        

max
1 2( )e eoK a a K∆ ∆= + , min

2e eoK a K∆ ∆=
max min

1
e e

eo

K K
a

K
∆ ∆

∆

−
⇒ =                                       (31) 

 

 Determination of the initial values of the stated above controller parameters 
will be discussed by application to the double integrator system in the next sections  
 
3.1.3- Nominal Stabilization for the Double Integrator System with 

FLC 
 

 The resulting Nominal Phase Portraits for the double integrator system with 
Fuzzy Logic Controllers (FLC) is shown in Fig. 16. It is clear from the figure that, the 
double integrator system with these controllers is globally asymptotically stable, and 
the PDSTFLC will give minimum NAST which equal to 25.4 sec. 

 

-15 -10 -5 0 5 10 15
-10

-5

0

5

10

Position       
       (b)     

S
p

ee
d

 PDSTSFFLC NAST=27.5 sec

-15 -10 -5 0 5 10 15
-10

-5

0

5

10
 PDSTFLC NAST=25.4 sec

Position      
      (a)     

S
p

ee
d

 
 

Fig. 16:  Nominal phase portraits for the double integrator system with (a) PDSTFLC, 
(b) PDSTSFFLC. 
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3.1.4- Off-Nominal Stabilization for the Double Integrator System 
with FLC 

 

Robustness to Mass Variation 
 It is clear from Fig. 17 that all controllers result in nearly the same AST. It is 
also clear from the figure that PDSTFLC, and PDSTSFFLC result in nearly the same 
AST for values of 1m >  , and 1m < , respectively. 
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Fig. 17:  Achieved Settling Time (AST) degradation due to mass  variation. 
 
 
Robustness to Pole Location Variation  
 The resulting degradation in the Achieved Settling Time (AST) for different 
controllers in the two cases (imaginary part, and real part variation) are shown in     
Fig. 18a, and b. It is clear from the figure that the PDSTFLC, and PDSTSFFLC fared 
better. 
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Fig.18:  Achieved Settling Time (AST) degradation due to (a) the imagenary part of, 
and (b) the real part of pole location. 
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Command Following 
 The resulting output time response are shown in Fig. 19 it is clear from the 
figure that all responses exhibit zero steady-state error for the nominal plant. It is also 
clear from the figure that the output response of the system designed with 
PIDSTSFFLC has the fastest response without overshoot. 
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Fig. 19:  The step response of the double integrator system with two (FLC). 
 
 

Disturbance rejection 
 

 The resulting output time responses are depicted in Fig. 20, and Fig. 21 it is 
clear from the figures that the system designed with PIDSTSFFLC fared best, 
canceling all of the disturbances completely. 
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Fig. 20:  Disturbance rejection performance of the double integrator system designed 

using two Fuzzy Logic Controllers (FLC) due to step disturbance of magnitude 5.  
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Fig. 21:  Disturbance rejection performance of the double integrator system designed 
using two Fuzzy Logic Controllers (FLC) due to sinusoid disturbance of magnitude 0.5 
and frequency 0.1 Hz. 
 
 
3.2- Development of Genetic Algorithm for PID Tuning  [18], [19] [20] 
 

 To aid with the development of this thesis, a system was chosen at random and 
a PID controller was designed for it using conventional methods. A genetic algorithm 
was then created to evaluate the PID coefficients of the same system. In the following 
sub sections the design of PID controller using two different techniques will be 
compared.  
 
3.2.1- design of PID controller using Ziegler-Nichols method 
 

 The Ziegler-Nichols tuning method was the ‘conventional’ method used to 
evaluate the PID gains for the system  [22]. If we discard the saturation nonlinearity at 
input of the system then Using the ‘rlocfind’ command in Matlab, the crossover point 

crj ω of the system were is arbitrarily chosen to adjust the gain at 1crK =  and found to 

be 1.05j . With a frequency (cω  ) of 1.05 rad/s, the period crP  is calculated as: 
 

2
6 seccr

c

P
π

ω
= =                                                                                                         (32)   

 

The Ziegler-Nichols PID tuning parameters: 
 

PK = 0.6 crK ,           IT  = / 2crP ,                       DT = /8crP  
 

Using the relationship /I P IK K T=   and D P DK K T=  the PID gains can be evaluated. 
Table1 shows the PID gain values for the system G(s). A number of objective 
functions were created in order to evaluate the PID values chosen by the Genetic 
Algorithm. 
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Table1:   Ziegler-Nichols PID Gain values 
 

controller PK  IK  DK  

PID 0.6 0.18 0.45 
 
 
Performance Indices 
 To optimize the performance of a PID controlled system, the PID gains of the 
system are adjusted to minimize a certain performance index. The performance index 
is calculated over a time interval; T, normally in the region of0 sT t≤ ≤   where ts is the 

settling time of the system. The performance indices used were: 
 
Integral of Time by Absolute Error (ITAE) 

 

0

( )
T

ITAEI t e t dt= ∫                                                                                                   (33)                                                                  

 The ITAE weights the error with time and hence emphasizes the error values 
later on in the response rather than the initial large errors.  
 
Integral of Absolute Error (IAE) 

 

0

( )
T

IAEI e t dt= ∫                                                                                                      (34) 

 IAE gets the absolute value of the error to remove negative error components. 
IAE is a good criterion for simulation studies.  
  
Integral of Square Error (ISE) 
 

2

0

( )
T

ISEI e t dt= ∫                                                                                                     (35) 

 The ISE squares the error to remove negative error components. ISE 
discriminates between over-damped and under damped systems.  
 
Mean of the Square of the Error (MSE) 
 

2

1

1
( ( ))

n

MSE j
j

I e t
n =

= ∑                                                                                              (36) 

 MSE reflects all variation and deviation from the target value.  
 
Evaluation of Performance Criterion on Double Integrator System 
 An experiment was undertaken to evaluate which of the four performance 
criterion produce the best results when used in conjunction with a Genetic Algorithm. 
An  objective  function  was  created  for  each  individual  performance  criterion  as 
depicted in: PID_objfun_ITAE.m,   PID_objfun_IAE.m, PID_objfun_ISE.m and 
PID_objfun_MSE.m 
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Step Response 
 The same Genetic Algorithm, Initial_PID_GA.m,  [21] was used for each 
objective function. Fig. 22 shows an example of the converging through generations 
when the MSE objective function is used. Also Fig. 23 distinguishes the step responses 
of the double integrator plant with the Ziegler-Nichols and Genetic Algorithm tuned 
PID-controllers. Table 2 shows final value of gains of the Ziegler-Nichols and Genetic 
Algorithm tuned PID-controllers. The step response characteristics of the double 
integrator plant designed using Ziegler-Nichols  [22] and Genetic Algorithm tuned PID-
controllers are given in Table 3.  
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Fig. 22:   Illustration of the Genetic Algorithm converging through generations when 
the MSE objective function is used. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 23:  Graph of Ziegler-Nichols designed PID controller Vs GA tuned PID Controller   

using  (a) ITAE,  (b) IAE,  (c) ISE and  (d) MSE as performance criterion. 
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Table 2:  final value of gains of the Ziegler-Nichols and  
        Genetic Algorithm tuned PID-controllers. 

 

    Method 
 
 
PID gains 

Ziegler-Nichols 
tuned         

PID-controller 

GA-tuned                         
PID-controller 

based on       
ITAE-obj. fun. 

GA-tuned                         
PID-controller 

based on    
IAE-obj. fun 

GA-tuned                         
PID-controller 

based on     
ISE-obj. fun 

GA-tuned                         
PID-controller 

based on   
MSE-obj. fun 

PK  0.6000 134.6921 114.8462 31.2593 148.4049 

IK  0.1800 49.6244 0.5796 24.0266 2.3316 

DK  0.4500 51.6439 30.0567 16.8502 77.2611 
 

 

Table 3:  The step response characteristics of the double integrator plant designed 
using Ziegler-Nichols and Genetic Algorithm tuned PID-controllers. 

 

     Method 
Step 
Response 
Characteristic 

Ziegler-Nichols 
tuned              

PID-controller 

GA-tuned                         
PID-controller 

based on    
ITAE-obj. fun. 

GA-tuned                         
PID-controller 

based on             
IAE-obj. fun 

GA-tuned                         
PID-controller 

based on            
ISE-obj. fun 

GA-tuned                         
PID-controller 

based on            
MSE-obj. fun 

Rise Time sec 1.4000 0.6934 0.8493 0.6000 1.3000 
% Overshoot 70.8532 57.6609 29.1093 86.0494 0.0000 
Settling Time sec 45.000 3.5284 3.0169 9.3344 1.8119 
Peak Time sec 4.2965 2.8380 2.2063 2.4622 -------- 
 
 

 Under the conditions of this study, the double integrator system designed using 
Genetic Algorithm tuned PID-controllers result in better performance than the system 
designed using Ziegler-Nichols tuned PID-controller. It can be seen from Fig. 23 that 
the IAE and MSE objective functions perform nearly the same, having a smaller rise 
time, smaller overshoot and smaller settling time than the other controllers. Each of the 
Genetic Algorithm tuned PID-controllers outperforms the Ziegler-Nichols tuned 
controller. The MSE objective function was chosen as the primary performance 
criterion for the remainder of this paper due to its smaller rise time and smaller 
overshoot than any other method in conjunction with a slightly faster compile time due 
to there being just one multiplication to be carried after the error has been calculated.  
 
Disturbance Rejection 
 Two types of disturbances were applied to the double integrator plant, 
specifically, steps of magnitude 5, and a sinusoid of magnitude 0.5 and frequency 0.1 
Hz. It is clear from the Fig. 24 that GA tuned PID controller based on the MSE 
objective function fared the best, canceling  nearly all of the disturbances. 
 
Nominal Phase Portrait 
 The nominal tuning objective is to minimize the nominal achieved settling 
time (NAST), which is the achieved settling time under nominal conditions, as shown 
in Fig. 25. 
 

It was determined that the Mean Square Error (MSE) performance criterion based 
objective function produced the most effective PID controllers when compared with 
other performance criterion i.e. IAE, ITAE and ISE.   
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Fig. 24:   Disturbance rejection  the double integrator system designed using GA and 
Ziegler-Nichols tuned PID-controllers   (a) step of magnitude 5   b) sinusoid of 
magnitude 0.5 and frequency 0.1 Hz . 
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Fig. 25:   Nominal Phase Portrait  NAST=17 sec. 
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4- CONCLUSION 
 The performance of the double integrator system designed with each of the 
above Controllers compared at nominal stabilization and off-nominal stabilization 
conditions. Also the performance of the designed system with different controllers, 
regarding disturbance rejection compared when the integral action is present in the 
controller. First, the nominal conditions are specified, and each controller is tuned to 
minimize the worst-case time to reach the origin from a set of initial conditions located 
on a circle of specified radius in the position/velocity phase plane with a constraint on 
input amplitude, it is clear that, the double integrator system designed with each of the 
above Controllers is globally asymptotically stable. And the double integrator system 
designed using Genetic Algorithm tuned PID-controllers result in better performance 
than the other controllers. 
 Next, each nominally tuned controller is tested for stabilization under a set of 
off-nominal conditions. These conditions include inertia perturbation, real and 
imaginary pole perturbations, measurement delay, unmodeled dynamics, and input 
nonlinearities. For these off-nominal conditions, the command-following with step 
input and disturbance rejection abilities of each controller with steps and sinusoids will 
be presented And the double integrator system designed using Genetic Algorithm 
tuned PID-controllers fair the best than the other controllers . 
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<��� ا���ب ا�#�"/ وا����� ا��Bو'/ ا���A�� /���2ل ، ،اُ'�#��? ھ/ <��� ا����'��!  ا��"�$��!

��ع، <��� ��D�8 ��;0-، <��� ا��0=! ا��+��، و<��� اد+/ و=?، �������ت ا��0#!FGا ���> ،
H+�B�� ���> ، !�0#ل �������ت ا�2�3 ا��A�� 2F�� ا���/��ت ا����9� ���> .�;� �9"/ �

 !��#�Iھ/ا�� ،J��3ا� D0�3  ا�����م ���;��! �#�I� /���9� /�$�"� /�و<��� ���'
!�Lت ا�%را���#��"! �����9 ، ا�#%ارز�ط2ق  
;�م درا'! +:2! ���;�ر+! �� ���'Q  !*2/وا�

  .R��L/ ا���9�4 أووزاو! �I6 <2 ا���2! 
��تو�� L8ان  أن إ�Gا �Rيا��:�م داU  �'ر D
 ط2* !�Q 2�3/ ا�;�� ا���ا2I�� !�R*! وا�8او

!�Rا���L �� درا'! �W�� 2�3 ا��%ا�4 و�2�LVھ� ، ، ا���I%ي ا�8اوي ��.2ون =��! �#��"! ��;�� ا�
��ت ا�8ان ا��:�مL /�*.  XRا���� Y$%م ���;��!  أن��#�I/  ا����ا��"�$�/ ا���9 /�ا����� ا����'

Lت ا�%را����3 ا�#%ارز��- �4 ����;�ر+! ZQأ !�/=�� !��#�Iا������ت ا��.  


