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The Truncated Power Lindley distribution: Model, 

Properties and Applications 

Abstract 
         In this paper, we  propose the truncated version of the power Lindley distribution which is more flexible 

than many well-known distributions.  Mathematical and statistical properties of truncated power Lindley 

distribution are given only for upper truncated version of power Lindley distribution. The statistical proprieties 

such as moments, quantile function and order statistics are also discussed. The maximum likelihood estimators 

are constructed for estimating the unknown parameters of the upper, lower and double truncated power 

Lindley distributions. A set of real data containing the strengths of the glass of aircraft window, is considered 

to show the applicability of the truncated power Lindley distributions. The real data set is considered to 

illustrate the utility and potential of the proposed model. 

Keywords and Phrases: Truncated power Lindley distribution, Moments, Quantile function, Order 

statistics, Maximum likelihood estimator. 
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اشتماق انعذيذ ب لاو انباحث .the truncated power Lindleyتوصيع جذيذ يسًي   َمتشح ،انبحثفي ْزِ 
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تى تحهيم  وأخيشًا،نتمذيش انًعهًاث.  الإيكاٌ الاعظىاستخذاو طشيمت تمذيش  الاحصاء انتشتيبي. تى انعشوائي،

إجشاء يماسَت يع بعض انتوصيعاث ب لاو انباحث. كًا انفعهيتلابهيت تطبيك انًُورج انًمتشح عهي انبياَاث 
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1. Introduction 

“A truncated distribution is defined as a conditional distribution that results 

from restricting the domain of the statistical distribution. Hence, truncated 

distributions are used in cases where occurrences are limited to values which lie 

above or below a given threshold or within a specified range. If occurrences are 

limited to values which lie below a given threshold, the lower (left) truncated 

distribution is obtained. Similarly, if occurrences are limited to values which lie 

above a given threshold, the upper (right) truncated distribution arises. Truncated 

versions of the well-known statistical distributions are proposed by many 

researchers to model the truncated data in various fields. Zhang and Xie (2011) 

studied the characteristics of the truncated Weibull distribution and illustrated the 

applicability of this distribution to modeling lifetime data. Ahmed et al. (2010) 

proposed the truncated version of the Birnbaum-Saunders (BS) distribution and 

showed that truncated BS distribution is more appropriate than the classical BS 

model for describing the financial loss data from a commercial bank. Recently, 

Singh et al. (2014) have introduced the truncated version of the Lindley 

distribution and discussed statistical properties of proposed distribution and 

showed that truncated version of the Lindley distribution provides a better 

modeling than Weibull, Lindley and exponential distributions based on a real 

data.” 

 

“From the above commentary and monitoring the wide applicability of the 

truncated distributions, we proposed the truncation in the power Lindley 

distribution. Lindley (1958), introduced a one-parameter distribution, known as 

Lindley distribution, given by its probability density function 
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It can be seen that this distribution is a mixture of exponential( ) and gamma 

(   ) distributions. Its cumulative distribution function has been obtained as”  

 

              ( )    
      

   
          ;                                                    (2) 

 

“Since last decade, Lindley distribution has been attracting the attention of the 

researchers, scientists and the reliability probationers, and many author extended it 

to the various distributions. Ghitany et al. (2008) have discussed various properties 

of this distribution and showed that in many ways that the pdf given by (1) 

provides a better model for some applications than the exponential distribution. 

Bakouch et al. (2012) obtained an extended Lindley distribution and discussed its 

various properties and applications. Ghitany et al. (2011) developed a two-

parameter weighted Lindley distribution and discussed its applications to survival 

data. Nadarajah et al. (2011) obtained a generalized Lindley distribution and 

discussed its various properties and applications. Merovci and Elbatal (2014) use 

the quadratic rank transmutation map in order to generate a flexible family of 

probability distributions taking Lindley-geometric distribution as the base value 

distribution by introducing a new parameter that would offer more distributional 

flexibility and called it transmuted Lindley-geometric distribution. Asgharzadeh et 

al. (2014) introduced a general family of continuous lifetime distributions by 

compounding any continuous distribution and the Poisson–Lindley distribution. 

Oluyede and Yang (2015) proposed a new four-parameter class of generalized 

Lindley (GLD) distribution called the beta-generalized Lindley (BGLD) 

distribution. This class of distributions contains the beta-Lindley, GLD and 

Lindley distributions as special cases. Ashour and Eltehiwy (2015) obtained the 
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exponentiated power Lindley distribution and discussed its various properties and 

applications” 

 

“A two parameter power Lindley distribution (PLD), of which the Lindley 

distribution 'equation (1)' is a particular case, has been suggested by Ghitany et al. 

(2013). They introduced a new extension of the Lindley distribution by 

considering the power transformation of the r.v. Y     . The pdf of the  is 

readily obtained to be Power Lindley distribution with parameters   and and is 

defined by its probability density function pdf 

 

 (   )  
   (    )

   
         

              ,                                       (3) 

 

It can easily be seen that at      , the Equation (3) reduces to the Lindley 

distribution. From Equation (2), we see that the power Lindley distribution is a 

two-component mixture of Weibull distribution (with shape   and scale  ), and a 

generalized gamma distribution (with shape parameters 2 and scale  ), with 

mixing proportion   
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“ Some extensions of the Lindley distributions e.g. power Lindley and 

generalized Lindley distributions etc. are the good competitors of the Weibull 

distribution and can be quite effectively used to model the real phenomenon where 

the Weibull distribution seems to be incompatible to the real data. In this direction, 

one can also study the properties of truncated versions of these Lindley’s 

generalizations as the alternative models to the truncated Weibull distribution in 

the literature. Therefore, this article aims to start the discussions with introducing 

the concept of the truncation in two parameter power Lindley distribution.” 

 

“The rest of the paper is arranged in the following sections. In section 2, 

the truncated versions of the power Lindley distribution, named as the upper 

truncated power Lindley (UTPL), lower truncated power Lindley (LTPL), double 

truncated power Lindley (DTPL) distributions are introduced. Particularly, the 

flexibility of the UTPL distribution has been shown demonstrating the 

characteristics of the probability density (pdf) and hazard functions with different 

combination of the values of its parameters. The moments, moment generating 

function, quantile function, skewness and kurtosis and order statistics of the UTPL 

distribution are derived in section 3. In section 4, the method of the maximum 

likelihood is applied to obtain the estimates of the parameters of the UTPL, LTPL 

and DTPL distributions. In section 5, a set of real data is modeled through the 

different distributions and their applicability is compared. Finally, the paper is 

concluded in section 6.” 

 

2. The truncated power Lindley distributions 

 

“A distribution  (   ) is said to be a double truncated distribution over 

the interval ,   - if it has the cumulative distribution function (cdf) defined as 
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 (   )  (   )
,                                                      (7) 

and probability density function (pdf) is  

 (   )  
 (   )

 (   )  (   )
 ,                                                       (8) 

 

where,  (   ) and  (   )  are the pdf and cdf of the baseline model and      

denotes the vector parameter of base line model. Here, three cases can be 

recognized as  

I. When     and    , it reduces to baseline model. 

II. When    , it is called the upper truncated distribution of the baseline 

model. 

III. When    , it is called the lower truncated distribution of the baseline 

model. 

 

In this article, we consider the power Lindley distribution as baseline model with 

the following distribution function : 

      ( )  0  .  
   

   
/      

1                                                                     (9) 

 

Using (7) and (9), the double truncated power Lindley distribution is defined as”  

  (     )  
  

   

 (    )         

 (   )  (   )
     ,                     

 

“In the following sections, we will only discuss the properties of the upper 

truncated power Lindley distribution and the same procedure can be applied to 

study the properties of the lower truncated power Lindley distribution  as well as 

double truncated power Lindley distribution. The upper truncated power Lindley 

distribution has the following pdf is given by  
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It is denoted by UTPL(     ). Note that the above pdf will behave like as  
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a) 2    
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         ( ) 3, where   ( )  
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, 

c) *       +  

iii. Unimodal if  

a) *        + and mode values is    
 

(   )

 
 

b) *       +  

iv. Decreasing- increasing- decreasing if .
 

 
           ( ) / 

Figure 1 illustrates some of the possible shapes of the density function of truncated 

power Lindley distribution for selected values of the parameters(     ).” 
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Figure 1: Probability density function of UTPL distribution for the cases 

a) (     ) (        ) (solid),  (2,1,10) (dashed), 

b) (     ): (0.7,1.5,5)  (solid),  (1,1.5, 5)  (dashed), 

c) (     ): (0.3,0.85,15)  (solid),  (0.35,0.9, 10)  (dashed). 

 

The corresponding hazard function at epoch t is given by 

 (   )  
  

   

 (    )         

 (   )  (   )
  ;                                                (11) 

 

The behavior of  ( ) at     and    , respectively, are given by 

 ( )  {

                                                              
  

[(   )(      )       ]
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 ( )                   ( )     

 

Figure 2 shows the HRF  ( ) of the truncated power Lindley distribution for some 

choices of values of the parameters (     ). 
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Figure 2: hazard rate function of UTPL distribution for the cases 

a) (     ) (        ) (solid),  (2, 0.6,10) (dashed), 

b) (     ): (1, 1, 5)  (solid),  (0.1,2, 10)  (dashed), 

c) (     ): (1.2, 0.88, 20),  (solid),  (1.5,0.9, 20)  (dashed). 

 

 

3. Statistical properties 

3.1 Moments and related measures 

 

The rth raw moment under the upper truncated power Lindley distribution is 

defined as 
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We make the following bijective continuously differentiable variable change: 
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 where   denotes the incomplete Gamma function defined as : 
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The mean and variance of UTPL distribution can be written as: 
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 Table 1: Mean and variance of the UTPL distribution for several values of the 

parameters 

    
                   

                    

0.1 

0.25 1.2325 2.025 2.5024 8.152 3.784 18.402 5.073 32.781 

0.75 2.5483 2.115 5.1269 8.235 7.622 18.279 10.023 32.22 

1 2.9174 1.822 5.7116 7.075 8.205 15.801 10.376 27.824 

1.25 3.1657 1.55 5.8902 6.155 7.858 13.538 9.077 21.86 

0.25 

0.25 1.1546 1.941 2.3174 7.762 3.478 17.44 4.635 30.952 

0.75 2.3471 2.133 4.4681 8.253 6.305 17.937 7.879 30.598 

1 2.6373 1.899 4.6299 7.138 5.892 14.159 6.592 20.757 

1.25 2.7797 1.671 4.2127 5.522 4.578 7.897 4.626 8.445 

0.5 

0.25 1.0284 1.789 2.0194 7.04 2.986 15.638 3.933 27.506 

0.75 2.0101 2.056 3.4007 7.233 4.298 13.745 4.854 20.093 

1 2.1657 1.833 3.0634 5.133 3.287 6.92 3.327 7.433 

1.25 2.1488 1.535 2.4784 2.707 2.486 2.773 2.487 2.774 

1 

0.25 0.7953 1.455 1.48 5.445 2.108 11.668 2.697 19.932 

0.75 1.3997 1.59 1.833 3.71 1.947 4.805 1.975 5.221 

1 1.3879 1.229 1.497 1.725 1.5 1.749 1.5 1.75 

1.25 1.2924 0.825 1.304 0.873 1.304 0.873 1.304 0.873 

1.5 

0.25 0.5958 1.117 1.039 3.889 1.414 7.91 1.745 12.952 

0.75 0.9505 1.022 1.053 1.571 1.062 1.667 1.063 1.68 

1 0.9227 0.678 0.933 0.729 0.933 0.729 0.933 0.729 

1.25 0.8885 0.434 0.889 0.435 0.889 0.435 0.889 0.435 

 

“Table 1 shows that the mean and variance decrease when   increase for a fixed  . 

besides, for a fixed  , while mean increase , variance decreases when   increases. 

Assuming   and   is kept fixed, the mean and variance increase when   

increases.” 

 

The skewness and kurtosis of the distribution can be simply verified by using the 

following relationship 
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3.2 Moment Generating Function 

 

Let X have an upper truncated power Lindley distribution. Then the moment 

generating function of X,    ( ), is 
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Using the following  expansion of     given by  
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Equation (13) can be rewritten as follow: 
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3.3 Quantile Function 

“Let X denotes a random variable with the probability density function (Eq. 

10).The quantile function, say  ( ), defined by  ( ( ))    is the root of the 

equation 

                    0  
 , ( )- 

   
1    {  , ( )- }     (   )                           (14) 

for      . Substituting  ( )        , ( )- , one can rewrite equation 

(14) as 

   ( )   * ( )+  
 (   )(   (   ) )

   (   )
 

 

for      . So, the solution for   ( ) is 

                                     ( )   .
 (   )(   (   ) )

   (   )
/                                      (15) 
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for      , where  ( ) is the Lambert   function, see Corless et al. (1996) 

for detailed properties. Inverting (Eq. 15), one obtains 

                                      ( )  0   
 

 
 

 

 
 .

 (   )(   (   ) )

   (   )
/1

   

             (16) 

 

for      . As    , from the above equation (16), we get the quantile 

function of power Lindley distribution derived by Ghitani et al (2013). The 

particular case of (Eq. 16) for (       ) has been derived recently by Jodrá 

(2010).” 

 

The median of the UTPL distribution can be obtained as  

                             0   
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 (   )(   (   ))

    (   )
/1

   

                           (17) 

 

3.4. Skewness and Kurtosis 

“The effects of the parameters on the skewness and kurtosis of X can be 

based on quantile function in Eq. (16). There are many heavy tailed distributions 

for which this measure is infinite. So, it becomes uninformative precisely when it 

needs to be. The Bowley’s skewness is based on quartiles: 

 

  
 (  )⁄    (  ⁄ )  (  ⁄ )

 (  )⁄   (  ⁄ )
 , 

and the Moors’ kurtosis is based on octiles: 

  
, (  )⁄   (  ⁄ )- , (  ⁄ )  (  ⁄ )-

 (  )⁄   (  ⁄ )
,  
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where  ( )  represents the quantile function of X. These measures are less 

sensitive to outliers and they exist even for distributions without moments. 

Skewness measures the degree of the long tail and kurtosis is a measure of the 

degree of tail heaviness. When the distribution is symmetric,     and when the 

distribution is right (or left) skewed,    (      ). As   increases, the tail of 

the distribution becomes heavier.” 

 

For any distribution symmetrical to 0 the Moors kurtosis reduces to 

 

  
( (  )⁄   (  ⁄ ))

 (  )⁄
 

It is easy to calculate that for standard normal distribution: 

 

  (  )⁄    (  )⁄       ,   (  )⁄    (  )⁄       . Therefore,  

 

      . Hence, the centered Moor’s coefficient is given by 

 

  
, (  )⁄   (  ⁄ )- , (  ⁄ )  (  ⁄ )-

 (  )⁄   (  ⁄ )
       

  

 From (Eq. 16), skewness and kurtosis of the UTPL distribution are obtained and 

presented in table 2. 

 

Table 2: Skewness and kurtosis of the UTPL distribution for several values of the 

parameters  

    
              

Skewness kurtosis Skewness kurtosis Skewness kurtosis 

0.1 

0.25 -0.0987 1.04468 -0.10643 1.05259 -0.11079 1.05738 

0.75 -0.13094 1.08247 -0.14643 1.10395 -0.15396 1.11448 

1 -0.14325 1.09949 -0.15993 1.1227 -0.1676 1.13312 
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1.25 -0.15351 1.11385 -0.17033 1.13681 -0.17638 1.14504 

0.25 

0.25 -0.10156 1.04354 -0.10988 1.05145 -0.11461 1.05628 

0.75 -0.13679 1.08218 -0.1533 1.10463 -0.16038 1.11491 

1 -0.15005 1.10003 -0.16511 1.12195 -0.16952 1.12862 

1.25 -0.15999 1.11433 -0.17054 1.13018 -0.17171 1.13197 

0.5 

0.25 -0.09818 1.03781 -0.10606 1.04446 -0.11049 1.04847 

0.75 -0.13053 1.06914 -0.14332 1.0846 -0.14745 1.08998 

1 -0.14108 1.08176 -0.14939 1.09256 -0.15037 1.09388 

1.25 -0.14726 1.08972 -0.15045 1.09399 -0.15049 1.09404 

1 

0.25 -0.08022 1.02348 -0.08561 1.02684 -0.0885 1.02875 

0.75 -0.09963 1.03678 -0.10388 1.04014 -0.10445 1.04061 

1 -0.10338 1.03973 -0.10455 1.04069 -0.10457 1.0407 

1.25 -0.10443 1.04059 -0.10457 1.0407 -0.10457 1.0407 

1.5 

0.25 -0.05988 1.01262 -0.06284 1.01392 -0.06432 1.01459 

0.75 -0.06879 1.01673 -0.06966 1.01716 -0.0697 1.01718 

1 -0.0696 1.01713 -0.0697 1.01718 -0.0697 1.01718 

1.25 -0.0697 1.01718 -0.0697 1.01718 -0.0697 1.01718 

 

The values in Table 2 indicate a narrow range for the skewness of X, similary, the 

kurtosis does not vary so much. 

 

3.5 Order statistics 

In this subsection, we derive the pdf of the sth (     ) order statistics     , 

     say, is defined as 

  

                   ( )  
 

 (       )
 ( )    ( )*   ( )+    ,                     (18) 

where,  (       ) is the beta function. Expanding the binomial expansion.  

We get 
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 where,  (   ) and  (   ) are the pdf and cdfs of the power Lindley distribution. 

For    , particularly the pdf of the first order statistics is given by  

                                ( )   ∑ (  )    
   .

   
 

/
  (   ) (   )

    (   )
                           (20) 

Substituting, the pdf and cdfs of the power Lindley distribution, we obtained 
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Similarly, the pdf of       is given by 

                          ( )  
        (    )      6  4  
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(   )[  (  
   

   
)     ]

                        (22) 

The mean and variance of the sth order statistics can be obtained by using the 

formulae used in section 3.1 for UTPL distribution. 

 

4. Maximum  likelihood estimation 

“In this section, we describe the procedure to obtain the maximum 

likelihood estimates (MLE) of the parameters of UTPLD as well as lower 

truncated power Lindley (LTPLD) and double truncated power Lindley (DTLD) 

distributions based on the random sample   *          + of size  , so that 

these distributions can be effectively used to model the real problems depending 

upon the nature of the data. We fitted these distribution to a set of real data in next 

section.”  

 

4.1 MLEs for UTPLD 
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“Let   be an iid (independent and identically distributed) sample of size n 

from UTPL distribution. The likelihood function based on the observed sample   

is given by 

 (     | )  [
   

(   )(   (   )  )    
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        (23)                             
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Note that in the above log-likelihood equation (24), it is not possible to get an 

estimate of   In terms of observed sample since   is free from  . Now, from the 

order statistics, let  ( )   ( )     ( ) be the order sample corresponding to 

          . Then, the MLE  ̂ of   can be taken as  ̂     (          ) i.e.      

 ̂   ( ) largest observation. Once, we get the MLE of  .  The MLEs  ̂  ̂of     

are then the solutions of the  following non-linear equations: 
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In order to solve the above equation, we need to use the iterative procedure like 

Newton’s method.” 

4.2 MLEs for  LTPLD 

“The likelihood function based on   from LTPL distribution is given by 
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The log-likelihood equation is given by 
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Similarly from the above subsection. The maximum likelihood estimate of   will 

be  ̂     (  );             smallest observation. Once, we get the MLE of  .  

 

 The MLEs  ̂  ̂ of     are then the solutions of the  following non-linear 

equations:” 
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The last equation has a unique solution in   given by  
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 where  ̂ is the solution of the following non-linear equation 
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4.3 MLEs for DTPLD 

“The likelihood function under the assumption of the double truncated power 

Lindley distribution for the random variable  , is given by 
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  where,  (   )  (   ) .     
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 The corresponding log-likelihood function is given by  
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For given MLEs of   and   as  ̂   ( ) and  ̂   ( ) . Respectively, the MLE of  

    can be obtained by solving the following log-likelihood equations:” 
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5. real data Analysis 

“In this section, we provide applications to a real data set to demonstrate 

the potentiality of the truncated versions of power Lindley distribution. A set of 
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real test data representing the strength data of glass of the aircraft window reported 

by (1994) is used to evaluate the performance of the truncated power Lindley 

distribution. It consists of the observations listed in Table 9. Then, the descriptive 

statistics for the data of the window strengths are given in Table 4. 

 

We fitted the data by exponential, Weibull, Lindley, upper truncated Lindley, 

power Lindley and lower, upper and double truncated power Lindley distributions. 

The distribution function of the Weibull  model is defined as” 

 

 ( )       (    )               

 

Table 3: strength data of glass of the aircraft window 

18.83 26.78 36.98 20.80 27.05 37.08 21.657 27.67 37.09 23.03 25.52 

23.23 31.11 44.045 24.05 33.20 45.29 24.321 33.73 45.381 25.5  

33.890 25.80 34.76 26.69 35.75 26.770 35.91 29.90 33.76 39.58  

 

Table 4: Descriptive statistics for the strength data of glass of the aircraft window 

n  Minimum  Median  Mean  Maximum  1
st
 Qu 3rd Qu  variance 

31 18.83 29.90 30.81 45.381 25.51 35.83 52.61 

 

“We estimate the unknown parameters of the distributions by the maximum 

likelihood. Table 5 represents the fitting summary of these distributions including 

the estimates of parameters, log-likelihood, Akaike information criterion (AIC), 

Corrected Akaike information criterion (AICC), and Bayesian information 

criterion (BIC) which are calculated by given equations, 

         ( )    , 

         
  (   )

(     )
  

         ( )      ( )  
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Where   is the number of parameters  and    is the sample size.  

 

According to the AIC, AICC and BIC statistics values, the DTPL distribution 

gives the best fitting to the real data.”  

 

Table 5: Maximum likelihood estimates, AIC, AICC, BIC statistics values under 

considered distributions based on real data 

Distribution Parameter Estimations  LogL AIC AICC BIC 

   ( )  ̂          137.264 276.529 276.667 277.512 

 (   ) ( ̂  ̂)  (              ) 113.067 230.135 230.563 229.117 

 ( ) ( ̂)          126.994 255.988 256.126 256.971 

   (   ) ( ̂  ̂)  (              ) 110.216 224.431 224.860 223.414 

  (   ) ( ̂  ̂)  (               ) 105.736 215.473 215.901 214.455 

    (     ) ( ̂  ̂  ̂)

 (                        ) 

103.858 213.716 214.605 212.190 

    (     ) ( ̂  ̂  ̂)

 (                       ) 

102.639 211.278 212.167 209.752 

    (       ) ( ̂  ̂  ̂  ̂)

 (                         ) 

100.867 209.732 211.270 207.697 

 

(AIC& BIC etc.) of the different truncated forms of the power Lindley distribution 

can be diagrammatically shown as  

Worst power Lindley UTP Lindley LTP Lindley DTP Lindley best 

 

 

6. Conclusion 

“In this paper, we propose a new model called the Upper truncated power 

Lindley distribution. We investigate several structural properties of the new 

distribution, expressions for the moments, quantile function, order statistics, 
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survival function, hazard function and the moment generating function. The 

estimation of parameters is approached by the method of maximum likelihood. the 

data of the window strengths is modeled by the lower, upper and double truncated 

power Lindley distributions, exponential, Lindley, upper truncated Lindley, power 

Lindley and Weibull distributions to evaluate the performance of the truncated 

versions of power Lindley distribution. Fitting performance of these distributions 

is compared according to AIC, AICC and BIC statistics values and clearly the data 

of the window strengths is best modeled by DTPL distribution. Finally, it is 

concluded that the truncated distributions can be quit effectively used to model the 

real problems and so we can recommend the use of the truncated power Lindley 

distributions in various fields including engineering, medical, finance and 

demography where such type of truncated data are commonly encountered.” 
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