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The authors in this work develop the differential quadrature method (DQM) to 

solve the nonlinear Volterra integro-differential equation by introducing an 

integration matrix operator that is fully combined with the differentiation matrix in 

(DQM) method. The obtained method (DIQM) transforms the discretized nonlinear 

Volterra integro-differential equation into a nonlinear algebraic system of equations 

which is solved iteratively by Newton's method. The efficiency of the (DIQM) 

method is examined by solving three examples where the error norms and 

convergence rates achieve the expected exponential behaviour.  
 

 

 

1. Introduction 

 In recent years, there has been a clear 

interest in the integro-differential equations because 

some of the physical phenomena in engineering and 

physics fields cannot be described by differential 

equations only. In many cases, the effects of the past 

history of the system is needed to be reflected in the 

model which is described as a function of space and 

time and these effects of the previous history are 

ignored. Therefore, the way to overcome this 

problem is including an integral term in the 

differential equation to reflect all the preceding states 

through which the system has passed; that is to say, it 

is considered as a hereditary phenomenon which 

leads to integro-differential equations (IDEs) [1, 2]. 

Integro-differential equations play an important role 

to describe many processes like physical problems 

including thermoelastic contact [3], visco-elasticity 

[4-6], the theory of heat conduction [7-9], fluid 

dynamics, dropwise condensation and population 

[10–13]. Analytical solutions of integro-differential 

equations are hard to compute or they do not exist. 

Due to this, several numerical methods are developed 

to get an efficient numerical solution of integro-

differential equation by many authors. In [14], an 

explicit integration method is used for solving a 

parabolic partial integro-differential equation (PIDE). 

The numerical solutions by finite element procedures 

are presented in [15-17]. Volterra equations are 

classified as IDEs that have been introduced by Vito 

Volterra (1860-1940). Aggarwal and Gupta [18] 

applied Kamal Transform for solving Linear Volterra 

Integro-differential equations of the second kind 

while in [19], they derived mixed interpolation 

methods for first and second-order VIDEs with 

periodic solutions. Also, Brunner et al. in [20] extend  

recent  results  for  the numerical solution  of  

Volterra  integro- differential equations with periodic 

solution. The Haar wavelets are applied for solving of 

nonlinear Volterra integral equations and integro-

differential equations in [21] and Legendre wavelet 

method is developed by Sahu and Ray [22] to 

approximate the solutions of the system of nonlinear 

Volterra integro-differential equations. Also, the 

nonlinear Volterra integro-differential equations with 

weakly singular kernels are solved by using spectral 

collocation methods as in [23, 24]. 

 Rohaninasab and his co-workers presented a 

numerical solution of high-order Volterra integro-
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differential equations by using Legendre collocation 

method in [25]. Many other numerical methods are 

used for solving these equations as Aguilar and 

Brunner in [26] who are using collocation methods to 

investigate the second-order VIDE in polynomial 

spline spaces. Chebyshev spectral methods are used 

to solve the nonlinear Volterra–Hammerstein integral 

equations [27]. In [28] a finite difference scheme is 

proposed for the weakly singular kernel of PIDEs. 

Hyperbolic PIDEs is discussed in [29] by spectral 

method. The numerical solution of the nonlinear 

parabolic Volterra PIDE is proposed in [30] by using 

the finite difference scheme for time and radial basis 

functions for space discretization. An analysis of 

Spectral collocation is proposed in [31] for the 

weakly singular kernel PIDEs. Also, several 

successive approximation methods for solving 

integro-differential equations are listed in literature 

such as Taylor polynomial [32], wavelet-Galerkin 

method [33], meshless method [34] and Taylor 

collocation method [35].  

One of the most efficient numerical methods 

which appear in the last decades to solve differential 

equations is the differential quadrature method 

(DQM). It was first put by Bellman and Casti in the 

early 1970s [36], which is used for solving ordinary 

and partial differential equations by discretizing the 

derivatives at all the domains. Differential 

Quadrature Method (DQM) attracted the interest of 

many authors and because of that, its applications 

rapidly developed. Many researchers have done 

different types of DQMs using diverse base functions 

such as Hermit polynomials [37], spline functions 

[38], B-spline functions [39], Sinc functions [40]. 

The advantage of the differential quadrature 

method appears when it is used to solve boundary-

value, initial-value, linear or nonlinear differential 

equations that DQM requires fewer grid points to 

obtain acceptable accuracy unlike finite difference 

method (FDM), finite element method (FEM) and 

finite volume method (FVM) which may need more 

number of grid points to obtain the solution. The 

authors in [41-43] succeeded to develop the DQM to 

solve problems that have an integral term in its 

differential equation by merging a new integrating 

matrix operator in the method and obtained 

differential integral quadrature method (DIQM). 

Also, by applying DIQM to other applications like 

nano-beams [44-47], it succeeds to obtain accurate 

solutions. Therefore, the strategy in this work reposes 

mainly on establishing an algorithm based on DIQM 

to obtain the solution of the Volterra integro- 

ordinary differential equations.  

2. Problem Formulation 

The authors consider the following nonlinear 

Volterra integro ordinary differential equation 

(VIODE): 
 

  

  
                      [   ]             (1)  

 
where; a is constant value and      is a Volterra 

integral operator which is defined by: 
 

     ∫               
 

 
    .  (2) 

The source function  , the nonlinear function   and 

kernel function   are assumed to be sufficiently 

smooth. This integro-differential equation is called a 

second kind Volterra integral equation since the 

unknown function   appears both inside and outside 

the integral sign of the equation. 

3. The Solution Procedure 

3. 1. DQM Method 

Let the domain       of a problem be 

discretized using N nodes;               . 

Using the DQM, different order derivatives of a 

function at a given node can be approximated using a 

weighted sum of the function values at all discrete 

nodes in that domain. For example, the first 

derivative of function      at node    can be 

approximated using the DQM as follows: 

 
  

  
|
    

 ∑    
 
                      , (3) 

where          and     denote the corresponding 

weighting coefficients. The weighting coefficients for 

the first derivative can be expressed as follows, Shu 

[48]: 
 

    
 

     
(
  

  
)                     ∑     

  
       ,(4) 

 
where 
 

   ∏ (     )
 
                   . (5) 

 

In matrix form, the vector   
[          ]

 represents the discrete values    
      at nodes               . According to 

Eq. (3), the DQM approximation of the first 

derivative is given by 
 

     ,   (6) 
 

where    [             ]       
  (

  

  
)
 
      and  
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   [   ] is the weighting       matrix of the 

first order derivative that can be easily computed 

using Eqs. (4, 5). The weighting coefficients matrices 

for higher-order derivatives can be determined via 

matrix multiplication.  

For the purpose of efficiency, the discrete nodes on 

the domain are distributed according to the 

Chebyshev– Gauss– Lobatto formula  

   
 

 
(     

   

   
 )                  (7) 

3.2 The Integral Quadrature Method (IQM) 

Consider a differentiable function      defined on the 

interval       . In continuous calculus, if 

 
     

  
     ,                              (8) 

 

Integrating both sides of Eq.(8), then ∫     
       and      is called an antiderivative of     . 

In this work, we are interested in the definite integral 
 

∫                                   
 

 
. (9) 

 
It is noticed that its value is independent the arbitrary 

constant  . Returning to DQM, Eq. (6) is discretized 

in matrix form as       (see Eq. (6)). To inverse 

this differentiation process, one can tri writing   
     . However matrix  is singular and hence has 

no inverse.  This is expected and interpreted 

mathematically since the anti-derivative of a given 

function is not unique due to the presence integration 

constant. The main idea behind defining the definite 

integral matrix operator is to replace the nonexistent 

    by a pseudo-inverse matrix    of     Mohamed 

[49] has proven that   acts as anti-derivative 

operator with respect to the differential operator   

such that 
 

          (10) 
 

where   is a vector with all of its component equals 

  
  

 
∑   

 
   . That is    reverses the derivative 

operator   but for an additive constant. Note that, in 

Eq. (10), the    component can be written as 
 
 

       ∑    
   

 
        . (11) 

 
 

Consequently the definite integral between two nodes 

       is approximated as 

 

∫         (  )       
  
  

 ∑ (   
     

 )  
 
    ,   (12) 

 

where    stands for ‘ is discretized and 

approximated by'. 

Note that the row vector  [  ]  (  
     

  )   

        is just the difference between the jth and ith 

rows of matrix   . Eq. (12) is written in matrix form 

as 

∫        
  
  

 [  ] ̂.          (13) 
 

Next we consider approximation of  ∫       
 

 
 

,      . Define the integral matrix   as 

 

       ̅̅̅̅  ,  (14) 

 

where    ̅̅ ̅̅  is an N-square matrix formed such that 

each of its rows equals the first row in   . The 

definite integral operator   is interpreted through the 

following expanded form 

 

[
 
 
 
 
 ∫       

    

 

∫       
       

 

 
 

∫       
  

 ]
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 ,    (15) 

 

where element       
     

  . The definite 

integral operator   has the following properties 

 

∫       
 

 
                        (16) 

 

            ∫       
  
 

   ̅  .          (17) 
 

where  ̅  is the ith row of  . 

3.3. DIQM for Integro-Differential Equations 

Consider the nonlinear Volterra integro ordinary 

differential equation Eqs.(1,2) with the independent 

variable      . Using the Chebyshev–Gauss–

Lobatto distribution Eq. (7), the domain is discretized 

by N-points. Let the discrete vectors       for 

   unknown function       and known function     , 
be respectively  

  [

  
  
 
  

]    [

  

  

 
  

]    [

  
  
 
  

]  .  (18) 

Let the     matrices    and   be respectively the 

first order differential operator and the definite 

integral operator.  First, consider the integral term 
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     ∫              
 

 
   . (19) 

 

 Note that the i-th component of      is    

∫                  
  
 

, its DIQM discretization is 

 

    ̅  [

             

             
 

             

]  ∑                 
 
   .  (20) 

 

Accordingly,      can be discretized by DIQM as  

 

     ∫             

 

 

    

[
 
 
 
 
 
 
 
 
 
 ∑    (     )  (    )

 

   

 

∑    (     )  (    )

 

   

 

∑    (     )  (    )

 

   ]
 
 
 
 
 
 
 
 
 
 

  

(   ̅      )      .                       (21) 

 

It must be mentioned that if     is a part in an 

integro-differential equation then its discrete 

algebraic system is nonlinear. To solve the resulting 

nonlinear system by Newton method one has to 

compute the Jacobian matrix for the system.  To 

compute the Jacobian matrix   corresponding to the 

integral term   defined in Eq.(19), we first compute 

its general element     by differentiating the right 

hand size of Eq.(20) to get 

 

    
   

   
     (     )      . (22) 

 

 In matrix form, the Jacobian matrix for the right 

hand side of Eq. (20) is obtained as 

 

     ̅                 (23) 

where 

  [

    

    

   

   

  
    

 
   

]        
  

  
   

    [

    
    

   
   

  
    

 
   

] .           (24) 

 

Hadamard matrix operator     is the element by 

element operator defined for matrices        having 

the same dimensions such that         implies 

that            . In Eq. (20),  ̅       is a square 

 -matrix with general element  ̅            
  . 

This approach enables DIQM to transform integro-

differential equation Eq. (1)  into a system of 

nonlinear algebraic equations. 

 
 

               . (25) 
 

 
With the Jacobian matrix 

 

           ,  (26) 

 

where matrix       ̅      . 

4. Numerical Results 

In this section, we prove the effectiveness of our 

approach which is based on DIQM to obtain the 

approximate solution of nonlinear Volterra IODEs. 

All of the numerical computations are performed 

using MATLAB R2018b and the accuracy is 

measured for the proposed method by using the 

following two error norms definitions: 

 

            √∑ (                      )
  

   , 

                |                      |.        (27) 

 

where, N is the number of discretized points. Also, 

the authors provide the convergence rate for all 

numerical examples where the numerical error is 
computed by the exponential order       for 
     . The convergence rate is faster when 
the value of C is smaller and this is achieved if the 
solution is smooth [50]. The convergence 
parameter C can be evaluated by: 

 

   
              

        ,          (28) 
 

where,      and      are the error norms 

computed at the domain which is discretized by  

  and    of grid points, respectively. 

  
Example 1 

We consider the following nonlinear VIODE [51]:

  
  

  
      ∫             

 
  ,        [   ]           (29) 

 (29) 

where        
 

 
 

 

 
     with initial condition  

       and exact solution       . 
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Applying the proposed DIQM, Eq. (29) is discretized 

into a nonlinear algebraic system in the form of Eq. 

(25) where  
 

     *    
 
     

 
       

 
+
 

       ̅      . (30) 
 
In this example,             then 

 

 ̅            [

        
        

     
     

  
        

 
     

] . 

 (31) 

The Jacobian for this algebraic system is given by 

Eq. (26). Note that since                
, then 

 

          

[
 
 
 
     

   
 

    
   

 

    
   

 
    

   
 

     
   

 

     
   

 

  

    
   

 
    

   
 

 

     
   

 
]
 
 
 
 

 . 

 
 (32) 
Table 1:     and    error norms and the convergence rates for 

Example 1 at t =1.  

 
N M                    C                     C 

4 5 4.49E-04 3.67 ـــــــــــــE-04 ـــــــــــــ 

6 5 3.46E-06 0.2963 2.62E-06 0.2907 

8 5 8.39E-08 0.3947 5.16E-08 0.3746 

10 4 1.20E-09 0.3459 7.02E-10 0.3415 

12 4 1.34E-11 0.3251 7.25E-12 0.3188 

14 4 1.22E-13 0.3090 6.11E-14 0.3029 

16 5 8.71E-16 0.2905 4.44E-16 0.2920 

 

The convergence results are presented in Table 1. 

The    and    error norms are reported for different 

numbers of grid points N. The number M of iteration 

steps in Newton method required to reduce the error 

norms below         is also reported. To 

demonstrate the spectral convergence rate, the 

convergence parameter C is computed according to 

Eq. (28) and presented in Table 1 showing 

that             . The results illustrates that 

accurate results are obtained using few grid points 

and that N=16 is sufficient to reduce the error below 

the computer round off error.               

 
Fig. 1: Error norms for different values of N at t=1 of 

Example 1. 

 

These results are also presented in Fig. 1 on a semi-

log scale where the error logarithm is plotted versus 

the number of grid points. For both of the    and    

error norms, the nearly straight line plot indicates that 

the errors decay exponentially. The    error norms 

computed at different times in the interval       
  are plotted in Fig. 2 for N=4, 8, 16. It is observed 

that although the error increases with time, the 

solution is still accurate in this range of time.   

 

 
 

Fig. 2:    for different values of time and N for Example 1. 

 

Example 2 

 

Consider the following nonlinear VIODE [51]: 
   
  

  
      ∫            

 

 
       ,     [   ]    (30) 

 
where,  
 

                
  

√   
  √    

       √          (  √   )   

 

with the initial condition u(0)=1, and the exact 

solution is given by      √   . 
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By following the same steps in example (1), we can 

get the Jacobian matrix of this example by Eq. (26) 

where: 
 

        

[
 
 
 
 
 

 

    

 

    

 

    

 

    

 
 

    

 
 

    

  
 

    

 

    

 

 
 

    ]
 
 
 
 
 

 . 

 

In Table 2,    and    error norms are Listed for 

different numbers of grid points N. Also, the 

convergence rate results are presented in Table 2 

where its range is              . This 

example needs M =10, number of iteration steps in 

Newton method, to reduce the error norms to 

       . We need only grid points N=16 to obtain 

accurate results. 

            
Table 2:    and    error norms and the convergence rate for 
Example 2 at t =1. 

 
N M                    C                     C 

4 10 1.29E-03 8.09 ـــــــــــــE-04 ـــــــــــــ 

6 10 1.80E-05 0.3441 1.17E-05 0.3472 

8 10 3.62E-07 0.3763 2.15E-07 0.3677 

10 10 8.13E-09 0.3872 4.39E-09 0.3782 

12 10 1.94E-10 0.3930 9.64E-11 0.3849 

14 10 4.81E-12 0.3968 2.22E-12 0.3895 

16 10 1.23E-13 0.4002 5.31E-14 0.3932 

 

 
 

Fig. 3: Error norms for different values of N at t=1 of 

Example 2. 

 
Fig. 4:    for different values of time and N for 

Example 2. 

 

The    and    error norms are plotted in Fig. 3, the 

error logarithm on a semi-log scale versus the 

number of grid points, and the results indicate that 

the errors decay exponentially. In Fig. 4, the    error 

norms are plotted for N=4, 8, 16 which computed in 

the interval        . As in example 1, the 

accuracy is still achieved even with an increase of 

errors.  

 

Example 3 

We investigate the following nonlinear VIODE [52]: 

  

  
      ∫          

 

 
  ,       [   ]     (31) 

where,      
 

 
   

 

 
    with initial condition 

        and the exact solution                   

  . 

Also, the Jacobian matrix in this example is obtained 

as we can get it in the previous examples. And 

         , then: 

 

        

[
 
 
 
  

   
 

  
   

 

   
 

   
 

  
  

   
 

 
   

 ]
 
 
 

 . 

 
Table 3 :    and    error norms and the convergence rate for 

Example 3 at t =1. 
 

N M                    C                     C 

4 10 1.85E-01 1.72 ـــــــــــــE-01 ـــــــــــــ 

6 9 2.71E-04 0.1957 2.23E-04 0.1897 

8 7 8.85E-07 0.2390 6.49E-07 0.2321 

10 9 2.12E-09 0.2213 1.41E-09 0.2161 
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12 10 3.59E-12 0.2027 2.20E-12 0.1986 

14 10 6.92E-15 0.2096 4.00E-15 0.2064 

16 8 5.89E-15 0.9604 3.11E-15 0.9391 

 

 
Fig. 5: Error norms for different values of N at t=1 of 

Example 3. 
 

As in the previous examples, Table 3 presented that 

the convergence rate results range from         
        of this example. The    and    error 

norms need the numbers of grid points N=16 to 

obtain the error norms of        . Figs. 5 shows 

that the    and    error norms are still decay 

exponentially and the accuracy is still achieved 

although the error increases with time as shown in 

Fig. 6.  

 
Fig. 6:    for different values of time and N for 

Example 3. 
 

5. Conclusion 

 In this paper, the authors presented the 

differential integral quadrature method (DIQM) by 

combining an integration matrix operator with the 

differentiation matrix in (DQM) method. The 

obtained method (DIQM) is applied for solving the 

nonlinear Volterra integro-differential equation 

(VIDE). The results of the three provided examples 

illustrate that the proposed method is efficient and 

achieve the expected exponential behavior of 

accuracy by using a few numbers of grid points. In 

future work, the proposed method (DIQM) is easy to 

implement for solving other kinds of integro-

differential equations.        

  

References 

 

[1] G. Yanik, G. Fairweather, "Finite element methods for 

parabolic and hyperbolic partial integro-differential 

equations", Nonlinear Analysis: Theory, Methods & 

Applications, Vol. 12, pp. 785–809, 1988. 

[2] F. Fakhar-Izadi, M. Dehghan, "Fully spectral collocation 

method for nonlinear parabolic partial integro-

differential equations", Applied Numerical 

Mathematics, Vol. 123, pp. 99–120, 2018. 

[3] W. Allegretto, J.R. Cannon, Y. Lin, "A parabolic 

integro-differential equation arising from thermoelastic 

contact", Discrete & Continuous Dynamical Systems-A, 

Vol. 3 (2), pp. 217–234, 1997. 

[4] C.M. Dafermos, "An abstract Volterra equation with 

application to linear viscoelasticity", Journal of 

Differential Equations, Vol. 7, pp. 554–569, 1970. 

[5] A.S. Lodge, M. Renardy, J.A. Nohel, "Viscoelasticity 

and Rheology", Academic Press, New York, 1985. 

[6] M. Renardy, W. Hrusa, J. Nohel, "Mathematical 

Problems in Viscoelasticity", Longman, Boston, 1987. 

[7] M. Gurtin, A. Pipkin, "A general theory of heat 

conduction with finite wave speeds", Archive for 

Rational Mechanics and Analysis, Vol. 31, pp. 113–126, 

1968. 

[8] S.O. Londen, J.A. Nohel, "A nonlinear Volterra integro-

differential equation occurring in heat flow", The 

Journal of Integral Equations, Vol. 6, pp. 11–50, 1984. 

[9] R. MacCamy, "An integro-differential equation with 

application in heat flow", Quarterly of Applied 

Mathematics, Vol. 35, pp. 1–19, 1977. 

[10] I. Abdul, "Introduction to Integral Equations with 

Application", Wiley, NewYork, NY, USA, 1999. 

[11] S. Shaw and J. R. Whiteman, "Adaptive space-time 

finite element solution for Volterra equations arising in 

viscoelasticity problems", Journal of Computational and 

Applied Mathematics, Vol. 125, pp. 337–345, 2000. 

[12] V. Volterra, "Theory of Functionals And of Integral And 

Integro- Differential Equations", Dover Publications, 

Inc., New York, NY, USA, 1959. 

[13] A. J. Jerri, "Introduction to Integral Equations with 

Applications", Marcel Dekker, New Yourk, NY, USA, 

1999. 

[14] A.S. Vasudeva Murthy, J.G. Verwer, "Solving parabolic 

integro-differential equations by an explicit integration 

method", Journal of computational and applied 

mathematics, Vol. 39, pp. 121–132, 1992. 

[15] Y. Lin, V. Thomeé, L. B. Wahlbin, "Ritz-Volterra 

projections to finite element spaces and applications to 

integro-differential and related equations", SIAM 

Journal on Numerical Analysis, Vol. 28, pp. 1047–1070, 

1991. 

[16] A. K. Pani, V. Thomeé, L. B. Wahlbin,  "Numerical 

methods for hyperbolic and parabolic integro differential 

68



Norhan A. Mohamed,et al./ Computational DIQM Scheme for Solving Nonlinear Volterra Integro-Differential Equations 

equations", Journal of Integral Equations and 

Applications, Vol. 4, pp. 533–584, 1992 

[17] C. Chen, P. G. Shih Tsimin, "The Finite Element 

Methods for Integro-Differential Equations", World 

Scientific, London, 1997 

[18] S. Aggarwal, A.R. Gupta, "Solution of linear Volterra 

integro-differential equations of second kind using 

Kamal transform", Journal of Emerging Technologies 

and Innovative Research, Vol. 6(1), pp. 741-747, 2019. 

[19] H. Brunner, A. Makroglou, R. Miller, "Mixed 

interpolation collocation methods for first and second 

order Volterra integro-differential equations with 

periodic solution", Applied numerical mathematics, Vol. 

23(4), pp. 381-402, 1997. 

[20] H. Brunner, A. Makroglou, R. Miller, "On mixed 

collocation methods for Volterra integral equations with 

periodic solution", Applied Numerical Mathematics, 

Vol. 24(2-3), pp. 115-130, 1997. 

[21] Ü. Lepik, "Haar wavelet method for nonlinear integro-

differential equations", Applied mathematics and 

Computation, Vol. 176(1), pp. 324-333, 2006.  

[22] P.K. Sahu, S.S. Ray, "Legendre wavelets operational 

method for the numerical solutions of nonlinear Volterra 

integro-differential equations system", Applied 

mathematics and computation, Vol. 256, pp. 715-723, 

2015.  

[23] Z. Gu, "Spectral collocation method for weakly singular 

Volterra integro-differential equations", Applied 

Numerical Mathematics, Vol. 143, pp. 263-275, 2019.  

[24] Y. Yang, Y. Chen, "Spectral collocation methods for 

nonlinear Volterra integro-differential equations with 

weakly singular kernels", Bulletin of the Malaysian 

Mathematical Sciences Society, Vol. 42(1), pp. 297-314, 

2019.  

[25] N. Rohaninasab, K. Maleknejad, R. Ezzati, "Numerical 

solution of high-order Volterra–Fredholm integro-

differential equations by using Legendre collocation 

method", Applied Mathematics and Computation, Vol. 

328, pp. 171-188, 2018.  

[26] M. Aguilar, H. Brunner, "Collocation methods for 

second-order Volterra integro-differential equations", 

Applied numerical mathematics, Vol. 4, pp. 455–470, 

1988. 

[27] G.N. Elnagar, M. Kazemi, "Chebyshev spectral solution 

of nonlinear Volterra–Hammerstein integral equations",  

Journal of computational and applied mathematics, Vol. 

76, pp. 147–158, 1996. 

[28] T. Tang, "A finite difference scheme for partial integro-

differential equations with a weakly singular kernel", 

Applied numerical mathematics, Vol. 11, pp. 309–319, 

1993. 

[29] S.K. Chung, M.G. Park, "Spectral analysis for 

hyperbolic integro-differential equations with a weakly 

singular kernel", Journal of the Korean Society for 

Industrial and Applied Mathematics, Vol. 2, pp. 31–40, 

1998. 

[30] Z. Avazzadeh, Z.B. Rizi, F.M. Maalek Ghaini, G.B. 

Loghmani, "A numerical solution of nonlinear 

parabolic-type Volterra partial integro-differential 

equations using radial basis functions", Engineering 

analysis with boundary elements, Vol. 36, pp. 881–893, 

2012. 

[31] C.H. Kim, U.J. Choi, "Spectral collocation methods for 

a partial integro-differential equation with a weakly 

singular kernel", The ANZIAM Journal, Vol. 39, pp. 

408–430, 1998. 

[32] K. Maleknejad, Y. Mahmoudi, "Taylor polynomial 

solution of high-order nonlinear Volterra-Fredholm 

integro-differential equations", Applied Mathematics 

and Computation, Vol. 145, pp. 641–653, 2003. 

[33] K. Maleknejad, F. Mirzaee, "Using rationalized Haar 

wavelet for solving linear integral equations", Applied 

Mathematics and Computation, Vol. 160( 2), pp. 579–

587, 2005. 

[34] M. Dehghan, R. Salehi, "The numerical solution of the 

non-linear integro-differential equations based on 

themeshless method", Journal of Computational and 

Applied Mathematics, Vol. 236(9), pp. 2367–2377, 

2012. 

[35] A. Karamete, M. Sezer, "A Taylor collocation method 

for the solution of linear integro-differential equations", 

International Journal of Computer Mathematics, Vol. 

79( 9), pp. 987–1000, 2002. 

[36] R. Bellman, J. Casti, "Differential quadrature and long-

term integration", Journal of mathematical analysis and 

Applications, Vol. 34(2), pp. 235-238, 1971. 

[37] A. Krowiak, "Hermite type radial basis function-based 

differential quadrature method for higher order 

equations", Applied Mathematical Modelling, Vol. 
40(3), pp. 2421-2430, 2016. 

[38] A. Başhan, "A mixed algorithm for numerical 

computation of soliton solutions of the coupled KdV 
equation: Finite difference method and differential 

quadrature method", Applied Mathematics and 

Computation, Vol. 360, pp. 42-57, 2019. 

[39] A. Başhan et al., "A new perspective for quintic B-

spline based Crank-Nicolson-differential quadrature 
method algorithm for numerical solutions of the 

nonlinear Schrödinger equation", The European 

Physical Journal Plus, Vol. 133(1), pp. 12, 2018. 

[40] A. Korkmaz, İ. Dağ, "Shock wave simulations using 

sinc differential quadrature method", Engineering 

Computations, 2011. 

 [41] N. Mohamed, M.A. Eltaher, S.A. Mohamed, L.F. 

Seddek, Numerical analysis of nonlinear free and forced 

vibrations of buckled curved beams resting on nonlinear 

elastic foundations, International Journal of Non-Linear 

Mechanics, Vol. 101, pp. 157–173, 2018. 

[42] N. Mohamed, M.A. Eltaher, S.A. Mohamed, L.F. 

Seddek, "Periodic and Nonperiodic Modes on 

Postbuckling and Nonlinear Vibration of Beams 

Attached with Nonlinear Foundations", Applied 

Mathematical Modelling, Vol. 75, pp. 414-445, 2019. 

[43] M. A. Attia, S. A. Mohamed, "Coupling effect of 

surface energy and dispersion forces on nonlinear size-

dependent pull-in instability of functionally graded 

micro-/nanoswitches", Acta Mechanica, Vol. 230, pp. 

1181–1216, 2019. 

[44] M. A. Attia, R. A. Shanab,  S. A. Mohamed, N. A.  

Mohamed, "Surface energy effects on the nonlinear free 

vibration of functionally graded Timoshenko nanobeams 

based on modified couple stress theory", International 

Journal of Structural Stability and Dynamics, Vol. 

19(11), 2019 

[45] M. A. Attia, R. A. Shanab,  S. A. Mohamed, N. A.  

Mohamed, "Effect of Microstructure and Surface 

Energy on the Static and Dynamic Characteristics of FG 

Timoshenko Nanobeam Embedded in an Elastic 

69

https://www.sciencedirect.com/science/article/abs/pii/S0307904X19303099#!
https://www.sciencedirect.com/science/article/abs/pii/S0307904X19303099#!
https://www.sciencedirect.com/science/article/abs/pii/S0307904X19303099#!
https://www.sciencedirect.com/science/article/abs/pii/S0307904X19303099#!
https://www.sciencedirect.com/science/journal/0307904X
https://www.sciencedirect.com/science/journal/0307904X


EIJEST Vol. 31 (2020) 62–70 

Medium", Journal of Nano Research, Vol. 61, pp 97-

117, 2020.  

[46] R. A. Shanab,  S. A. Mohamed, N. A.  Mohamed, M. A. 

Attia, "Compressive investigation of vibration of 

sigmoid and power law FG nanobeams based on surface 

elasticity and modified couple stress theories", Acta 

Mechanica, pp. 1-34, 2020. 

[47] M. Eltaher, S. A. Mohamed, "Buckling and stability 

analysis of sandwich beams subject to varing axial 

loads", steel and composite structures, Vol. 34(2), pp. 

241-260, 2020. 

[48] C. Shu, "Differential Quadrature and Its Application in 

Engineering", Springer-Verlag, London, 2000. 

[49] S. A. Mohamed, "A fractional differential quadrature 

method for fractional differential equations and 

fractional eigenvalue problems", Math Meth Appl Sci, 

2020. In press. https://doi.org/10.1002/mma.6753 

[50] L. N. Trefethen, "Spectral Method in MATLAB", 

SIAM, Philadelphia, PA. 

[51] M. H. Daliri Birjandi, J. Saberi-Nadjafi, A. Ghorbani, 

"An Efficient Numerical Method for a Class of 

Nonlinear Volterra Integro-Differential Equations", 

Journal of Applied Mathematics, 2018.  

[52] K. Kim, "A novel semi-analytical approach for solving 

nonlinear Volterra integro-differential equations", 

Applied Mathematics and Computation, Vol.  263, pp. 

25–35, 2015. 

 

70


