
Journal of Engineering Sciences, Assiut University, Vol. 35, No.1, pp.163-176, January 2007

STATIC TOOL ENVIRONMENT FOR RULE TERMINATION
ANALYSIS BY REFINED EVOLUTION GRAPHS

Hany Harb
1
, Hamdy Kelash

2
 and Ahmed Shehata

3

1
 Faculty of Engineering, El-Azhar University, Egypt

2
 Faculty of Electronic Engineering, Menouf, 32952, Egypt

am_shehata@yahoo.com

(Received October 12, 2006 Accepted December 7, 2006)

 A new algorithm for static rule termination analysis within active

databases is introduced. This algorithm uses evolution graphs which

simulating rule processing statically and considering both rule activation

and deactivation. This algorithm has been refined for some cases that

cannot be assured of termination this refinement by using Refined

Evolution Graphs and analyzing transactions and triggers. A Static Tool

Environment is proposed that can be used in termination analysis

algorithm. The Static tool proposed is suitable for this algorithm where its

component can execute the proposed algorithm. We show that several

termination analysis algorithms are captured with our algorithm. The

proposed algorithm tests rule termination is presented considering

deferred and detached executions. The proposed algorithm turns out to be

practical and general with respect to various rules languages and thus it

may be applied to many databases.

KEY WORDS: Active database, Static tools, transactions, evolution

graphs, triggers, nontermination analysis

1. INTRODUCTION

Active databases have been the focus of several researches aiming to extend the

functionality of traditional (passive) databases [1, 2]. They generally use active rules to

express their active behavior. Active rules have a tripartite structure, called event

condition action (ECA). An important issue in designing a set of rules is to generate

rules for which it is possible to guarantee the execution termination. In fact, rules can

trigger each other infinitely. This behavior is not acceptable, and thus many

commercial systems impose severe restrictions to prevent non-terminating rules

execution.

There are three ways to approach termination. A common way (supported by

commercial products) is to handle termination only during rule execution. That means

163

mailto:am_shehata@yahoo.com

Hany Harb
1
, Hamdy Kelash

1
 and Ahmed Shehata

3

164

the system assumes that an infinitely cascading triggering takes place if a specific

upper bound of triggered rules has been reached and thus it stops rule execution. The

drawbacks are that counters may either cause abrupt ending even if rule processing

would have terminated on its own in a few more steps or loops are let to execute for

too long time before the system can halt them. This approach handles the effects but

cannot remove the causes of infinite triggering [3].

A better way to handle termination for a given set of rules is by means of termination

analysis, which aims to detect rule subsets that may potentially lead to infinite

triggering of rules. If such a rule subset exists, the rule developer has to modify the

specification of some rules and investigate termination again. The iterative process is

performed until termination analysis guarantees that the rule set will never manifest a

nonterminating rule behavior [4].

Termination analysis may be static or dynamic. Static analysis investigates rule

definitions at compile time in order to determine subsets consisting of rules that may

trigger (directly or indirectly) each other. When no such rule subsets are found,

termination of rule execution is guaranteed for the given rule set. Even if static analysis

is sometimes too conservative in relation to the actual behavior, it never yields

unreliable information. It guarantees termination in all possible situations. In contrast,

dynamic methods examine rule behavior at runtime. Until now, they could not

guarantee termination for all possible combinations of initial database states and event

occurrences, no matter if applied before or during the actual use of the active DBMS.

Thus, dynamic analysis cannot substitute; at most it can complement or refine static

analysis methods [5].

In this paper, a new analysis method that builds over the analysis of three relations

among rules has been presented that can be statically checked. These relations are

triggering, activation and deactivation. There are several static and runtime approaches

for active rules termination analysis. We consider only static methods that at compile

time detect potential non-terminating active rules execution. Furthermore, no method

uses information provided by updates used to form transactions. There are static

methods using only some of the active rules properties like Starburst [6, 7], which use

only the triggering property, and Chimera [8, 9], in which triggering and activation are

considered but deactivation is used only in restricted cases (a rule cannot deactivate

other rules, but only itself). Our aim is to propose a static analysis method that

considers how user transaction information and structures can affect active rule

execution termination. The proposed method improves a technique, introduced in [10].

This new method (refined method) considers the analysis of three relationships among

rules (triggering, activation and deactivation) that can be statically checked.

Furthermore the properties of updates forming transactions that trigger active rule

processing are used to enrich analysis. Refined method is simple and easy to

understand, but powerful and flexible enough to be used with current active database

languages. This is possible because it investigates relationships among rules and

transaction updates that are independent of the specific rule language.

The remainder of this paper is organized as follows. In section 2 ECA Rules in

SAMOS are presented. An overview of our approach and some basic concepts that

STATIC TOOL ENVIRONMENT FOR RULE TERMINATION….

165

includes graphs and abstract states for understanding our approach are explained in

Section 3. Rule termination analysis using transactions and our algorithm are

introduced in section 4. The proposed Static Tool Environment and its component and

how it is suitable for SRTA algorithm are presented in section 5. An example for

explaining our algorithm is introduced in section 6. Finally conclusions are introduced

in section 7.

2. ECA RULES IN SAMOS

A rule definition language is used for the specification of the Event/Condition/Action

(ECA) rules. Each rule consists of an event, a condition and an action. An event is an

occurrence the active database system must react to. When an event occurs, all

respective rules are triggered. If the condition of a triggered rule is fulfilled then its

action is executed. A condition may be a predicate on the database state or a database

query. If the result of evaluation is true or non-empty, respectively, the condition is

satisfied. The action specifies the reactive behavior of the rule. It may contain data

modification and retrieval (in relational DBMS), transaction operations like commit or

abort, etc.

3. TERMINATION OF RULE EXECUTION

This section includes an overview of our approach and the basic concepts of the

proposed algorithm.

3.1. Our Approach

In our approach we consider three relations among rules: triggering, activation, and

deactivation. Informally, there is a triggering relation between two rules if one of the

rule’s actions has the corresponding event in the other rule. There is an activation

relation, if the possible execution of the rule’s actions makes the other rule’s condition

true. Finally, there is a deactivation relation, if the possible execution of the rule’s

actions makes the other rule’s condition false. A triggered and activated rule is

considered potentially executable (or eligible for execution). We represent the fact that

a rule may deactivate other rules by considering it in conjunction with rules triggering

and activation through a new graph: the evolution graph (EG). We simulate rule

execution using EGs that store information about the simulated execution in abstract

states. Abstract state models the fact that for termination analysis we are interested to

observe states where a rule is triggered, activated, deactivated both triggered and

activated, or neither triggered nor activated. A similar structure, called refined

evolution graph (REG), is defined when we consider in the analysis also transactions.

Providing termination for a specific transaction, although allowing capturing more

termination cases, is weaker than providing termination in the general case. Indeed, a

rule set could be terminating under a transaction currently defined for the system, but

be not terminating for another transaction.

Hany Harb
1
, Hamdy Kelash

1
 and Ahmed Shehata

3

166

3.2. Basic Concepts

The basic concepts needed for explanation of our algorithm.

3.2.1. Active Rules and Programs

The execution semantics describes the behavior of an active program. We say

that when a rule is triggered (if several rules are triggered, a selection policy

must be established), the system evaluates its condition. If the condition is

satisfied, the rule is eliminated from the triggered rules set and its action is

performed. If the condition is not satisfied, then there are two different ways to

proceed: in the first case an event-preserving the system leave the rule in the

group of the triggered rules set, and then have more than one triggered rule. The

other the system eliminates the rule from the triggered rules set; and that is

called an event-consuming [10]. In this paper we use event-preserving execution

model.
Finally, a transaction T = U1, U2, … , Un is an atomic sequence of operations, that

means a sequence of insertions, deletions and updates, such that all of them are

executed or none has to be performed [11].

3.2.2. Graphs

We consider three different relations among active rules. Let ri and rj be two rules then

 ri triggers rj , if one of the ri's actions has the corresponding event in rj ;

 ri activates rj , if the possible execution of the ri's actions makes rj 's condition true;

 ri deactivates rj , if the possible execution of the ri's actions makes rj 's condition false.

These relations can be described with three directed graphs denoted as Triggering

Graph (TG), Activation Graph (AG) and Deactivation Graph (DG), respectively.

Nodes represent rules and arcs stand for the specific relations among rules. Triggering

relation was first introduced in [12]. It describes the rules mutual ability to “wake up”

each other. The notion of cycle is defined starting from a TG. We define a cycle C in P

as a subset C of P, such that the rules of C form a cycle in TG. We say that a rule is

involved in the execution by a cycle C if the rule is activated, deactivated or triggered

by the rules of C. The notion of activation relation was introduced in [13].

3.2.3. Abstract State

Now we introduce the notion of rule abstract state describing rule characteristics, such

as whether the rule is triggered, activated or deactivated or relevant combinations of

these relations. We only want to determinate a way to characterize a rule in a certain

possible execution point. In this way we can establish the relevant abstract

computational states with respect to termination. Let as be a function that for each rule

STATIC TOOL ENVIRONMENT FOR RULE TERMINATION….

167

describes its abstract state. Every rule ri of an active program can be in one of the four

abstract states as(ri)= si , s
t
i , s

a
i or s

n
i

An abstract state can be changed by update execution (i.e. rule action or user update

operation). We can calculate the new configuration of ri according to the following

rules [6]:

if as(ri)= s
a

i and ri is deactivated then as(ri) will be = s
n

i .

if as(ri)= s
a

i and ri is triggered then as(ri) will be = si .

if as(ri)= s
n

i and ri is triggered then as(ri) will be = s
t
i .

if as(ri)= s
n

i and ri is activated then as(ri) will be = s
a

i .

4. RULE TERMINATION ANALYSIS USING TRANSACTIONS

In order to understand our algorithm, we must define the evolution graph and refined

evolution graph that are explained in the following sections.

4. 1. Evolution Graph

Let P be an active program consists of a group of rules constraints the database

operations. S be an abstract states to explain the state of each rule at this time; R be a

subset of rules that is the rule set for which the simulated execution is postponed when

more than one rule is eligible for execution that is when more than one rule can be

executed. R is empty whenever there is only one rule at a time that is eligible for

execution (i.e. is triggered and activated). Together S and R will form a node of the

Evolution Graph as shown in Fig. 1.

Fig. 1. Evolution Graph node

An arc from node Ni to node Ni+1 of an EG, specifies the abstract state changes

operated by the execution of the triggered and activated rule of Ni. Each arc is labeled

with the rule for which we simulate the execution statically.

For each cycle Ci, a number ni of EG has to be generated where ni is the number of

rules for cycle Ci. This is due by the fact that we do not know from which rule of the

cycle the execution may start. So we must consider in our simulation all possible cases.

Therefore the starting node of an EG is just composed by the abstract states of Ci's

rules, where one rule alone is triggered and activated while the others are only

activated. This is the worst case. Subsequent triggering may cause non-terminating

execution of the cycle. A rule cannot be activated and deactivated at the same time

from the same rule, because we examine only the final effect of the execution about the

rule action part.

 S R

Hany Harb
1
, Hamdy Kelash

1
 and Ahmed Shehata

3

168

4. 2. Refined Evolution Graph

The EG considers only the rules forming a cycle over the TG. But the REG is used

with transactions we do not consider all active rules, because we know which rules will

be involved by transaction execution. Each node in the REG will be as in the EG.

An arc from node Ni to node Ni+1 of REG specifies the abstract state changes resulting

from the execution of the triggered and activated rule of Ni or from the execution of

one of the updates in T. Each arc is labeled with the rule number or with the transaction

update for which we simulate execution. The initial node of all possible REG (not

depending on user transactions) is empty because no update has executed yet [6].

The creation of nodes in EG or REG stops when:

 The new node is obtained before (it finds a cycle while creating it). Or

 When a node has not any abstract state ready for running (it is acyclic state).

4. 3. Testing Termination

If an abstract state set presents itself again during a computation we cannot guarantee

the termination. Using EG and REG this termination test can be implemented by

checking the presence of a cycle. If the graph is acyclic we can assure the termination;

otherwise, we leave the decision for the rule developer to improve the rule set.

4. 4. SRTA Algorithm

In this section we explain our Static Rule Termination Analysis (SRTA). The

algorithm depicted in Fig. 2. This algorithm calls two functions; Build_EG that build

the evolution graphs for each rule in a cycle Fig. 3. The other is Build_REG that builds

the refined evolution graphs for each transaction Fig. 4. The two calling functions use a

selection method to select the next rule for execution when more than one rule is

eligible for execution according to their properties triggering, activation and

deactivation.

ALGORITHM SRTA

BEGIN

Draw the TG.

IF there are not any cycles in TG,

THEN termination guaranteed and EXIT.

Draw the AG and DG.

FOR EACH cycle:

 IF there is a rule that deactivated and not activated again

 THEN termination guaranteed and EXIT.

FOR EACH rule ri in the cycle

 Build_EG(ri).

 IF all EGs are acyclic

 THEN termination guaranteed and EXIT.

FOR EACH update Ui in each transaction

 Build_REG(Ui).

 IF the REG is acyclic

 THEN termination guaranteed.

 ELSE termination is not guaranteed and designer improves the rule set.

END.

Fig. 2. SRTA Algorithm

STATIC TOOL ENVIRONMENT FOR RULE TERMINATION….

169

FUNCTION Build_EG(ri)

BEGIN

1. The abstract state for ri is Si other rules in the cycle are activated only S
a
.

2. Change the abstract states for each rule according to the simulation

execution of the rule i.

3. f there are more than one rule is eligible for execution (activated and

triggered) then select one of these rules according to:

a. The rule that will trigger a smaller number of rules according to TG.

b. If there is a number of rules will trigger equal number of rules in TG,

select one that activates small number of rules according to AG.

c. If there is a number of rules will activate equal number of rules, select

one that deactivates large number of rules according to DG.

4. The creation of new nodes stops when the new node is obtained before

(cyclic) or there are not any rules eligible for execution (acyclic).

END.

FUNCTION Build_REG(Ui)

BEGIN

1. Draw an empty node.

2. Update abstract state of the rule that affected by the update in the

transaction, the arc from the empty node to new node is labeled with Ui .

3. Change the abstract states for each rule according to the simulation

execution of the rule i . Assuming the abstract states for all rules at first

appending in REG are S
a

i and need triggering only to be eligible for

execution, label the arc with the rule that executed.

4. The creation of new nodes stops when the new node is obtained before

(cyclic) or there are not any rules eligible for execution (acyclic). .

END

Fig. 4. Function Build_REG

5. STATIC TOOL ENVIRONMENT

Static Tool Environment (STE) is a proposed architecture can be built which is suitable

for applying out SRTA algorithm. This architecture is coupled to the active object-

oriented DBMS SAMOS [2] but the concepts are applicable to other active DBMS

with similar functionality as well. The idea is to derive from the particular case of

SAMOS features and implementation issues that should be considered in the

construction of active rule development environments in general [14].

5. 1. Architecture

The STE(static tools environment) is strongly connected to the active DBMS prototype

SAMOS. The architecture is a layered architecture see Fig. 5 consisting of ObjectStore

and an active layer on top of it. These two layers are main components in SAMOS. The

active layer includes rule execution component and a rule manager. The rule manager

is responsible for the persistent storage and retrieval of information about event and

Fig. 3. Function Build_EG

Hany Harb
1
, Hamdy Kelash

1
 and Ahmed Shehata

3

170

rule definitions. Events, conditions, actions and rules are represented as objects. The

Static Tool Environment may be considered as another layer that wraps the kernel of

SAMOS. However, the developer makes use of the STE during application

development. Next sections will explain each component of STE layer.

5. 2. STE layer

We have STE layer that include an editor; a browser and a termination analyzer, which

are the main parts of the STE. They are used before the execution of applications,

during the specification and design of Active Database Systems. The STE is strongly

connected to the active DBMS prototype SAMOS. The browser and the editor are

graphical interfaces for easily inserting and retrieving rule definitions from the

rulebase. The termination analyzer is responsible for detecting rules that may generate

nontermination as a consequence of their interactions. We will explain each part in

more detail.

Browser

The task of the browser is to support the navigation through the rulebase. The required

information is provided by the rule manager, which makes use of the retrieval facilities

of the underlying DBMS ObjectStore for querying the rulebase. The returned

information may include:

 Lists of event, condition, action and rule definitions.

 Lists of rules that an event will be triggered by that action.

 Lists of rules that their conditions truth values turned to be true and will be activated.

 Lists of rules that their conditions truth values turned to be false and will be deactivated.

S
A

M
O

S

STE layer

Editor Termination analyzer Browser

Rule manager Rule Execution

Component

ECA-

rules

OO DBMS Object Store

Active layer

Fig. 5. The integration of STE with the active DBMS SAMOS

STATIC TOOL ENVIRONMENT FOR RULE TERMINATION….

171

Therefore, the browser allows the inspection of the rulebase and may easily return

various information about rules themselves and dependencies between rules and their

components.

The browser consists of four blocks: event, condition, action and rule browser. These

blocks are strongly coupled so that the control easily flows between them when the

browser is in use. The editor and the browser have been implemented by making a

user-friendly interface.

Editor

The editor offers a graphical interface for the definition, updating and deletion

of rules and their constituent parts. The editor translates the input in the rule

language of SAMOS. Then, the rule compiler is invoked. This, in turn, makes

use of the rule manager that finally stores the new data in the rulebase. The rule

compiler is responsible for the syntactic and partly semantic analysis of rule

definitions. Its inputs are event and rule definitions with the syntax of the rule

definition language available from the editor. The syntax and semantic analysis

performed by the rule compiler include the parsing of actions and conditions. If

the syntactic and semantic analyses have been successful, the compiler uses the

interface offered by the rule manager to create corresponding objects that are

persistently stored in the rulebase.

Termination analyzer

The architecture of the termination analyzer is more complex. Fig. 6 explains the main

components in that part of the STE. It contains components that are responsible for the

steps to be performed as described by our approach for termination analysis.

Fig. 6. The Termination Analyzer

The A/E relationship component: performs the syntactic analysis for each action and

the related events will be signaled by it. The information derived from the syntactic

analysis is persistently stored. Thus, it may be accessed and displayed using the

browser. The output of the A/E component is passed to the triggering graph builder

where by it we draw the triggering graph and determines the cycles that may be not

terminated. These cycles are passed to the A/C relationship component. That detects

A/E Comp. A/C Comp. TG Builder

EG Builder
Conflict Resolution

Comp.

REG builder

Hany Harb
1
, Hamdy Kelash

1
 and Ahmed Shehata

3

172

each action of each rule in the cycle to know its effect on the conditions of other rules.

If the execution of the action of a rule modifies the truth value of a condition of another

rule to true then the first rule activate the other, if the truth value is modified to false

then this rule is deactivated by the first rule. Cycles are false if there is a rule in the

cycle deactivated and not activated again. The correct cycles are passed to Evolution

Graph Builder (EG Builder). The EG Builder builds Evolution Graphs, one for each

rule in the cycle. When more than one rule is eligible for execution, the conflict

resolution part will select next rule for trying to guarantee termination of cycle. If the

termination is not guaranteed the REG builder will be used to build the REGs

according to the group of transactions requested by the database application and finally

gives a report of the transactions that will be terminated.

6. USING THE STE

 For illustrating the functionality of the STE, how our SRTA algorithm can be

applied on it. We consider a banking application in the credit department that concerns

with some of operations can be done for customers and the rules restrict these

operations. Five active rules are defined and the coupling mode of the rules are

“deferred”.

Example:

Rule R1: ON decrease _overdraft

 IF account_type =Normal

 DO decrease_capacity(2000)

Rule R2: ON decrease_capacity

 IF amount <1000

 DO decrease rate(1)

Rule R3: ON decrease_rate

 IF account_type =Normal

 DO decrease _overdraft(20)

Rule R4: ON increase_amount

 IF account_type= important

DO decrease_capacity(1000)

AND increase_amount(200)

Rule R5: ON decrease _overdraft

 IF capacity < 5000

 DO decrease_amount(500).

According to our algorithm, first we start by drawing the triggering graph (TG) of

these rules as in Fig. 7.

There is a cycle C1 ={r1,r2,r3} so the termination of rules can not be guaranteed as in

the algorithm. The next step is to draw the activation (AG) and deactivation graphs

(DG) as in Figures 8, 9.

There is a rule r2 in the cycle C1 deactivated by rule r4 but it is activated again by r5 so

and then the termination of rules cannot be guaranteed as in the algorithm.

STATIC TOOL ENVIRONMENT FOR RULE TERMINATION….

173

Fig. 7. TG of banking example

Fig. 8. AG of banking example Fig. 9. DG of banking example

Now we draw the evolution graphs (EGs) for each rule in the cycle as in the Build_EG

function. Fig. 10 explains the EG of the simulated execution starting by r1. The last

node in Fig. 10 is obtained before so the EG is cyclic and the termination property is

not guaranteed. Now the next step of the algorithm that uses the transaction will be

used. We draw the refined evolution graphs for each transaction. If we have two

transactions: T1: decrease_capacity and T2: increase_amount.

T1 has one update U1 that triggers r2 and T2 has one update U2 that triggers r4.

According to Build_REG we draw REG for each update in each trigger.

Fig. 11 shows REG of applying U1 the creation of new REG nodes is stopped where

the last node in Fig. 11 is obtained and it gives a cyclic situation that cannot guarantee

termination. Whereas in Fig. 12 U2 is applied the REG obtained is acyclic and the

creation of new nodes is stopped where there is not any rules are eligible for execution.

So the termination is guaranteed for transaction T2 only.

r2

r1

r5 r4
r3

r4

r2

r1

r3

r5

r4 r2

r1
r3

r5

Hany Harb
1
, Hamdy Kelash

1
 and Ahmed Shehata

3

174

Fig. 10. EG of banking example starting by r1

Fig. 11. REG for U1 in transaction T1

Fig. 12. REG for U2 in transaction T2

7. CONCLUSIONS

We have presented a SRTA (Static Rule Termination Analysis) that used for capturing

termination in active database systems. This algorithm can be applied to existing active

rule languages without particular restrictions. It is based on the notion of abstract state,

evolution and refined evolution graphs which encode the simulated execution of

triggering, activation and deactivation relations among rules. A new System (STE) that

based on SAMOS is proposed that is suitable for our algorithm. The termination

analyzer is the main part that execute our approach SRTA. We have shown that we can

capture a large class of terminating rules by evolution graphs when next rule for

execution is selected as in [15]. The refined evolution graphs and transactions are used

when the termination cannot be guaranteed. This algorithm can be considered as a

specific algorithm where it can guarantee termination only for those transactions.

SRTA algorithm uses the deferred execution semantic where a rule action can be

postponed. By that more termination cases can be detected than that detected in the

immediate execution as in [5, 13].

r1

s1 s
a
2 s

a
3

r2

sa
1 s2 s

a
3 s

a
5

r3

sa
1 s

a
2 s3 s

a
5

r5

sa
1 s

a
2 s

a
3 s5 r1

s1 s

a
2 s

a
3 s

a
5

sa

1 s2 s
a
3 s

a
5

r1

r2

 s2

 sa
2 s3

U1

r2

sa
1 s

a
2 s

a
3 s5 r1

r3

s1 s
a
2 s

a
3 s

a
5

r5

sa
1 s2 s

a
3 s

a
5

r1

r2

sa

1 s
a
2 s3 s

a
5

 s4

 sn
2 s

a
4

U2

r4

STATIC TOOL ENVIRONMENT FOR RULE TERMINATION….

175

REFERENCES

[1] J. Widom, S. Ceri, Active Database Systems: Triggers and Rules for Advanced

Database Processing; Morgan-Kaufmann, San Francisco, California 96.

[2] Norman W. Paton, Active Rules in Database Systems, Springer-Verlag New York

1999.

[3] A. Vaduva, S. Gatziu, and K. R. Dittrich, "Investigating Termination in Active

Database Systems with Expressive Rule Languages," Proc. of 3rd Intl. Workshop

on Rules in Database Systems, RIDS 97, Skovde, Sweden, June 97.

[4] S. Gatziu, and K. R. Dittrich, "Detecting Composite Events in Active Database

Systems Using Petri Nets," Proc. of the 4th Intl. Workshop on Research Issues in

Data Engineering: Active Database Systems, RIDE-ADS Houston, 94.
[5] D. Montesi, E. Bertino, M. Bagnato, “Refined rules termination analysis through

transactions,” In proceeding of the information systems 28, 2003, pp. 435-456.

[6] A. Aiken, J.M. Hellerstein, J. Widom, “Static analysis techniques for predicting the

behavior of database production rules,” ACM Transactions on Database Systems,

1995, pp. 3–41.

[7] J. Widom, “The starburst rule system: language design, implementation, and

applications,” IEEE Data Engineering Bulletin (1992), pp. 15–18.

[8] E. Baralis, S. Ceri, S. Paraboschi, “Improved rule analysis by means of triggering

and activation graphs,” RIDS’95, Lecture Notes in Computer Science, Springer,

Berlin, 1995,pp. 165–181.

[9] Detlef Zimmer, Axel Meckenstock, and Rainer Unland, "Using Petri Nets for rule

Termination Analysis,", In proc. of Workshop on Databases: Active and Real-

Time, Rockville, Maryland, Nov. 1996.

[10] D. Montesi, M. Bagnato, C. Dallera, “A Termination Analysis in Active

databases,” In Proceedings of the IDEAS’99, IEEE Computer Society Press,

Montreal, 1999.

[11] J. Gray, A. Reuter, Transaction Processing: Concepts and Techniques, Morgan-

Kaufmann, 1993.

[12] A. Aiken, J. M. Hellerstein, J. Widom, “Behavior of Database Production Rules:

Termination, Confluence and Observable Determinism,” ACM-SIGMOD, 1992.

[13] D. Montesi, E. Bertino, M. Bagnato, “Rules termination analysis investigating the

interaction between transactions and triggers,” in: Proceedings of the IDEAS’02,

IEEE Computer Society Press, Silver Spring, MD, 2002.

[14] Weinand A., Gamma E., Marty R. “Design and Implementation of ET++, a

Seamless Object-Oriented Application Framework,:” Structured Programming,

Vol. 10, 1989.

[15] H. Harb, H. Kelash, A. Shehata. “Termination Analysis in Active Databases By

Using Evolution Graphs,” ITI 3rd International Conference on Information &

Communication Technology 2005.

Hany Harb
1
, Hamdy Kelash

1
 and Ahmed Shehata

3

176

 استحداث أداة لتحليل خاصية الانتهاء بواسطة تهذيب الرسم المطور للقواعد

قع ييخ اييمبجدي لتييل ممكتييخ نيييك ب و ع تيي ك مباييل فييه ييي مباييل فييه اييلب ب قميي يي
 يييي ب .يييييملخ اييييلب ب اييييمبجدي ت.ييييمالي مجت يييي ج.ييييي عجمفيييي ق .ييييي ب قت يييي ل مل يييي فييييه م

Evolution Graphs ايييلل ب مجت ييي ممييي يه منيييوتخ ب مبايييل م ييييل فيييه م ييي ب .ييييمل
مم.يييمالي اصييي وا ب مبايييل ب م نيييتم مب معقيييتم مب مجت ييي ب .يييمال فيييه بامتييي ج ب ايييل

ييل ميمنيف يل قيخخ مايلب ب م ت فه ب م فتل . ال فه بيمن ف الل ل ب م لال ب مه ي م
ب اييمبجدي مييي معلتكييف قجزيي ف ييدع فييه م يي اييلي بيمنيي ف ا صييت بلا معيي ع قمعييلتخ ق.ييتم

مممكتيخ ب مبايل ر يجبعبل ف يمخ قعيلب ب معيلتخ ميي Refined Evolution Graph مج.يي
بيمن ف م لال أيثج ي ميل ميمنف ل قخخ ميي ب ميجبت مجيتين ق ي وه تعم يل اكيه مجيتين

 ييإ ازيي ف مق يي مجميي يييه ت .يين active DBMS SAMOS عييجمف اييم ق يي وه
ب اييييييمبجدي متيييييي أل أ ييييييدبع اييييييلب ب مجيتيييييين م ييييييمي قم فتييييييل امييييييمبل ب اييييييمبجدي ممييييييي ا ييييييخ

Implementation خ لأ دبع ل الب ب دع ب مجت

	Fig. 1. Evolution Graph node
	Fig. 4. Function Build_REG
	Fig. 7. TG of banking example
	Fig. 8. AG of banking example Fig. 9. DG of banking example

	Fig. 3. Function Build_EG

