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 A new algorithm for static rule termination analysis within active 

databases is introduced. This algorithm uses evolution graphs which 

simulating rule processing statically and considering both rule activation 

and deactivation. This algorithm has been refined for some cases that 

cannot be assured of termination this refinement by using Refined 

Evolution Graphs and analyzing transactions and triggers. A Static Tool 

Environment is proposed that can be used in termination analysis 

algorithm. The Static tool proposed is suitable for this algorithm where its 

component can execute the proposed algorithm. We show that several 

termination analysis algorithms are captured with our algorithm. The 

proposed algorithm tests rule termination is presented considering 

deferred and detached executions. The proposed algorithm turns out to be 

practical and general with respect to various rules languages and thus it 

may be applied to many databases. 

KEY WORDS:  Active database, Static tools, transactions, evolution 

graphs, triggers, nontermination analysis 

 

1. INTRODUCTION 

Active databases have been the focus of several researches aiming to extend the 

functionality of traditional (passive) databases [1, 2]. They generally use active rules to 

express their active behavior. Active rules have a tripartite structure, called event 

condition action (ECA). An important issue in designing a set of rules is to generate 

rules for which it is possible to guarantee the execution termination. In fact, rules can 

trigger each other infinitely. This behavior is not acceptable, and thus many 

commercial systems impose severe restrictions to prevent non-terminating rules 

execution. 

There are three ways to approach termination. A common way (supported by 

commercial products) is to handle termination only during rule execution. That means  
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the system assumes that an infinitely cascading triggering takes place if a specific 

upper bound of triggered rules has been reached and thus it stops rule execution. The 

drawbacks are that counters may either cause abrupt ending even if rule processing 

would have terminated on its own in a few more steps or loops are let to execute for 

too long time before the system can halt them. This approach handles the effects but 

cannot remove the causes of infinite triggering [3]. 

A better way to handle termination for a given set of rules is by means of termination 

analysis, which aims to detect rule subsets that may potentially lead to infinite 

triggering of rules. If such a rule subset exists, the rule developer has to modify the 

specification of some rules and investigate termination again. The iterative process is 

performed until termination analysis guarantees that the rule set will never manifest a 

nonterminating rule behavior [4]. 

Termination analysis may be static or dynamic. Static analysis investigates rule 

definitions at compile time in order to determine subsets consisting of rules that may 

trigger (directly or indirectly) each other. When no such rule subsets are found, 

termination of rule execution is guaranteed for the given rule set. Even if static analysis 

is sometimes too conservative in relation to the actual behavior, it never yields 

unreliable information. It guarantees termination in all possible situations. In contrast, 

dynamic methods examine rule behavior at runtime. Until now, they could not 

guarantee termination for all possible combinations of initial database states and event 

occurrences, no matter if applied before or during the actual use of the active DBMS. 

Thus, dynamic analysis cannot substitute; at most it can complement or refine static 

analysis methods [5]. 

In this paper, a new analysis method that builds over the analysis of three relations 

among rules has been presented that can be statically checked. These relations are 

triggering, activation and deactivation. There are several static and runtime approaches 

for active rules termination analysis. We consider only static methods that at compile 

time detect potential non-terminating active rules execution. Furthermore, no method 

uses information provided by updates used to form transactions. There are static 

methods using only some of the active rules properties like Starburst [6, 7], which use 

only the triggering property, and Chimera [8, 9], in which triggering and activation are 

considered but deactivation is used only in restricted cases (a rule cannot deactivate 

other rules, but only itself). Our aim is to propose a static analysis method that 

considers how user transaction information and structures can affect active rule 

execution termination. The proposed method improves a technique, introduced in [10]. 

This new method (refined method) considers the analysis of three relationships among 

rules (triggering, activation and deactivation) that can be statically checked. 

Furthermore the properties of updates forming transactions that trigger active rule 

processing are used to enrich analysis. Refined method is simple and easy to 

understand, but powerful and flexible enough to be used with current active database 

languages. This is possible because it investigates relationships among rules and 

transaction updates that are independent of the specific rule language. 

The remainder of this paper is organized as follows. In section 2 ECA Rules in 

SAMOS are presented. An overview of our approach and some basic concepts that 
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includes graphs and abstract states for understanding our approach are explained in 

Section 3. Rule termination analysis using transactions and our algorithm are 

introduced in section 4. The proposed Static Tool Environment and its component and 

how it is suitable for SRTA algorithm are presented in section 5. An example for 

explaining our algorithm is introduced in section 6. Finally conclusions are introduced 

in section 7. 

2. ECA RULES IN SAMOS 

A rule definition language is used for the specification of the Event/Condition/Action 

(ECA) rules. Each rule consists of an event, a condition and an action. An event is an 

occurrence the active database system must react to. When an event occurs, all 

respective rules are triggered. If the condition of a triggered rule is fulfilled then its 

action is executed. A condition may be a predicate on the database state or a database 

query. If the result of evaluation is true or non-empty, respectively, the condition is 

satisfied. The action specifies the reactive behavior of the rule. It may contain data 

modification and retrieval (in relational DBMS), transaction operations like commit or 

abort, etc. 

 

3. TERMINATION OF RULE EXECUTION 

This section includes an overview of our approach and the basic concepts of the 

proposed algorithm. 

 

3.1. Our Approach 

In our approach we consider three relations among rules: triggering, activation, and 

deactivation. Informally, there is a triggering relation between two rules if one of the 

rule’s actions has the corresponding event in the other rule. There is an activation 

relation, if the possible execution of the rule’s actions makes the other rule’s condition 

true. Finally, there is a deactivation relation, if the possible execution of the rule’s 

actions makes the other rule’s condition false. A triggered and activated rule is 

considered potentially executable (or eligible for execution). We represent the fact that 

a rule may deactivate other rules by considering it in conjunction with rules triggering 

and activation through a new graph: the evolution graph (EG). We simulate rule 

execution using EGs that store information about the simulated execution in abstract 

states. Abstract state models the fact that for termination analysis we are interested to 

observe states where a rule is triggered, activated, deactivated both triggered and 

activated, or neither triggered nor activated. A similar structure, called refined 

evolution graph (REG), is defined when we consider in the analysis also transactions. 

Providing termination for a specific transaction, although allowing capturing more 

termination cases, is weaker than providing termination in the general case. Indeed, a 

rule set could be terminating under a transaction currently defined for the system, but 

be not terminating for another transaction. 
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3.2. Basic Concepts  

The basic concepts needed for explanation of our algorithm. 

 

3.2.1. Active Rules and Programs 

The execution semantics describes the behavior of an active program. We say 

that when a rule is triggered (if several rules are triggered, a selection policy 

must be established), the system evaluates its condition. If the condition is 

satisfied, the rule is eliminated from the triggered rules set and its action is 

performed. If the condition is not satisfied, then there are two different ways to 

proceed: in the first case an event-preserving the system leave the rule in the 

group of the triggered rules set, and then have more than one triggered rule. The 

other the system eliminates the rule from the triggered rules set; and that is 

called an event-consuming [10]. In this paper we use event-preserving execution 

model. 
Finally, a transaction T = U1, U2, … , Un is an atomic sequence of operations, that 

means a sequence of insertions, deletions and updates, such that all of them are 

executed or none has to be performed [11]. 

 

3.2.2. Graphs 

We consider three different relations among active rules. Let ri and rj be two rules then  

 ri triggers rj , if one of the ri's actions has the corresponding event in rj ; 

 ri activates rj , if the possible execution of the ri's actions makes rj 's condition true; 

 ri deactivates rj , if the possible execution of the ri's actions makes rj 's condition false. 

These relations can be described with three directed graphs denoted as Triggering 

Graph (TG), Activation Graph (AG) and Deactivation Graph (DG), respectively. 

Nodes represent rules and arcs stand for the specific relations among rules. Triggering 

relation was first introduced in [12]. It describes the rules mutual ability to “wake up” 

each other. The notion of cycle is defined starting from a TG. We define a cycle C in P 

as a subset C of P, such that the rules of C form a cycle in TG. We say that a rule is 

involved in the execution by a cycle C if the rule is activated, deactivated or triggered 

by the rules of C. The notion of activation relation was introduced in [13]. 

 

3.2.3. Abstract State 

Now we introduce the notion of rule abstract state describing rule characteristics, such 

as whether the rule is triggered, activated or deactivated or relevant combinations of 

these relations. We only want to determinate a way to characterize a rule in a certain 

possible execution point. In this way we can establish the relevant abstract 

computational states with respect to termination. Let as be a function that for each rule 
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describes its abstract state. Every rule ri of an active program can be in one of the four 

abstract states as(ri)= si , s
t
i , s

a
i or s

n
i  

An abstract state can be changed by update execution (i.e. rule action or user update 

operation). We can calculate the new configuration of ri according to the following 

rules [6]: 

if as(ri)= s
a

i and ri is deactivated then as(ri) will be = s
n

i . 

if as(ri)= s
a

i and ri is triggered then as(ri) will be = si . 

if as(ri)= s
n

i and ri is triggered then as(ri) will be = s
t
i . 

if as(ri)= s
n

i and ri is activated then as(ri) will be = s
a

i . 

 

4. RULE TERMINATION ANALYSIS USING TRANSACTIONS 

In order to understand our algorithm, we must define the evolution graph and refined 

evolution graph that are explained in the following sections. 

4. 1. Evolution Graph 

Let P be an active program consists of a group of rules constraints the database 

operations. S be an abstract states to explain the state of each rule at this time; R be a 

subset of rules that is the rule set for which the simulated execution is postponed when 

more than one rule is eligible for execution that is when more than one rule can be 

executed. R is empty whenever there is only one rule at a time that is eligible for 

execution (i.e. is triggered and activated). Together S and R will form a node of the 

Evolution Graph as shown in Fig. 1. 

 
 

 

Fig. 1. Evolution Graph node 

 

An arc from node Ni to node Ni+1 of an EG, specifies the abstract state changes 

operated by the execution of the triggered and activated rule of Ni. Each arc is labeled 

with the rule for which we simulate the execution statically.  

For each cycle Ci, a number ni of EG has to be generated where ni is the number of 

rules for cycle Ci. This is due by the fact that we do not know from which rule of the 

cycle the execution may start. So we must consider in our simulation all possible cases. 

Therefore the starting node of an EG is just composed by the abstract states of Ci's 

rules, where one rule alone is triggered and activated while the others are only 

activated. This is the worst case. Subsequent triggering may cause non-terminating 

execution of the cycle. A rule cannot be activated and deactivated at the same time 

from the same rule, because we examine only the final effect of the execution about the 

rule action part. 

 

 S R 
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4. 2.  Refined Evolution Graph 

The EG considers only the rules forming a cycle over the TG. But the REG is used 

with transactions we do not consider all active rules, because we know which rules will 

be involved by transaction execution. Each node in the REG will be as in the EG. 

An arc from node Ni to node Ni+1 of REG specifies the abstract state changes resulting 

from the execution of the triggered and activated rule of Ni or from the execution of 

one of the updates in T. Each arc is labeled with the rule number or with the transaction 

update for which we simulate execution. The initial node of all possible REG (not 

depending on user transactions) is empty because no update has executed yet [6]. 

The creation of nodes in EG or REG stops when: 

 The new node is obtained before (it finds a cycle while creating it). Or 

 When a node has not any abstract state ready for running (it is acyclic state). 

4. 3. Testing Termination 

If an abstract state set presents itself again during a computation we cannot guarantee 

the termination. Using EG and REG this termination test can be implemented by 

checking the presence of a cycle. If the graph is acyclic we can assure the termination; 

otherwise, we leave the decision for the rule developer to improve the rule set. 

4. 4.  SRTA Algorithm  

In this section we explain our Static Rule Termination Analysis (SRTA). The 

algorithm depicted in Fig. 2. This algorithm calls two functions; Build_EG that build 

the evolution graphs for each rule in a cycle Fig. 3. The other is Build_REG that builds 

the refined evolution graphs for each transaction Fig. 4. The two calling functions use a 

selection method to select the next rule for execution when more than one rule is 

eligible for execution according to their properties triggering, activation and 

deactivation. 

ALGORITHM SRTA 

BEGIN 

Draw the TG. 

IF there are not any cycles in TG,  

THEN termination guaranteed and EXIT. 

Draw the AG and DG.  

FOR EACH cycle: 

 IF there is a rule that deactivated and not activated again  

 THEN termination guaranteed and EXIT. 

FOR EACH rule ri in the cycle  

 Build_EG( ri). 

 IF all EGs are acyclic 

 THEN termination guaranteed and EXIT. 

FOR EACH update Ui in each transaction 

  Build_REG(Ui). 

  IF the REG is acyclic 

  THEN termination guaranteed. 

   ELSE termination is not guaranteed and designer improves the rule set.   

END.                                        

Fig. 2. SRTA Algorithm 



STATIC TOOL ENVIRONMENT FOR RULE TERMINATION…. 
 

169 

FUNCTION Build_EG(ri) 

BEGIN 

1. The abstract state for ri is Si other rules in the cycle are activated only S 
a
. 

2. Change the abstract states for each rule according to the simulation 

execution of the rule i. 

3. f there are more than one rule is eligible for execution (activated and 

triggered) then select one of these rules according to: 

a. The rule that will trigger a smaller number of rules according to TG. 

b. If there is a number of rules will trigger equal number of rules in TG, 

select one that activates small number of rules according to AG. 

c. If there is a number of rules will activate equal number of rules, select 

one that deactivates large number of rules according to DG. 

4. The creation of new nodes stops when the new node is obtained before 

(cyclic) or there are not any rules eligible for execution (acyclic).  

END. 

 

 

FUNCTION Build_REG(Ui) 

BEGIN 

1. Draw an empty node. 

2. Update abstract state of the rule that affected by the update in the 

transaction, the arc from the empty node to new node is labeled with Ui . 

3. Change the abstract states for each rule according to the simulation 

execution of the rule i . Assuming the abstract states for all rules at first 

appending in REG are S
a

i and need triggering only to be eligible for 

execution, label the arc with the rule that executed. 

4. The creation of new nodes stops when the new node is obtained before 

(cyclic) or there are not any rules eligible for execution (acyclic). . 

END 

Fig. 4. Function Build_REG 

 

5.  STATIC TOOL ENVIRONMENT  

Static Tool Environment (STE) is a proposed architecture can be built which is suitable 

for applying out SRTA algorithm. This architecture is coupled to the active object-

oriented DBMS SAMOS [2] but the concepts are applicable to other active DBMS 

with similar functionality as well. The idea is to derive from the particular case of 

SAMOS features and implementation issues that should be considered in the 

construction of active rule development environments in general [14]. 

5. 1. Architecture 

The STE(static tools environment) is strongly connected to the active DBMS prototype 

SAMOS. The architecture is a layered architecture see Fig. 5 consisting of ObjectStore 

and an active layer on top of it. These two layers are main components in SAMOS. The 

active layer includes rule execution component and a rule manager. The rule manager 

is responsible for the persistent storage and retrieval of information about event and 

Fig. 3. Function Build_EG 
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rule definitions. Events, conditions, actions and rules are represented as objects. The 

Static Tool Environment may be considered as another layer that wraps the kernel of 

SAMOS. However, the developer makes use of the STE during application 

development. Next sections will explain each component of STE layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. 2.  STE layer 

We have STE layer that include an editor; a browser and a termination analyzer, which 

are the main parts of the STE. They are used before the execution of applications, 

during the specification and design of Active Database Systems. The STE is strongly 

connected to the active DBMS prototype SAMOS. The browser and the editor are 

graphical interfaces for easily inserting and retrieving rule definitions from the 

rulebase. The termination analyzer is responsible for detecting rules that may generate 

nontermination as a consequence of their interactions. We will explain each part in 

more detail. 

Browser 
 

The task of the browser is to support the navigation through the rulebase. The required 

information is provided by the rule manager, which makes use of the retrieval facilities 

of the underlying DBMS ObjectStore for querying the rulebase. The returned 

information may include: 

 Lists of event, condition, action and rule definitions. 

 Lists of rules that an event will be triggered by that action. 

 Lists of rules that their conditions truth values turned to be true and will be activated. 

 Lists of rules that their conditions truth values turned to be false and will be deactivated. 

 

S
A

M
O

S
 

STE layer 

Editor Termination analyzer    Browser  

Rule manager Rule Execution 

Component 

ECA-

rules 

OO DBMS            Object  Store 

Active layer 

Fig. 5. The integration of STE with the active DBMS SAMOS 
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Therefore, the browser allows the inspection of the rulebase and may easily return 

various information about rules themselves and dependencies between rules and their 

components.  

The browser consists of four blocks: event, condition, action and rule browser. These 

blocks are strongly coupled so that the control easily flows between them when the 

browser is in use. The editor and the browser have been implemented by making a 

user-friendly interface. 
 

Editor 

The editor offers a graphical interface for the definition, updating and deletion 

of rules and their constituent parts. The editor translates the input in the rule 

language of SAMOS. Then, the rule compiler is invoked. This, in turn, makes 

use of the rule manager that finally stores the new data in the rulebase. The rule 

compiler is responsible for the syntactic and partly semantic analysis of rule 

definitions. Its inputs are event and rule definitions with the syntax of the rule 

definition language available from the editor. The syntax and semantic analysis 

performed by the rule compiler include the parsing of actions and conditions. If 

the syntactic and semantic analyses have been successful, the compiler uses the 

interface offered by the rule manager to create corresponding objects that are 

persistently stored in the rulebase. 
 

Termination analyzer 

The architecture of the termination analyzer is more complex. Fig. 6 explains the main 

components in that part of the STE. It contains components that are responsible for the 

steps to be performed as described by our approach for termination analysis. 

 

 

 

 

 

 

 

 

Fig. 6. The Termination Analyzer 

 

The A/E relationship component: performs the syntactic analysis for each action and 

the related events will be signaled by it. The information derived from the syntactic 

analysis is persistently stored. Thus, it may be accessed and displayed using the 

browser. The output of the A/E component is passed to the triggering graph builder 

where by it we draw the triggering graph and determines the cycles that may be not 

terminated. These cycles are passed to the A/C relationship component. That detects 

 
A/E Comp. A/C Comp. TG Builder 

EG Builder  
Conflict Resolution 

Comp. 
 

REG builder 
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each action of each rule in the cycle to know its effect on the conditions of other rules. 

If the execution of the action of a rule modifies the truth value of a condition of another 

rule to true then the first rule activate the other, if the truth value is modified to false 

then this rule is deactivated by the first rule. Cycles are false if there is a rule in the 

cycle deactivated and not activated again. The correct cycles are passed to Evolution 

Graph Builder (EG Builder). The EG Builder builds Evolution Graphs, one for each 

rule in the cycle. When more than one rule is eligible for execution, the conflict 

resolution part will select next rule for trying to guarantee termination of cycle. If the 

termination is not guaranteed the REG builder will be used to build the REGs 

according to the group of transactions requested by the database application and finally 

gives a report of the transactions that will be terminated. 
 

 

6. USING THE STE 

 For illustrating the functionality of the STE, how our SRTA algorithm can be 

applied on it. We consider a banking application in the credit department that concerns 

with some of operations can be done for customers and the rules restrict these 

operations. Five active rules are defined and the coupling mode of the rules are 

“deferred”. 

Example: 

Rule R1: ON decrease _overdraft 

 IF  account_type =Normal 

 DO decrease_capacity(2000)  

Rule R2: ON decrease_capacity 

 IF amount <1000 

 DO decrease rate(1) 

Rule R3: ON decrease_rate 

 IF account_type =Normal 

 DO decrease _overdraft(20) 

Rule R4: ON increase_amount 

 IF account_type= important 

DO decrease_capacity(1000) 

AND increase_amount(200) 

Rule R5: ON decrease _overdraft 

 IF capacity < 5000 

 DO decrease_amount(500). 

 

According to our algorithm, first we start by drawing the triggering graph (TG) of 

these rules as in Fig. 7. 

There is a cycle C1 ={r1,r2,r3} so the termination of rules can not be guaranteed as in 

the algorithm. The next step is to draw the activation (AG) and deactivation graphs 

(DG) as in Figures 8, 9. 

There is a rule r2 in the cycle C1 deactivated by rule r4 but it is activated again by r5 so 

and then the termination of rules cannot be guaranteed as in the algorithm.  
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Fig. 7. TG of banking example 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. AG of banking example   Fig.  9. DG of banking example 

 

Now we draw the evolution graphs (EGs) for each rule in the cycle as in the Build_EG 

function. Fig. 10 explains the EG of the simulated execution starting by r1. The last 

node in Fig. 10 is obtained before so the EG is cyclic and the termination property is 

not guaranteed. Now the next step of the algorithm that uses the transaction will be 

used. We draw the refined evolution graphs for each transaction. If we have two 

transactions:  T1: decrease_capacity and T2: increase_amount.   

 

T1 has one update U1 that triggers r2 and T2 has one update U2 that triggers r4. 

According to Build_REG we draw REG for each update in each trigger. 

 

Fig. 11 shows REG of applying U1 the creation of new REG nodes is stopped where 

the last node in Fig. 11 is obtained and it gives a cyclic situation that cannot guarantee 

termination. Whereas in Fig. 12 U2 is applied the REG obtained is acyclic and the 

creation of new nodes is stopped where there is not any rules are eligible for execution. 

So the termination is guaranteed for transaction T2 only.  

 

 

r2 

r1 

r5 r4 
r3 

r4 

r2 

r1 

r3 

r5 

r4 r2 

r1 
r3 

r5 



Hany Harb
1
, Hamdy Kelash

1
 and Ahmed Shehata

3
 

 

174 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 10. EG of banking example starting by r1 

 
 

 

 

 

Fig. 11. REG for U1 in transaction T1 

 

Fig. 12. REG for U2 in transaction T2 

 

7. CONCLUSIONS 

 

We have presented a SRTA (Static Rule Termination Analysis) that used for capturing 

termination in active database systems. This algorithm can be applied to existing active 

rule languages without particular restrictions. It is based on the notion of abstract state, 

evolution and refined evolution graphs which encode the simulated execution of 

triggering, activation and deactivation relations among rules. A new System (STE) that 

based on SAMOS is proposed that is suitable for our algorithm. The termination 

analyzer is the main part that execute our approach SRTA. We have shown that we can 

capture a large class of terminating rules by evolution graphs when next rule for 

execution is selected as in [15]. The refined evolution graphs and transactions are used 

when the termination cannot be guaranteed. This algorithm can be considered as a 

specific algorithm where it can guarantee termination only for those transactions. 

SRTA algorithm uses the deferred execution semantic where a rule action can be 

postponed. By that   more termination cases can be detected than that detected in the 

immediate execution as in [5, 13].    
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قع ييخ اييمبجدي  لتييل  ممكتييخ  نيييك  ب و ع تيي   ك مباييل فييه   ييي  مباييل فييه اييلب ب قميي     يي  
 يييي  ب .يييييملخ اييييلب ب اييييمبجدي ت.ييييمالي مجت يييي  ج.ييييي  عجمفيييي  ق .ييييي ب قت  يييي ل مل يييي  فييييه م 

Evolution Graphs  ايييلل ب مجت ييي  ممييي يه منيييوتخ ب  مبايييل م ييييل فيييه م  ييي  ب .ييييمل
مم.يييمالي اصييي وا ب  مبايييل ب م نيييتم مب معقيييتم مب مجت ييي  ب  .يييمال   فيييه بامتييي ج ب   ايييل  

ييل ميمنيف  يل  قيخخ مايلب ب م  ت  فه ب م فتل . ال فه بيمن ف الل  ل ب م لال ب مه  ي م
ب اييمبجدي مييي معلتكييف قجزيي ف   ييدع فييه م  يي  اييلي بيمنيي ف ا صييت  بلا معيي ع قمعييلتخ ق.ييتم 

مممكتيخ ب  مبايل  ر يجبعبل ف يمخ قعيلب ب معيلتخ ميي Refined Evolution Graph مج.يي 
بيمن ف م لال أيثج  ي ميل ميمنف  ل  قخخ ميي ب ميجبت مجيتين ق ي وه تعم يل اكيه مجيتين 

 ييإ ازيي ف  مق يي    مجميي   يييه ت  .يين  active DBMS SAMOS عييجمف اييم ق يي وه 
ب اييييييمبجدي متيييييي  أل أ ييييييدبع اييييييلب ب مجيتيييييين م ييييييمي قم فتييييييل امييييييمبل ب اييييييمبجدي ممييييييي ا ييييييخ 

Implementation   خ لأ دبع  ل الب ب  دع ب   مجت 
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