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This paper develops a decentralized fuzzy control scheme for MIMO 
nonlinear second order systems with application to robot manipulators via 
a combination of genetic algorithm and fuzzy systems. The controller for 
each joint consists of a feedforward fuzzy torque-computing system and a 
feedback fuzzy PD system. The feedforward fuzzy system is trained and 
optimized off-line by an improved genetic algorithm, that is to say, not only 
the parameters but also the structure of the fuzzy system is self-organized. 
The feedback fuzzy PD system, on the other hand, is used to keep the 
closed-loop stable. The rule base consists of only four rules per each 
degree of freedom (DOF). Furthermore, the fuzzy feedback system is 
decentralized and simplified leading to a computationally efficient control 
scheme. The proposed control scheme has the following merits: 1) it needs 
no exact dynamics of the system and the computation is time-saving 
because of the simple structure of the fuzzy systems; and 2) the controller 

is insensitive to various parameters and payload uncertainties. These are 
demonstrated by analysis of the computational complexity and various 
computer simulations.  

KEYWORDS: Robot manipulators, Genetic algorithm, Feedforward 
fuzzy torque computing, Fuzzy PD feedback control, Closed-loop stability, 
Computational complexity, Parametric and payload uncertainties  

 
1. INTRODUCTION 

In many practical applications where high performance trajectory tracking is required, 
the control scheme in Fig. 1 is commonly used to enable the independent design of the 
feedforward and the feedback control [1]. The feedforward control FFu  is applied to 
achieve the desired tracking performance of the outputθ , whereas the feedback control 
is designed such that the system Σ  is appropriately stabilized and robustified against 
model uncertainties. In comparison to the broad spectrum of available design methods 
for feedback control, only few methods are known for a systematical feedforward 
control design, which forms a contrast to the respective demand in industry. The reason 
for this methodological gab is related to the system inversion required in the course of 
the feedforward control design and to the respective difficulties arising with nonlinear 
systems, [2]. Feedforward can also be made from disturbances [3,4], but this problem 
is different from feedforward from the set-point, and it is not treated in this paper.  
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Fig. 1. Structure of the control scheme with systemΣ , feedback control FBΣ  and 

feedforward control FFΣ .  
 

Generally speaking, multiple-input multiple-output (MIMO) systems usually 
have characteristics of nonlinear dynamics coupling. Therefore, the difficulty in 
controlling MIMO systems is how to overcome the coupling effects between the 
degrees of freedom. The computational burden and dynamic uncertainty associated 
with MIMO systems make model-based decoupling impractical for real-time control. 
Adaptive control has been studied for many decades to deal with constant or slowly 
changing unknown parameters. Applications include manipulators, ship steering, 
aircraft control and process control. Although the perfect knowledge of the inertia 
parameters can be relaxed via adaptive technique, its real practical usefulness is not 
really clear and the obtained controllers may be too complicated to be easily 
implemented, [5]. Also, because many design parameters, like learning rates and 
initialization of the parameters to be adapted, … etc., have to be considered in 
controller construction, most existing methodologies have limitations. Moreover, 
owing to the different characteristics among design parameters, attaining a complete 
learning, while considering an overall perfomance goal, is an extremely difficult task.  

Fuzzy controllers have demonstrated excellent robustness in both simulations 
and real-life applications, [6]. They are able to function well even when the controlled 
system differs from the system model used by the designer. A customary for this 
phenomenon is that fuzzy sets, with their gradual membership property, are less 
sensitive to errors than crisp sets. Another explanation is that a design based on the 
“computing with words” paradigm is inherently robust; the designer forsakes some 
mathematical rigor but gains a very general model which remains valid even when the 
system’s parameters and structure vary.  

However, it has been proved that standard fuzzy logic controllers are not 
suitable for loop controllers [7]. This fact is reffered to that there are many tuning 
parameters in membership functions and control rules. Furthermore, standard fuzzy 
logic controller has a long computation time since it performs fuzzification, inference, 
and defuzzification processes in determining control inputs. Thus, it is difficult for 
control inputs of standard fuzzy logic control to be computed within the sampling time 
of a loop controller. For this reason, complexity reduction of fuzzy feedback 
controllers was the topic of many researchers [7,8].  

In this paper, we focus on the design of appropriate fuzzy systems in 
feedforward and feedback paths. In the feedforward path, the capabilities of genetic 
algorithms are used off-line to determine the optimal parameters and structure of fuzzy 
systems which can approximate the inverse dynamics of the system. No mathematical 
model is needed. In the feedback path, a stable fuzzy feedback controller is designed 
based on the Lyapunov direct method. Only four rules constitute the rule base for each 
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DOF. Furthermore, the fuzzy feedback controller is decentralized and simplified 
leading to a computationally efficient fuzzy control scheme. A primary version of this 
feedback controller has been introduced in [9] by the author of this paper. Here, we 
revisit it and design an adaptive mechanism to determine its gains on-line. To 
demonstrate the proposed approach, we use the example of robotics because it is a 
well-known example of nonlinear MIMO second order systems.  

The paper is outlined as follows: in Section 2, the robot model and the nominal 
value of its parameter are introduced. This model is used to generate simulation data 
instead of experimental data from real robot platform. Section 3 explains the fuzzy 
models of the inverse dynamics of the robot. The models are two input one output 
fuzzy systems. They are used in the feedforward path. In Section 4, we explain how 
genetic-algorithms can be used off-line to optimally determine parameters and 
structure of the fuzzy systems. In Section 5, the fuzzy feedback controller is derived 
based on the Lyapunov direct method. Furthermore, the controller is simplified, i.e. it 
has a closed form mathematical relation with only three parameters need to be tuned 
and the controller gain is adaptively determined on-line so as to minimize a 
performance index. Section 6 discusses the computational complexity of the proposed 
control scheme in comparison with previous works. Simulation results are 
demonstrated in Section 7. Finally, some concluding remarks are given in Section 8.  
 

2. ROBOT MODELING AND THE CONTROL STATEMENT 

Without the loss of generality, we take the two-link rigid robot shown in Fig. 2, as an 
example to demonstrate the proposed control scheme. The inverse dynamic model is 
expressed as [10,11]:  

)(),()( θθθθθθ GCMu ++= &&&&                                                                                     (1) 

where nR∈θ  is the joint angular position vector of the robot; nRu ∈  is the vector of 
applied joint torques (or forces); nnRM ×∈)(θ  is the inertia matrix, positive definite; 

nRC ∈θθθ &&),(  is the effect of Coriolis and centrifugal torques; and nRG ∈)(θ  is the 
gravitational torques. The physical properties of the above model can be found in [12]; 
however, they are not needed here. 

  For the robot shown in Fig. 2, (1) can be rewritten as:  
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where  

)sin(2)cos(2 2423111 θθ aaaM ++= , 222 aM = ,  
)sin()cos( 242321221 θθ aaaMM ++== , 

)cos()sin( 2423 θθ aah −= , )cos()cos( 212111 θθθ ++= bbG ,  
)cos( 2122 θθ += bG ,  

with 
2
1

22
1111 lmlmIlmIa eceeec ++++= , 2

2 ceee lmIa += , )cos(13 ecee llma δ= , )sin(14 ecee llma δ= , 

1111 glmglmb ec += , .2 ceeglmb =
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The nominal parameters of the two-link manipulator are chosen as follows:  
kgm  51 = , kgme  5.2= , ml  0.11 = , mlc  5.01 = , mlce  5.0= , 030=eδ , 2

1  36.0 kgmI = , 
2 24.0 kgmIe = .  

Position control, or also the so-called regulation problem is one of the most 
relevant issues in the operation of robot manipulators. This is a particular case of the 
motion control or trajectory control. The primary goal of motion control in joint space 
is to make the robot joints track a given time-varying desired joint position, 

Tddd ],[ 21 θθθ = . Several control architectures related to robot control can be found in 
literature ranging from the simple PD, learning based, adaptive, and adaptive/learning 
hybrid controllers. The reader is referred to [12,13] and the references included. The 
main advantage of the PD controller is that it can easily be implemented on simple 
microcontroller architectures. On the other hand, the performance obtained from PD 
controllers is not satisfying for most of the sensitive applications [13,14]. Most of the 
other aforementioned types of controllers suffer from the complexities and the huge 
number of calculations needed to be carried out on-line.  
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Fig. 2. An articulated two-link manipulator.  

 

3. DECENTRALIZED FUZZY MODELING OF THE ROBOT 

It should be noted that, for a planned trajectory, the desired torque depends not only on 
the trajectory, geometric and inertia parameters of the link itself, but also on the 
parameters of the other links and the payload at the end effector. In order to model the 
dynamics of each link with a fuzzy system, it is necessary to choose proper input and 
output variables. For the sake of computational simplicity, it is necessary and feasible 
to select a non-interactive fuzzy system. Here, only position and velocity are selected 
as two input variables and naturally the feedforward torque is selected as the output. 
Consequently, the fuzzy rules in the feedforward fuzzy controller are expressed in the 
following form:  

If )(kdθ  is iA1  and )(kdθ&  is iA2  then du  is i
FFu                                                      (2) 

where iA1  and iA2  are the fuzzy sets for dθ  and dθ& , i
FFu  is the crisp output of each 

fuzzy rule and k  is the time instant. Note that the premise variables do not appear in 
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the consequence part of the rules, because it is found that they do not make much sense 
for improving the precision of the fuzzy model. What is worse, they sometimes 
complicate the algorithm seriously. The fuzzy system in (2) is called Sugeno zero-
order model. Here, we call it as standard fuzzy system since it is widely used in 
literature [7,15-17]. If the rule base has M  rules altogether, the final output of the 
fuzzy model is calculated as follows: 

∑
∑
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1

1

)(

])([
)(                                                                                            (3) 

))](()),((min[)( 21 kAkAkw didii θθ &=                                                                             (4) 

No doubt, the performance of the fuzzy model is dependent on the structure 
and the parameters of the fuzzy rule base resulted from the learning procedure. Given a 
set of input-output data, the premise and consequence parameters can be determined by 
use of complex search algorithms, recursive least square algorithm and hybrid systems, 
[16]. In this paper, genetic algorithms are used to establish the feedforward fuzzy 
systems, which is the subject of the following Section.  
 

4. GENETIC ALGORITHM BASED FUZZY SYSTEMS 

Genetic algorithms are derivative-free stochastic optimization methods based loosely 
on the concepts of natural selection and evolutionary processes. Their popularity can 
be attributed to their freedom from dependence on functional derivatives and they are 
less likely to get trapped in local minima, which inevitably are present in any practical 
optimization application. Eventually, genetic algorithms can be used to determine the 
optimal parameters and structure of a fuzzy system given some optimality criterion.  

The solution of an optimization problem begins with a set of potential 
solutions (fuzzy systems) or chromosomes (usually in the form of bit strings) that are 
randomly selected. The entire set of these chromosomes comprises a population. The 
chromosomes evolve during several iterations or generations. New generations 
(offsprings) are generated utilizing the crossover, mutation and elitism technique. 
Crossover involves splitting two chromosomes and then combining one-half of each 
chromosome with the other pair. Mutation involves flipping a single bit of a 
chromosome. Elitism is a policy of always keeping a certain number of best members 
when each new population is generated. The chromosomes are then evaluated 
employing a certain fitness criteria and the best ones are kept while the others are 
discarded. This process repeats until one chromosome has the best fitness and is taken 
as the optimum solution of the problem. Figure 3 is a schematic diagram illustrating 
how a fuzzy system can be trained using genetic algorithms. A comprehensive review 
about genetic algorithms can be found in [18]. Reference [19] and [20] by the author of 
this paper also give other examples of using genetic algorithms to identify the fuzzy 
model parameters.  
The following remarks regarding genetic algorithms are in order.  

• The searching of the genetic algorithm starts from multiple initial states 
simultaneously and proceeds in all of the parameter subspaces in parallel, 
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which provides GA an excellent parallel processing ability and an inherent 
global optimization capacity.  

• Genetic algorithm requires almost no prior knowledge of the concerned 
system, which enables it to deal with completely unknown systems that other 
optimization methods may fail. 

• Genetic algorithm cannot evaluate the performance of a system properly at one 
step. For this reason, it can generally not be used as an on-line optimization 
strategy and is more suitable for fuzzy modeling rather than for fuzzy control. 

 

du

FFu

 

Fig. 3. Implementation flow chart of genetic algorithm.  
 

As the performance of a genetic algorithm depends on its parameters, a 
parametric study has been carried out to determine the optimal set of parameters. These 
parameters are the population size, number of generations, number of bits of each 
variable, crossover rate and the mutation rate. They are problem-dependent and should 
be selected carefully in order to achieve good results. For the problem under 
consideration, the following parameters are found to give the best results:  

(a) number of generations is 150, 
(b) population size is 50,  
(c) single point crossover with a rate of 0.90, 
(d) bitwise mutation with a rate of 0.1, and 
(e) number of bits which represent each variable is 16.  
It should be pointed out that in training the feedforward fuzzy system, the 

algorithm does not require full knowledge of the robot inverse model because the 
optimization is completely data-driven. In practice, the training data can be obtained by 
experimentation or by establishment of an ideal model. This is theoretically feasible 
and helpful for training and checking of the fuzzy system, despite that the derived 
model is not the same as the real one. In computer simulation, we need a model to 
emulate the behavior of a robot to collect data. The robot model (1) in Section 2 with 
the nominal parameter values mentioned there are used to emulate the robot motion. At 
the training stage, no parameter variations, and nonlinear friction are considered. The 
trajectory for off-line training is as follows:  
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)1(5.01
td e−= πθ  and )1(2

td e−= πθ                                                                          (5) 

At first, both input variables in each joint are partitioned into four subsets and 
thus 16 fuzzy rules in the standard form of (2) are set up for each joint. Then, genetic 
algorithm is used to tune the parameters of the fuzzy model within suitable ranges. In 
order to reduce the dimension of the searching space, the length of each gene should be 
limited as short as possible. To this end, each parameter to be optimized is normalized 
to a certain range. The tuning ranges of the two fuzzy models are given in Table 1.  
 

4.1. Genetic Algorithm Based Parameter Learning 

In order that the feedforward fuzzy model can realize the mapping of the robot inverse 
dynamics, the following quadratic form of performance index is established:  

P

kuku
J

P

k FF
d∑ = −

= 1
2)]()([

                                                                                       (6) 

where )(kud  and )(kuFF  are the desired torque computed from the model (system (1) 
or experimental data) and the torque computed from feedforward fuzzy model, 
respectively, and P  is the number of training sample.  

Because GA endeavors to maximize the fitness function, the fitness function of 
each gene (chromosome) is calculated as follows: 

J
F

+
=

1

1
                                                                                                                 (7) 

where J  is the performance index defined in (6) and 1 is introduced at the 
denominator to prevent the fitness function from becoming infinitely large.  

 

Table 1. Ranges of the premise and consequent parameters for the two 
fuzzy models. 

 

Parameters  Range 
Premise parameters for fuzzy model 1 and 2 
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1
1,cc  

0:1 

 2
2

2
1 ,cc  1:2 

 3
2

3
1 ,cc  2:3 

 4
2

4
1 ,cc  3:4 

 4
2

1
2

4
1

1
1 , σσσσ LL  0.1:3 

Consequent parameters   
Fuzzy model 1 i

FFu , 16:1=i  
-20:80 

Fuzzy model 2 i
FFu , 16:1=i  

-20:50 

The membership functions in fuzzy system (2) are taken as Gaussian which 
has the following form: 













 −−
=

i
j

i
ji

j

cx
xA

σ

2)(
exp)(  ;     4,2,1 L=j                                                                   (8) 



Abdel Badie Sharkawy 154 

where i
jc  and i

jσ  are the center and width of the Gaussian function. For simplicity, the 

membership function in (8) is noted as ),( i
j

i
jc σ .  

The coding of the parameters to be adjusted can be arranged as follows:  
M
FFFFFF

nnnn uuucccccc LLLLL 21
2

2
2

1
22

2
2

1
21

2
1

1
11

2
1

1
1 σσσσσσ  

where, 2nM =  is the number of rules.  
After the training is completed, the fuzzy models for joint 1 and joint 2 

resulted from the best chromosome are shown in Table 2 and Table 3, respectively. For 
example, the first rule in Table 1 can be read as follows: 

If )(kdθ  is (0.08,0.24) and )(kdθ&  is (0.22,0.59) then FFu  is -4.18  

The graphical representations of the two fuzzy models are depicted in Fig. 4. 
These Figures show the complexity of a system which can be represented by relatively 
simple fuzzy counterpart. Figure 5 shows the approximating results of the fuzzy 
models. The average approximating errors are 0.8725 and 0.4146, respectively.  

 

Table 2. Standard rule base of joint 1.  

IF THEN IF THEN 
dθ  dθ&  i

FFu  dθ  dθ&  i
FFu  

(0.08,0.24) (0.22,0.59) -4.18 (2.81,1.51) (0.22,0.59) 25.30 
(0.08,0.24) (1.82,1.94) 52.40 (2.81,1.51) (1.82,1.94) -13.56 
(0.08,0.24) (2.14,0.58) 75.82 (2.81,1.51) (2.14,0.58) 36.86 
(0.08,0.24) (3.93,1.70) 56.30 (2.81,1.51) (3.93,1.70) -13.07 
(1.70,2.30) (0.22,0.59) -19.67 (3.32,2.93) (0.22,0.59) -16.70 
(1.70,2.30) (1.82,1.94) 57.24 (3.32,2.93) (1.82,1.94) -1.54 
(1.70,2.30) (2.14,0.58) 79.38 (3.32,2.93) (2.14,0.58) 41.87 
(1.70,2.30) (3.93,1.70) 50.36 (3.32,2.93) (3.93,1.70) 27.07 

 

Table 3. Standard rule base of joint 2.  

IF THEN IF THEN 
dθ  dθ&  i

FFu  dθ  dθ&  i
FFu  

(0.23,1.15) (0.47,1.35) -19.51 (2.87,2.96) (0.47,1.35) -15.84 
(0.23,1.15) (1.53,2.31) 17.32 (2.87,2.96) (1.53,2.31) -16.07 
(0.23,1.15) (2.13,0.35) 18.14 (2.87,2.96) (2.13,0.35) 6.87 
(0.23,1.15) (3.40,0.68) -3.13 (2.87,2.96) (3.40,0.68) 14.28 
(1.57,1.34) (0.47,1.35) -15.83 (3.45,0.87) (0.47,1.35) 11.51 
(1.57,1.34) (1.53,2.31) -11.22 (3.45,0.87) (1.53,2.31) 18.43 
(1.57,1.34) (2.13,0.35) -10.22 (3.45,0.87) (2.13,0.35) 39.34 
(1.57,1.34) (3.40,0.68) 37.54 (3.45,0.87) (3.40,0.68) 8.08 
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Fig. 4. The output surfaces of the two fuzzy models.  
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Fig. 5. Off-line training of the inverse dynamics (without structure optimization).  

 

If the performance of the fuzzy systems is only evaluated by the approximating 
precision, the above fuzzy models with standard structure are acceptable. However, we 
find in simulation that the average firing rates of the two rule bases are low. They are 
0.4269 for the first fuzzy model and 0.4367 for the second one. It indicates that the 
fuzzy systems are not compact enough and the structure of the fuzzy rule bases needs 
to be optimized.  
 

4.2. Genetic Algorithm Based Structure Optimization and 
Parameter Learning 

It is straightforward to optimize the structure and parameters of the fuzzy rules 
simultaneously using genetic algorithms. Each fuzzy system is represented as a string 
composed of two substrings. The first substring, which has the same form illustrated as 
in the previous Subsection, is to optimize the parameters of the fuzzy (model) system. 
The second substring encodes the structure of the fuzzy rule such that one integer 
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number represents one membership (MF) in the space of input variable in question. 
The MF’s in the first of each input variable are numbered in ascending order according 
to their centers. For example, a number “1” represents the MF with the lowest center. 
Since each variable is supposed to have at most four subspaces, the valid numbers in 
the second substring are 0,1,2,3 and 4. The number “0” implies that this variable does 
not appear in the premise of the rule. If both variables take a value of “0” in the second 
substring, then this rule is deleted from the rule base. It is also possible that more than 
one rule in the rule base has the same premise. In this case, only the rule that appears 
first is kept, so that the rules are consistent. An example of the second substring is 
given as follows: 

 

{ { {
16 rule2 rule1 rule

0  0    0  2   1  3 L  

The corresponding fuzzy rules are 
 

:1R  If )(kdθ  is ),( 3
1

3
1 σc  and )(kdθ&  is ),( 1

2
1
2 σc  then FFu  is 1

FFu  

:2R  If )(kdθ  is ),( 2
1

2
1 σc  then FFu  is 2

FFu  

M  
:16R  (Deleted) 

 

In order to optimize the structure, the performance (6) is rewritten as: 

S

P

k FF
d

J
P

kuku
J λ+

−
= ∑ =0

)]()([
                                                                               (9) 

where λ  is the weighting constant, SJ  is the penalty for model complexity and is 
expressed as: 
 

rules fired  theofnumber  average the

base rule in the rules ofnumber   totalthe=SJ                                                            (10) 

The value of λ  is set to 0.1 for joint 1 and 0.4 for joint 2. We suppose a rule is 
fired when the membership grade is greater than 0.05. In the case no rules are fired or 
there are no rules in the rule base, SJ  will be set to very large value so as to reduce the 
competitiveness of this chromosome and exclude it from the next generation.  

The simulation results are inspiring. The optimized rule bases for joint 1 and 
joint 2 have 9 and 11 rules, respectively, and the firing rates are raised to about 0.8402 
and 0.7510, respectively. The rule bases for the two joints are listed in Tables 4 and 5, 
and the graphical representation of the two rules is depicted in Fig. 6. The 
approximating results are demonstrated in Fig. 7. The average approximating errors are 
0.9267 and 0.5349, respectively. We see that the approximating errors are quite 
satisfying, although the numbers of the fuzzy rules are reduced.  
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Table 4. The optimized fuzzy rule base for joint 1. 

IF THEN IF THEN 
dθ  dθ&  i

FFu  dθ  dθ&  i
FFu  

(0.43,0.19) (0.60,0.80) 56.38 (0.43,0.19) (2.37,1.51) 1.72 
- (0.60,0.80) -7.57 (2.84,1.55) (0.60,0.80) -12.05 

(1.38,2.01) (3.13,2.58) 65.13 - (1.70,0.48) 54.35 
(1.38,2.01) (2.37,1.51) 66.76 (1.38,2.01) - -9.70 
(1.38,2.01) (1.70,0.48) 74.86    

 

Table 5. The optimized fuzzy rule base for joint 2. 

IF THEN IF THEN 
dθ  dθ&  i

FFu  dθ  dθ&  i
FFu  

(0.43,0.19) - 15.63 (2.85,1.55) - -9.58 
(0.43,0.19) (2.37,1.51) -15.43 - (2.37,1.51) -18.40 
(1.38,2.01) (0.60,0.80) -3.17 (0.43,0.19) (0.60,0.80) 7.92 
(0.43,0.19) (1.70,0.48) 28.68 (2.85,1.55) (2.37,1.51) -17.59 
(1.38,2.01) - -10.11 (0.43,0.19) (3.13,2.58) 19.38 

- (0.60,0.80) 10.86 - - - 
 

d
1θ d

1θ&
0

2
4

0

2

4
-50

0

50

The output of fuzzy model 1

d
2θ d

2θ&0
2

4

0

2

4
-20

-10

0

10

The output of fuzzy model 2

 
Fig. 6. The output surfaces of the two fuzzy models after structure optimization.  

 
5. DECENTRALIZED FUZZY FEEDBACK CONTROL 

The performance of any fuzzy logic controller is greatly dependent on its inference 
rules. In most cases, the closed-loop control performance and stability are enhanced if 
more rules are added to the rule base of the fuzzy controller. However, a large set of 
rules requires more on-line computational time and more parameters need to be 
adjusted. Adjustment of the fuzzy system may be achieved using genetic algorithms 
[20,21]. However, genetic algorithms cannot be used on-line and perfect mathematical 
model or experimental data should be available.  
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Fig. 7. Off-line training of the inverse dynamics (with structure optimization).  

 

In this Section, a robust PD-type fuzzy feedback controller is driven for a class 
of MIMO second order nonlinear systems with application to tracking control problem 
of robotic manipulators; [9]. The rule base consists of only four rules per each DOF. 
The approach implements fuzzy partition to the state variables based on Lyapunov 
synthesis. The resulting control law is stable and able to exploit the dynamic variables 
of the system in a linguistic manner.  
 

5.1.  Construction of Fuzzy Feedback Controllers 

In this Sub-section we apply the fuzzy synthesis to the design of stable controllers. To 
this end, consider a class of MIMO nonlinear second order systems whose dynamic 
equation can be expressed as:  

),,()( FBuxxftx &&& = ,                                                                                                  (11) 

where ),,( FBuxxf &  is an unknown continuous function, FBu  is the feedback control 

input and T
nxxxtx ],,,[)( 21 L=  is the state vector and T

21 ],...,,[ nxxx
dt

dx
x &&&& == . We now 

seek a smooth Lyapunov function nn RRV →:  for the continuous feedback model (1) 
that is positive definite, i.e. 0)( >xV  when 0≠x  and 0)( =xV  when 0=x , and grows 

to infinity: ∞→)(xV  as ∞→xxT . Obviously, this holds for a generalized Lyapunov 
candidate function of the following quadratic form:  

xxxxtxV TT &&
2

1

2

1),( +=                                                                                             (12) 
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Differentiating (12) with respect to time gives  

nnnn xxxxxxxxxxxxtxV &&&L&&&&&&&L&&& +++++++= 22112211),(  

From which 
)()()(),( 22221111 nnnn xxxxxxxxxxxxtxV &&&&L&&&&&&&&& ++++++=  

This is equal to 

nVVVtxV &L&&& +++= 21),(                                                                                          (13) 

where 
nixxxxtxV iiiii L&&&&& ,2,1        ,),( =+=  

Then the standard results in Lyapunov stability theory imply that the dynamic 
system (11) has a stable equilibrium exx =  if each iV&  in (13) is 0≤  along the system 
trajectories. To achieve this, we have chosen the control )(xu

iFB  to be proportional to 

ix&& .  
Next, our controller design is achieved if we determine a fuzzy control 

)(xu
iFB  so that:  

nixuxxxtxV
iFBiiiii L&&& ,2,1        ,0)(),( =≤+= α                                                           (14) 

where iα  is a positive constant. The results of Wang [22] state that, a fuzzy system that 
would approximate (14) exists. To this end, one would consider the state vector )(tx  
and )(tx&  to be the inputs to the fuzzy system. The output of the fuzzy system is the 

feedback control FBu . A possible form of the control rules is: 

IF ix  is (lv) and/or ix&  is (lv) THEN 
iFBu  is (lv),          ni L,2,1=  

where the (lv) are linguistic values (e.g. positive, negative). These rules constitute the 
rule base for a Mamdani-type fuzzy controller.  
In the above formulation, two basic assumptions have been made. They are: 

• The knowledge of the state vector. It is assumed to be available from 
measurements. 

• The control input, FBu  is proportional to x&& . This assumption can be justified for 
a large class of second order nonlinear mechanical systems, [22-25]. For 
instance, here in robotics, it means that the acceleration of links is proportional 
to the input torque.  

These two assumptions represent the basic knowledge about the system which 
is needed to derive the control rules. Clearly, the exact mathematical model is not 
needed.  

In the coming Sub-section, we use this approach to design a PD-type fuzzy 
feedback tracking controller.  
 

5.2.  Fuzzy Feedback Tracking Control 

Robots are familiar examples of trajectory-following mechanical systems. Their 
nonlinearities and strong coupling of the robot dynamics present a challenging control 
problem. In practice, the load may vary while performing different tasks, the friction 
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coefficients may change in different configurations and some neglected nonlinearities 
as backlash may appear. Therefore, the control objective is to design a stable fuzzy 
controller so that the link movement follows the desired trajectory in spite of such 
effects.  

Consider a class of robots whose vector of generalized coordinates is denoted 

by [ ]Tnθθθθ L21 =  where iθ , ni ,,1L=  are the joint parameters. We consider the state 

variables of the robot as )(tθ  and )(tθ& , which are usually available as feedback 
signals. Define the tracking error vectors )(te  and )(te&  as:  

)()()( ttte dθθ −= , and )()()( ttte dθθ &&& −=                                                                (15) 

where dθ  and dθ&  are vectors of the desired joint position and velocity, respectively. 
Throughout this work, we assume that dθ  and its derivative are available for online 
control computation. In robot tracking tasks, the desired position history is generally 
planned ahead of time and its derivatives can be easily obtained.  

We now apply the approach presented in the previous Sub-section in order to 
find a fuzzy controller that achieves tracking to the robotic system under consideration. 
To this end, let us choose the following Lyapunov function candidate 

)(
2

1 eeeeV TT &&+=                                                                                                     (16) 

Differentiating with respect to time and using (13) gives 

iiiii eeeeV &&&&& +=    

To enforce asymptotic stability, it is required to find FBu  so that 

0≤+= iiiii eeeeV &&&&&                                                                                                     (17) 

in some neighborhood of the equilibrium of (16). Taking the control FBu  to be 
proportional to e&& , Eqn (17) can be rewritten as:  

0 ≤+=
iFBiiiii ueeeV &&& α                                                                                             (18) 

where iα  is positive constant, ni ,,1L= . Sufficient conditions for (18) to hold can be 

stated as follows.  
(a) if, for each ],,1[ ni L∈ , ie  and ie&  have opposite signs and 

iFBu  is zero, 

inequality (18) holds;  
(b) if ie  and ie&  are both positive, then (18) will hold if 

iFBu  is negative; and  

(c) if ie  and ie&  are both negative, then (18) will hold if 
iFBu  is positive. 

],,1[ ni L∈  denotes the joint number.  
Using these observations, one can easily obtain the four rules listed below in 

Table 6. In this Table, P, N, denote respectively positive, negative errors; Pu , Nu  and 

Zu  are respectively positive, negative and zero control inputs. These rules are simply 
the fuzzy partitions of ie , ie&  and 

iFBu  which follow directly from the stabilizing 

conditions of the Lyapunov function, (16).  
In concluding words, the presented approach transforms classical Lyapunov 

synthesis from the world of exact mathematical quantities to the world of words [25]. 
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This combination provides us with a solid analytical basis from which the rules are 
obtained and justified. Relative to other works, this number of rules is quite small. For 
example, in [8], the rule base of a two-link robot consists of 625 rules. After 
introducing a rule base reduction approach, the authors in [8] reach to a rule base 
consists of 160 rules, which is hard to be implemented. Otherwise, the results obtained 
here contradict the conclusions of a recent survey on the industrial applications of 
fuzzy controllers. The authors’ opinion there in [26] is that, all fuzzy control 
applications should be tackled in the model based design manner. They think that, this 
is the way that enables systematic analyses of the structural properties of the fuzzy 
controllers such as stability, controllability, parametric sensitivity and robustness. 
Remember that here; we did not use any information about the system model.  

 

Table 6. Fuzzy rules for the fuzzy feedback controller.  

ie

ie&

Nu

PuZu

Zu ni L,1=

 
 

To complete the design, we must specify the fuzzy system with which the 
fuzzy feedback computes the control signal. Here, we use different fuzzy system than 
that mentioned in Section 3. The Gaussian membership defining the linguistic terms in 
the rule base is chosen as follows:  

2)(),()( zax
zpositive eaxGx −−==µ  

),()( znegative axGx −=µ  

)0,()( xGxzero =µ  
 

where 0>za  and z  stands for control variable, the product for “and” and center of 

gravity inferencing. For some positive constant ik , ],,1[ ni L∈  denotes the joint 
number, the above four rules can be represented by the following mathematical 
expression:  

),(),(

))(,())(,(

),(),(

))(,())(,(

22

22

11

11

iiii

iiiiii

iiii

iiiiii
FB aeGaeG

kaeGkaeG

aeGaeG

kaeGkaeG
u

i −+
−+−+

−+
−+−=

&&

&&
 

where ia1  and ia2  are positive constants. In more details, the above equation can be 
written as:  

( ) ( )
( ) ( )

( ) ( )
( ) ( )
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from which 
( ) ( )
( ) ( )

( ) ( )
( ) ( )
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This yields the fuzzy feedback controller  
)]2(tanh)2(tanh[ 21 iiiiiFB eaeaku

i
&+−= ,         ni ,,1L=                                              (19) 

In (19), the inputs are the error in position ie  and the error in velocity ie&  and 
the output is the control input of joint i; i.e. it is a PD-type fuzzy feedback controller. 
The following remarks are in order:  

• The fuzzy controller in (19) is a special case of fuzzy systems, where Gaussian 
membership functions are used to introduce the input variables (ie  and ie& ) to 
the fuzzy network. Also, the fuzzification and defuzzification methods used in 
this study are not unique; see [16] for other alternatives. For example, using 
different membership functions (e.g. triangular, trapezoidal …etc.) will result 
in a different fuzzy controller. However, the controller in (19) is a simple one 
and the closed form relation between the inputs and the output makes it 
computationally inexpensive.  

• Only three parameters per each DOF need to be tuned, namely, they are ik , ia1  
and ia2 . This greatly simplifies the tuning procedure; since the search space is 
quite small relative to other works. For instance, the fuzzy controller in [27] 
needs 45 parameters to be tuned for a one DOF system.  

• This controller is inherently bounded since 1)(tanh ≤x .  

• Each joint has independent control input niu
iFB L,2,1, = .  

• In the case of robotic control, this controller can be regarded as output 
feedback controller since the joint's position and velocity are usually the 
outputs.  
Finally, the fuzzy PD gain, i.e. ik , ],,1[ ni L∈  is chosen so as to minimize the 

following quadratic performance index:  
 

{ }2)]([
2

1
kurJ

iFBii =                                                                                                 (20) 

where input ir  is a constant. According to the gradient method, the learning algorithm 

of the parameter ik  in the feedback fuzzy controller (19) can be derived as follows:  

)]2tanh()2[tanh(       21 iiiiFBi

iFB

FBi

i

i
i

ececur

ku

uJ

k

J
k

i

i

i

&+−=

∂∂
∂∂

−=
∂
∂

−=∆
                                                          (21) 

 
Thus, the fuzzy feedback controller uses the ie , ie&  and 

iFBu  to compute (21) 

and update the control gain ik  given that .0)0( ≠ik  The overall closed-loop control 
system is shown in Fig. 8, where 

ii FFFBi uuu +=  is the total input to joint i .  
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d
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i θθ &,

ii θθ &,ii ee &,

iFFu

iFBu iu

 

Fig. 8. Configuration of the proposed decentralized fuzzy control scheme of joint i.  
 

6. COMPUTATIONAL COMPLEXITY 

Whether a designed controller is practical or not depends greatly on its computational 
complexity because the computing capacity of a low-cost microprocessor is limited. 
This Section provides the complexity of the feedforward and feedback computation of 
the control scheme proposed in this paper. Torque computing methods based on robot 
inverse dynamics and the feedforward system are compared. The computational 
complexity of the feedback controller is also compared with that of a self-tuning fuzzy 
controller proposed in [28]. We show that the proposed control scheme is 
computationally very efficient.  

Generally speaking, the computational burden can be evaluated in terms of 
required mathematical multiplication and addition operations. The controller developed 
in this paper consists of a feedforward torque compensation system and a fuzzy PD 
regulator. The computation of the feedforward fuzzy system has three stages: 
computation of the membership functions, computation of the contribution of each rule 
and computation of the final output of the fuzzy system. The results are provided in 
Table 7, where n is the DOF of the manipulator. For the standard fuzzy system 
followed in this paper, each variable is supposed to have at most four subsets and 
therefore there are eight fuzzy membership functions involved for each joint. For the 
optimized fuzzy system, we list the total number of the addition and multiplication 
operation of the two fuzzy systems obtained in Section 4 divided by two. This 
manipulation has been adapted because the two fuzzy systems have different number 
of rules and membership functions in each rule base. So that, the average number of 
arithmetic operations is presented in the last column. Clearly, the computation of the 
optimized fuzzy system is the simplest compared with that of the inverse dynamic 
model and the standard fuzzy system. It should be clarified that each minimum 
operation is treated as one addition operation in this paper. Table 7 denotes that the 
computation burden of the proposed fuzzy torque computing system is significantly 
reduced compared with the conventional torque computing method, especially when 
the freedom of the robot increases.  

 

Table 7. Computational complexity of the fuzzy feedforward system. 

 Inverse 
Dynamics  

Standard Fuzzy 
System 

Optimal Fuzzy 
System (average) 

Addition 117n – 24 56n 33n 
Multiplication 103n – 21 33n 25n 
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The computation of the fuzzy feedback controller can also be divided into two 
parts: computation of (19) and computation of the adaptive gain; ik . As a comparison, 

we list the computational complexity of our scheme with the self-tuning fuzzy 
controller proposed in [28]; see Table 8. We make this comparison because the 

feedback controller in [28] is essentially a PD fuzzy controller with self-tuning 
mechanism. The rule base has been transformed to a decision table which is used by a 
back-propagation algorithm to adjust the scaling factors of the fuzzy system. The 
difference resides in the fact that the rule base in [28] consists of 49 rules for one DOF 
system and the mapped elements (e  and e& ) are obtained by interpolation. 
Furthermore, the tuning procedure is composed of two stages and some learning steps 
are needed by the second stage, while the tuning system using (21) is much simpler. 
Simulation results, in the coming Section, show that it is also efficient.  

 

Table 8. Computational complexity of the fuzzy feedback controller.  

 Self-tuning fuzzy controller 
[28]  

The proposed fuzzy 
controller 

Addition 97n 6n 
Multiplication 113n 15n 

 

7. SIMULATION RESULTS 

The purpose of the simulation is to investigate the robustness of the proposed control 
scheme. The robot system considered in the simulation is the two-link robot presented 
in Section 2. In the coming results, it is assumed that initial positions of joints 

rado 0)0()0( 21 == θθ  and the robot is at rest, i.e. the initial velocities of joints 

sec/ 0)0()0( 21 rado== θθ && . This initialization imposes a large initial velocity error since 
,2/)0(1 π−=e&  sec/ )0(2 rade π−=& . One can expect uneasy transient stage.  

The input torques are shown in Fig. 9 and Fig. 10 shows the evolution of the 
tracking errors. They show that the errors have converged to zero. Note that the 
transient period is less than 0.5 seconds. Otherwise, it is interesting to notice how the 
control gains evolve with time. Figure 11 depicts the evolution of these parameters 
with time. They have been initialized as mNkk . 100)0()0( 21 == .  
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Fig. 9. The control effort.  
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Fig. 10. The tracking errors 
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Fig. 11. Record of the adaptive control gains during motion.  
 

In order to observe how the controller behaves in the presence of various 
uncertainties, three types of uncertainties are considered, namely, parameter variations, 
unmodeled nonlinear friction and unknown payloads. 
 

7.1.  Parameter Variations 

By parameter variations, we mean here the masses of the links. It is assumed that they 
vary randomly with time every 0.3 second. The mass of the base link varies in the 
range of kg 75→  (the nominal mass is kg 5 ) and the mass of the elbow link kg 52→  

(the nominal mass is kg 5.2 ). Figure 12 depicts their variation with respect to time and 
Fig. 13 shows the corresponding tracking errors.  
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Fig. 12. Mass variations during motion of links.  

 

It can be noticed that with respect to previous results, there is little or no 
change has taken place during the transient and the steady state periods. However, it 
has been noticed that increasing the range of variations of the masses has resulted in 
unstable system. Results of these tests are not presented here. However, this can be 
explained that under such situations, the torques computed from the trained 
feedforward fuzzy systems are no longer near the nominal torques.  
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Fig. 13. The tracking errors when the mass of links varies randomly within specified 

ranges.  
 

7.2.  Unmodeled Friction 

At the off-line training stage of our simulation, we obtain the training samples from the 
robot model in (1), which does not consider the nonlinear friction. In order to examine 
the performance of the controller in the presence of unmodeled nonlinear friction, the 
following unmodeled nonlinear friction is added at the control stage:  

sd FFF +=  

where dF  and sF  are the dynamic and static friction torques, respectively. They can be 
expressed by:  
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We use 30 ,50 21 == dd  and 12 ,18 21 == cc . Results are shown in Fig. 14 and 
15. It can be noticed that the transient period has increased relative to the cases when 
the friction was not considered. Also the input torques is relatively higher during this 
period. Nevertheless, convergence of the tracking errors has been achieved.  
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Fig. 14. The tracking errors in the presence of unmodeled friction.  
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Fig. 15. The control input in the presence of unmodeled friction.  
 

7.3.  Unknown Payload 

In robot systems, the unknown payload is one of the major dynamic uncertainties. 
Compared with the parameter uncertainties and unmodeled friction, the influence of 
unknown payload is much greater. The coming results are obtained when the mass and 
inertia of the base and elbow links (carrying the payload) have been increased to 150%. 
This increase in the mass and inertia of the two links is supposed to be unknown. 
Figure 16 shows that input torque is relatively high. Also, the tracking errors exhibit 
larger overshoot during the transient period, Fig. 17. However, convergence of errors 
to a narrow region close to zero has taken place.  
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Fig. 16. The input torques when the payload increases to 150%.  
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Fig. 17. The tracking errors in the presence of 150% increase in the payload.  

 

8. CONCLUSION 

In this paper a decentralized fuzzy control scheme for robot manipulator is developed. 
The controller for each joint has a feedforward fuzzy torque computing system and a 
feedback fuzzy controller. Due to the simple structure of the fuzzy systems, the on-line 
computational burden for nonlinear feedforward compensation is greatly relaxed. 
Genetic algorithm is applied to fuzzy system training because it is fully data-driven and 
is able to optimize the structure of the fuzzy system simultaneously. The training 
samples can be collected by doing experiments or by establishing an ideal model. We 
have demonstrated that the proposed control scheme works well, even if the ideal 
model is not in concordance with the real inverse dynamics.  

An important feature of this study is that it has transferred the proposed fuzzy 
feedback controller to a closed-form relation between the inputs and the output, leading 
to a computationally efficient fuzzy logic controller. The rule base consists of only four 
rules and has a PD-like structure. The gains are tuned on-line based on the gradient 
method. This feedback controller is inherently bounded; the upper and lower bounds 
can be arbitrary selected by suitably adjust its parameters. Various simulation results 
prove that the proposed controller is effective.  

The main advantage of the proposed control approach is that the algorithm 
presents a low computational burden; both the feedforward and feedback part are 
computationally simple, particularly when compared to the standard model predictive 
control optimization algorithms. When the optimization algorithms are used for 
controlling complex processes, they usually require a considerable computational 
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effort, which often thwarts their implementation on real industrial systems. Finally, it 
can be concluded that using the proposed control approach presents a convenient 
option for controlling a large class of nonlinear MIMO second order systems.  
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 مع إستعمال محكم هلامى ذو كفائة حسابية للمنظومات متعددة المدخلات والمخرجات

 المناول الآلى كمثال توضيحى

طريقة لامركزية للتحكم بالأنظمة متعددة المدخلات والمخرجات بإستعمال الأنظمة الهلامية مع تقدم الدراسة 

واللوغارتمات خدم مزيجا من المنظوات الهلامية الطريقة المقترحة تست. لى كمثال توضيحىالآأستخدام المناول 

يتكون المحكم لكل مفصل من مركبة تحكم هلامية ذات تغذية أمامية لحساب العزم ومركبة هلامية أخرى . الجينية

  . ذات تغزية خلفيةمن النوع التناسبى التفاضلى 

قبل إدماجها فى عملية التحكم  الأماميةلمركبة الهلامية ذات التغذية ل (optimality)تم تمرين وتحقيق المثالية 

(off-line)  بإستعمال لوغاريتمات جينية محسنة، بمعنى أنه تم تحقيق مثالية عناصر المنظومة الهلامية وأيضا

  . قاعدة البيانات الخاصة بها

. لتحكم الكليةذات التغذية الخلفية فقد تم تصميمها بهدف الحفاظ على أتزان منظومة ا أما بالنسبة لمركبة التحكم

فقد تم وأكثر من ذلك . قاعدة البيانات الخاصة بهذه المركبة تتكون فقط من أربعة جمل شرطية لكل درجة حرية

تحقيق الامركزية فى التحكم بمعنى أن أشارة التحكم لكل درجة حرية لاتعتمد على أشارة التحكم لدرجات الحرية 

لى معادلة رياضية مما جعلها ذات كفاءة حسابية بالمقارنة مع إ هتم أيضا تبسيط مركبة التحكم هذ. الأخرى

  . المحكمات الهلامية المماثلة

  : ه الدراسة بالآتىتتميز منظومة التحكم المقترحة فى هذ

أيضا كم الحسابات المطلوب أجرائها أثناء . لاتحتاج ألى معرفة ديناميكية الوحدة المراد التحكم بها •

 .ساطة مركبات التحكم الهلاميةعملية التحكم قليل بسبب ب

لعناصر الوحدة المراد التحكم بها ولا الحمل المراد تحريكه فى  (uncertainties)لاتتأثر بالامحققية  •

 . حالة المناول الآلى

نة ر لعدد العمليات الحسابية المطلوب أجرائها أثناء عملية التحكم بالمقاتم أستعراض هذه المزايا من خلال دراسة 

  . اسات السابقة وأيضا من خلال عمليات محاكاة رياضية بإستعمال الحاسب الآلىمع الدر 


