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This paper develops a decentralized fuzzy control scheme for MIMO
nonlinear second order systems with application to robot manipulators via
a combination of genetic algorithm and fuzzy systems. The controller for
each joint consists of a feedforward fuzzy torque-computing system and a
feedback fuzzy PD system. The feedforward fuzzy system is trained and
optimized off-line by an improved genetic algorithm, that isto say, not only
the parameters but also the structure of the fuzzy system is self-organized.
The feedback fuzzy PD system, on the other hand, is used to keep the
closed-loop stable. The rule base consists of only four rules per each
degree of freedom (DOF). Furthermore, the fuzzy feedback system is
decentralized and smplified leading to a computationally efficient control
scheme. The proposed control scheme has the following merits: 1) it needs
no exact dynamics of the system and the computation is time-saving
because of the simple structure of the fuzzy systems; and 2) the controller
IS insengitive to various parameters and payload uncertainties. These are
demonstrated by analysis of the computational complexity and various
computer simulations.

KEYWORDS: Robot manipulators, Genetic algorithm, Feedforward
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1. INTRODUCTION

In many practical applications where high perforo®trajectory tracking is required,
the control scheme in Fig. 1 is commonly used tbénthe independent design of the
feedforward and the feedback control [1]. The feadrd controlu.: is applied to

achieve the desired tracking performance of thpuiét, whereas the feedback control
is designed such that the systémis appropriately stabilized and robustified aggins
model uncertainties. In comparison to the broadtspm of available design methods
for feedback control, only few methods are known dosystematical feedforward
control design, which forms a contrast to the re8pe demand in industry. The reason
for this methodological gab is related to the sysbeversion required in the course of
the feedforward control design and to the respedlifficulties arising with nonlinear
systems, [2]. Feedforward can also be made frotarthiances [3,4], but this problem
is different from feedforward from the set-poimgait is not treated in this paper.
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Generally speaking, multiple-input multiple-outpiMIMO) systems usually
have characteristics of nonlinear dynamics couplifberefore, the difficulty in
controlling MIMO systems is how to overcome the gling effects between the
degrees of freedom. The computational burden am@rdic uncertainty associated
with MIMO systems make model-based decoupling immjcal for real-time control.
Adaptive control has been studied for many decadeateal with constant or slowly
changing unknown parameters. Applications includanipulators, ship steering,
aircraft control and process control. Although therfect knowledge of the inertia
parameters can be relaxed via adaptive technitmieeal practical usefulness is not
really clear and the obtained controllers may be tmmplicated to be easily
implemented, [5]. Also, because many design pammselike learning rates and
initialization of the parameters to be adapted, tc.,ehave to be considered in
controller construction, most existing methodolsgikave limitations. Moreover,
owing to the different characteristics among degignrameters, attaining a complete
learning, while considering an overall perfomanoalgis an extremely difficult task.

Fuzzy controllers have demonstrated excellent itoiess in both simulations
and real-life applications, [6]. They are able wadtion well even when the controlled
system differs from the system model used by th&igder. A customary for this
phenomenon is that fuzzy sets, with their graduaimimership property, are less
sensitive to errors than crisp sets. Another exgilan is that a design based on the
“computing with words” paradigm is inherently robuthe designer forsakes some
mathematical rigor but gains a very general modetkvremains valid even when the
system’s parameters and structure vary.

However, it has been proved that standard fuzzyclegntrollers are not
suitable for loop controllers [7]. This fact is fexfed to that there are many tuning
parameters in membership functions and controlsrukairthermore, standard fuzzy
logic controller has a long computation time siitgeerforms fuzzification, inference,
and defuzzification processes in determining cdntrputs. Thus, it is difficult for
control inputs of standard fuzzy logic control ® ¢computed within the sampling time
of a loop controller. For this reason, complexitgduction of fuzzy feedback
controllers was the topic of many researchers [7,8]

In this paper, we focus on the design of appropriitzzy systems in
feedforward and feedback paths. In the feedforveit, the capabilities of genetic
algorithms are used off-line to determine the optiparameters and structure of fuzzy
systems which can approximate the inverse dynaafitise system. No mathematical
model is needed. In the feedback path, a stablgy fisedback controller is designed
based on the Lyapunov direct method. Only fourgalenstitute the rule base for each
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DOF. Furthermore, the fuzzy feedback controllerdiecentralized and simplified
leading to a computationally efficient fuzzy comtscheme. A primary version of this
feedback controller has been introduced in [9] iy &uthor of this paper. Here, we
revisit it and design an adaptive mechanism to raete its gains on-line. To
demonstrate the proposed approach, we use the Exarhpobotics because it is a
well-known example of nonlinear MIMO second ordgstems.

The paper is outlined as follows: in Section 2, rihi@ot model and the nominal
value of its parameter are introduced. This moslelded to generate simulation data
instead of experimental data from real robot phatfoSection 3 explains the fuzzy
models of the inverse dynamics of the robot. Thelef® are two input one output
fuzzy systems. They are used in the feedforwartl. gatSection 4, we explain how
genetic-algorithms can be used off-line to optignatletermine parameters and
structure of the fuzzy systems. In Section 5, tezy feedback controller is derived
based on the Lyapunov direct method. Furthermbee controller is simplified, i.e. it
has a closed form mathematical relation with ohkeé parameters need to be tuned
and the controller gain is adaptively determinedlio® so as to minimize a
performance index. Section 6 discusses the compuightcomplexity of the proposed
control scheme in comparison with previous workdmuBation results are
demonstrated in Section 7. Finally, some concludémgarks are given in Section 8.

2. ROBOT MODELING AND THE CONTROL STATEMENT

Without the loss of generality, we take the twdklngid robot shown in Fig. 2, as an
example to demonstrate the proposed control sch&heinverse dynamic model is
expressed as [10,11]:

u=M(8)8+C(8,6)9+G(6) (1)

where 80R" is the joint angular position vector of the robof] R" is the vector of
applied joint torques (or forcesM (6) OR™" is the inertia matrix, positive definite;
C(8,6)00R" is the effect of Coriolis and centrifugal torquesid G(9)OR" is the
gravitational torques. The physical propertieshef above model can be found in [12];
however, they are not needed here.

For the robot shown in Fig. 2, (1) can be rewritisn

|:u1:|:|:M11 IV|12} 6, + -h, -h(G+6,) |6 4{61}
U, My My 6, hg, 0 6, |G

where
My = 8 +23,C086,) + 28,Sin(6,), M, =8y,
M2 =My, =@, +83086,) +2,Sin(6,) ,
h=assin(,) ~a,cos@,), G =bcos@) +b,cos@ +6,),
G, =b,cos6,+6),
with
a =l +mig+lrmli+md?, a, =1+ mls, ag=mil,cos@,), a, = Mll,sin(G,),
b =mgly +mgl;, b, = mglee.
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The nominal parameters of the two-link manipulaie chosen as follows:
m =5kg, m,=25kg, l,=10m, I,;=05m, l,=05m, J,=30°, I,=036kgm?,
l, = 024kgm?.

Pasition control, or also the so-called regulagioblem is one of the most
relevant issues in the operation of robot manipusatThis is a particular case of the
motion control or trajectory control. The primargad of motion control in joint space
is to make the robot joints track a given time-yagy desired joint position,
6% =[6%,681" . Several control architectures related to robattrmb can be found in

literature ranging from the simple PD, learningdzhsadaptive, and adaptive/learning
hybrid controllers. The reader is referred to [B2,and the references included. The
main advantage of the PD controller is that it easily be implemented on simple
microcontroller architectures. On the other hahe, performance obtained from PD
controllers is not satisfying for most of the sémei applications [13,14]. Most of the

other aforementioned types of controllers suffemfrthe complexities and the huge
number of calculations needed to be carried ouinen-

YA

unknown load

V><

Fig. 2. An articulated two-link manipulator.

3. DECENTRALIZED FUZZY MODELING OF THE ROBOT

It should be noted that, for a planned trajecttrg,desired torque depends not only on
the trajectory, geometric and inertia parameterghef link itself, but also on the
parameters of the other links and the payloadeaetid effector. In order to model the
dynamics of each link with a fuzzy system, it i€@ssary to choose proper input and
output variables. For the sake of computationap8aity, it is necessary and feasible
to select a non-interactive fuzzy system. Herey @aisition and velocity are selected
as two input variables and naturally the feedfodvarque is selected as the output.
Consequently, the fuzzy rules in the feedforwamzfucontroller are expressed in the
following form:

If 6%(k) is Al andg%(k) is A, thenu® is uk, (2)

where A and A, are the fuzzy sets fof® and 6°, ul- is the crisp output of each
fuzzy rule andk is the time instant. Note that the premise vaeialilo not appear in
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the consequence part of the rules, because itiigifthat they do not make much sense
for improving the precision of the fuzzy model. WHa worse, they sometimes
complicate the algorithm seriously. The fuzzy syste (2) is called Sugeno zero-
order model. Here, we call it as standard fuzzytesgssince it is widely used in
literature [7,15-17]. If the rule base has rules altogether, the final output of the
fuzzy model is calculated as follows:

Y W (KUl

Uer (k)zw 3)
2w (k)

w (k) = min[ A} (8° (k)), A (6% (K))] 4)

No doubt, the performance of the fuzzy model isethglent on the structure
and the parameters of the fuzzy rule base resftrttedthe learning procedure. Given a
set of input-output data, the premise and consexguparameters can be determined by
use of complex search algorithms, recursive legisire algorithm and hybrid systems,
[16]. In this paper, genetic algorithms are usedestablish the feedforward fuzzy
systems, which is the subject of the following &sct

4. GENETIC ALGORITHM BASED FUZZY SYSTEMS

Genetic algorithms are derivative-free stochaspitnaization methods based loosely
on the concepts of natural selection and evolutiopaocesses. Their popularity can
be attributed to their freedom from dependenceumatfonal derivatives and they are
less likely to get trapped in local minima, whictevitably are present in any practical
optimization application. Eventually, genetic aligfoms can be used to determine the
optimal parameters and structure of a fuzzy sysfieen some optimality criterion.

The solution of an optimization problem begins widhset of potential
solutions (fuzzy systems) or chromosomes (usualithe form of bit strings) that are
randomly selected. The entire set of these chromesaomprises a population. The
chromosomes evolve during several iterations oregdions. New generations
(offsprings) are generated utilizing the crossovagtation and elitism technique.
Crossover involves splitting two chromosomes arehtbhombining one-half of each
chromosome with the other pair. Mutation involvdgpping a single bit of a
chromosome. Elitism is a policy of always keepingegtain number of best members
when each new population is generated. The chromesoare then evaluated
employing a certain fitness criteria and the bestsoare kept while the others are
discarded. This process repeats until one chromedws the best fithess and is taken
as the optimum solution of the problem. Figure & ischematic diagram illustrating
how a fuzzy system can be trained using genetiarithgns. A comprehensive review
about genetic algorithms can be found in [18]. Rafee [19] and [20] by the author of
this paper also give other examples of using geratorithms to identify the fuzzy
model parameters.

The following remarks regarding genetic algorithems in order.
 The searching of the genetic algorithm starts fromltiple initial states
simultaneously and proceeds in all of the paramstdrspaces in parallel,
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which provides GA an excellent parallel processatnijity and an inherent
global optimization capacity.

» Genetic algorithm requires almost no prior knowkedof the concerned
system, which enables it to deal with completelinown systems that other
optimization methods may fail.

» Genetic algorithm cannot evaluate the performaffiegesystem properly at one
step. For this reason, it can generally not be @sedn on-line optimization
strategy and is more suitable for fuzzy modelirtbeathan for fuzzy control.

DESIGN
PROCESS

Genetic Algorithm Based
Learning Process
Selection, crossover, mutation

!

Knowledge Base
Data Base + Rule Base

A

Compute /' |-

Compute J

Y
Fuzzy Rule-Based

model »| Compute U

Desired
trajectory

The inverse dynamic
model (1)

Fig. 3. Implementation flow chart of genetic algiom.

»| Compute U d

As the performance of a genetic algorithm dependsit® parameters, a
parametric study has been carried out to deterthmeptimal set of parameters. These
parameters are the population size, number of géores, number of bits of each
variable, crossover rate and the mutation ratey Hne problem-dependent and should
be selected carefully in order to achiegeod results. For the problem under
consideration, the following parameters are foungdive the best results:

(a) number of generations is 150,

(b) population size is 50,

(c) single point crossover with a rate of 0.90,

(d) bitwise mutation with a rate of 0.1, and

(e) number of bits which represent each variable is 16.

It should be pointed out that in training the fewdfard fuzzy system, the
algorithm does not require full knowledge of thdab inverse model because the
optimization is completely data-driven. In practittee training data can be obtained by
experimentation or by establishment of an ideal ehodlhis is theoretically feasible
and helpful for training and checking of the fuzzystem, despite that the derived
model is not the same as the real one. In comiteulation, we need a model to
emulate the behavior of a robot to collect datae fdbot model (1) in Section 2 with
the nominal parameter values mentioned there @@ tasemulate the robot motion. At
the training stage, no parameter variations, andimear friction are considered. The
trajectory for off-line training is as follows:
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6% = 05m(1-¢') and s = r(1-€") (5)

At first, both input variables in each joint aretganed into four subsets and
thus 16 fuzzy rules in the standard form of (2) seeup for each joint. Then, genetic
algorithm is used to tune the parameters of theyfumodel within suitable ranges. In
order to reduce the dimension of the searchingespghe length of each gene should be
limited as short as possible. To this end, eachrpater to be optimized is normalized
to a certain range. The tuning ranges of the twaylumodels are given in Table 1.

4.1. Genetic Algorithm Based Parameter Learning

In order that the feedforward fuzzy model can mathe mapping of the robot inverse
dynamics, the following quadratic form of perforroarindex is established:

J. > e [u% (K) — e (K)]2
P

(6)

where u?(k) andug(k) are the desired torque computed from the modesteay (1)
or experimental data) and the torque computed ffesdforward fuzzy model,
respectively, and is the number of training sample.

Because GA endeavors to maximize the fitness fomgcthe fitness function of
each gene (chromosome) is calculated as follows:

1
F= 7
1+ 0
where J is the performance index defined in (6) and 1 nroduced at the

denominator to prevent the fitness function froradseing infinitely large.

Table 1. Ranges of the premise and consequent parametersfor thetwo

fuzzy models.
Parameters Range
Premise parametersfor fuzzy model 1 and 2
c}yc% 0:1
c2,c? 1:2
cc 2:3
e 3:4
P B 0.1:3
Consequent parameters
Fuzzy model 1 ube, i=1:16 -20:80
Fuzzy model 2 ue, i=1:16 -20:50

The membership functions in fuzzy system (2) akertaas Gaussian which
has the following form:

i _(X_Cij)2 .
A (X) =ex — ©j=12-4 (8)

J
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where cij and aij are the center and width of the Gaussian funcion simplicity, the

membership function in (8) is noted @$,07) .
The coding of the parameters to be adjusted camrbaged as follows:
CICF - CTOY0 +++ O1C3C5 -+ C3030% -+ OUpe Ue -+ Ut
where,M =n? is the number of rules.
After the training is completed, the fuzzy modets foint 1 and joint 2
resulted from the best chromosome are shown ineTalaind Table 3, respectively. For
example, the first rule in Table 1 can be reacls\s:

If 89(k) is (0.08,0.24) and® (k) is (0.22,0.59) thenizr is -4.18

The graphical representations of the two fuzzy nwdee depicted in Fig. 4.
These Figures show the complexity of a system wbahbe represented by relatively
simple fuzzy counterpart. Figure 5 shows the appmating results of the fuzzy
models. The average approximating errors are 0.8Ag5.4146, respectively.

Table 2. Standard rule base of joint 1.
THEN |F

Upr
-4.18
52.40)
75.8]
56.3()
-19.6f
57.24
79.38
50.36

IF THEN

6° Uk

(0.28D.5 25.30
(LB2ALD -13.56
(2.18D5 36.86
(3.98)L7 -13.07
(0.Z8p] -16.70
(1.82)1.0 -1.54
(2.18D5 41.87
(3.99L7 27.07

Bd
(2.81,1.50)
(2.81,1.51)
(2.81,1.51)
(2.81,1.51)
(3.32,2.98)
(3.32,2.93)
(3.32,2.93)
(3.32,2.98)

g'd
(0.22,0.59
(1.82,1.94
(2.14,0.58
(3.93,1.70
(0.22,0.59
(1.82,1.94
(2.14,0.58
(3.93,1.70

Hd
(0.08,0.24)
(0.08,0.24)
(0.08,0.24)
(0.08,0.24)
(1.70,2.30)
(1.70,2.30)
(1.70,2.30)
(1.70,2.30)

Table 3. Standard rule base of joint 2.
THEN |F

i
Upp

|F THEN

i
Upp

6° &4 6° 64

(0.23,1.15)

(0.47,1.35)

-19.51

(2.87,2.96

(0.47,1.35)

-15.84

(0.23,1.15)

(1.53,2.31)

17.32

(2.87,2.96

(1.53,2.31)

-16.07

(0.23,1.15)

(2.13,0.35)

18.14

(2.87,2.96

(2.13,0.35)

6.87

(0.23,1.15)

(3.40,0.68)

-3.13

(2.87,2.96

(3.40,0.68)

14.28

(1.57,1.34)

(0.47,1.35)

-15.83

(3.45,0.87

(0.47,1.35)

11.51

(1.57,1.34)

(1.53,2.31)

-11.22

(3.45,0.87

(1.53,2.31)

18.43

(1.57,1.34)

(2.13,0.35)

-10.22

(3.45,0.87

(2.13,0.35)

39.34

(1.57,1.34)

(3.40,0.68)

37.54

(3.45,0.87

(3.40,0.68)

8.08
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The output of fuzzy model 1 The output of fuzzy model 2
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Fig. 4. The output surfaces of the two fuzzy models
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Fig. 5. Off-line training of the inverse dynamiegithout structure optimization).

If the performance of the fuzzy systems is onlyleated by the approximating
precision, the above fuzzy models with standanactiire are acceptable. However, we
find in simulation that the average firing ratesttod two rule bases are low. They are
0.4269 for the first fuzzy model and 0.4367 for #eond one. It indicates that the
fuzzy systems are not compact enough and the steuof the fuzzy rule bases needs
to be optimized.

4.2. Genetic Algorithm Based Structure Optimization and
Parameter Learning

It is straightforward to optimize the structure apdrameters of the fuzzy rules
simultaneously using genetic algorithms. Each fuagstem is represented as a string
composed of two substrings. The first substringctvinas the same form illustrated as
in the previous Subsection, is to optimize the peters of the fuzzy (model) system.
The second substring encodes the structure ofuheyfrule such that one integer
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number represents one membership (MF) in the sphdgput variable in question.
The MF's in the first of each input variable aramhered in ascending order according
to their centers. For example, a number “1” represséhe MF with the lowest center.
Since each variable is supposed to have at moststdaspaces, the valid numbers in
the second substring are 0,1,2,3 and 4. The nutBbémplies that this variable does
not appear in the premise of the rule. If bothalales take a value of “0” in the second
substring, then this rule is deleted from the hadse. It is also possible that more than
one rule in the rule base has the same premidbidrtase, only the rule that appears
first is kept, so that the rules are consistent.ekample of the second substring is
given as follows:

31 20--- 00
— T ——
rulel rule2 rulel6

The corresponding fuzzy rules are

R': If 8%(k) is (c2,07) and§%(k) is (ck,03) thenuge is upe
R?: If 69(k) is (c2,07) thenuge is uZ

.Rlﬁ . (Deleted)

In order to optimize the structure, the performaf&as rewritten as:

J - DU’ (0 ~Ure ()]
P

g 9)

where /A is the weighting constangg is the penalty for model complexity and is
expressed as:

_ thetotalnumberof rulesin therulebase

s= . (10)
theaverageumberof thefiredrules

The value of/ is set to 0.1 for joint 1 and 0.4 for joint 2. \M@ppose a rule is
fired when the membership grade is greater thah. nOthe case no rules are fired or
there are no rules in the rule basg, will be set to very large value so as to reduee th

competitiveness of this chromosome and excludem the next generation.

The simulation results are inspiring. The optimizate bases for joint 1 and
joint 2 have 9 and 11 rules, respectively, andfitiveg rates are raised to about 0.8402
and 0.7510, respectively. The rule bases for tleejomts are listed in Tables 4 and 5,
and the graphical representation of the two rulesdepicted in Fig. 6. The
approximating results are demonstrated in Fig.h& dverage approximating errors are
0.9267 and 0.5349, respectively. We see that th@oanating errors are quite
satisfying, although the numbers of the fuzzy ralesreduced.
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Table 4. The optimized fuzzy rule basefor joint 1.

IF THEN IF THEN
6¢ o U 6¢ o° U
(0.43,0.19)| (0.60,0.80)] 56.38 | (0.43,0.19) (2.37,1.51)] 1.72
- (0.60,0.80) -7.57 (2.84,1.55) (0.60,0.80)] -12.05
(1.38,2.01)| (3.13,2.58)] 65.13 - (1.70,0.48) 54.35
(1.38,2.01)| (2.37,1.51)] 66.76 | (1.38,2.01 - -9.70
(1.38,2.01)| (1.70,0.48)] 74.86
Table5. The optimized fuzzy rule basefor joint 2.

IF THEN |F THEN
6° 64 Uke 64 é° Uke
(0.43,0.19) - 15.63 (2.85,1.55 - -9.58
(0.43,0.19)| (2.37,1.51)] -15.43 - (2.37,1.51) -18.40
(1.38,2.01)| (0.60,0.80)] -3.17 || (0.43,0.19) (0.60,0.80) 7.92
(0.43,0.19) (1.70,0.48)] 28.68 | (2.85,1.55) (2.37,1.51)] -17.59
(1.38,2.01) - -10.11 (0.43,0.19) (3.13,2.58), 19.38
- (0.60,0.80) 10.86 - - -

The output of fuzzy model 2

The output of fuzzy model 1

Fig. 6. The output surfaces of the two fuzzy moaéier structure optimization.

5. DECENTRALIZED FUZZY FEEDBACK CONTROL

The performance of any fuzzy logic controller ieafty dependent on its inference
rules. In most cases, the closed-loop control perdoce and stability are enhanced if
more rules are added to the rule base of the faamyroller. However, a large set of
rules requires more on-line computational time andre parameters need to be
adjusted. Adjustment of the fuzzy system may baeaeld using genetic algorithms
[20,21]. However, genetic algorithms cannot be usedine and perfect mathematical
model or experimental data should be available.
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— Fuzzy model outpu

R=a

Desired torque

Torque, N.m

Time in sec
Fig. 7. Off-line training of the inverse dynamiesgith structure optimization).
In this Section, a robust PD-type fuzzy feedbaaktrmdler is driven for a class

of MIMO second order nonlinear systems with appiaato tracking control problem
of robotic manipulators[9]. The rule base consists of only four rules pahe@OF.

The approach implements fuzzy partition to theestadriables based on Lyapunov
synthesis. The resulting control law is stable abk& to exploit the dynamic variables
of the system in a linguistic manner.

5.1. Construction of Fuzzy Feedback Controllers

In this Sub-section we apply the fuzzy synthesitheodesign of stable controllers. To
this end, consider a class of MIMO nonlinear secorder systems whose dynamic
equation can be expressed as:

X(t) = f (X, X,Ugg) , 11
where f (x,%,Ugg) IS an unknown continuous functiomgg is the feedback control

input and x(t) = [x, %, x,]"_is the state vector anfi=" =[x, %,....%,]". We now

seek a smooth Lyapunov functionR" -~ R" for the continuous feedback model (1)
that is positive definite, i.ev(x) >0 when x#0 andV(x) =0 when x=0, and grows
to infinity: V(x) - «» as x'x — «. Obviously, this holds for a generalized Lyapunov
candidate function of the following quadratic form:

V (x,t) :%XTX+%)'(T)'(

(12)
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Differentiating (12) with respect to time gives
V(X,1) = X% + XX -+ XX+ Xg3g + Koo + 0+ X X,

From which
V(xt) = (X% + X3%) + (XoXo + XpKo) + -+ + (XX + X Xy)

This is equal to
V(X,1) =V, +V, +---+V, (13)

where

Vit =x% + %%, i=12-n

Then the standard results in Lyapunov stabilityotiigmply that the dynamic
system (11) has a stable equilibrives x, if eachV, in (13) is<0 along the system
trajectories. To achieve this, we have chosen ¢iméral u; (x) to be proportional to

Next, our controller design is achieved if we deteie a fuzzy control
Urg (X) so that:

Vi (%) = %% +a%Ugg (X) <0, i=12--n (14)

whereg; is a positive constant. The results of Wang [22{esthat, a fuzzy system that
would approximate (14) exists. To this end, one ldaonsider the state vectoit)
and x(t) to be the inputs to the fuzzy system. The outfuhe fuzzy system is the
feedback controliz . A possible form of the control rules is:

IF % is (v) and/or X is (v) THEN Ugg is (V), i=12:---n

where thelf) are linguistic values (e.gositive, negative). These rules constitute the
rule base for a Mamdani-type fuzzy controller.
In the above formulation, two basic assumptionshaeen made. They are:
*» The knowledge of the state vector. It is assumedbé¢o available from
measurements.
» The control input,ugg is proportional tox. This assumption can be justified for

a large class of second order nonlinear mecharsgatems, [22-25]. For
instance, here in robotics, it means that the acagbn of links is proportional
to the input torque.

These two assumptions represent the basic knowloiget the system which
is needed to derive the control rules. Clearly, ¢ltact mathematical model is not
needed.

In the coming Sub-section, we use this approactiegign a PD-type fuzzy
feedback tracking controller.

5.2. Fuzzy Feedback Tracking Control

Robots are familiar examples of trajectory-follogimechanical systems. Their
nonlinearities and strong coupling of the robotatyits present a challenging control
problem. In practice, the load may vary while perfmg different tasks, the friction
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coefficients may change in different configurati@rmsl some neglected nonlinearities
as backlash may appear. Therefore, the controlctibpgeis to design a stable fuzzy
controller so that the link movement follows thesided trajectory in spite of such
effects.

Consider a class of robots whose vector of germ@dicoordinates is denoted

by 6=[6,6,---6,]' where@, i=1.--,n are the joint parameters. We consider the state

variables of the robot ag(t) and 4(t), which are usually available as feedback
signals. Define the tracking error vectas) and é(t) as:

e(t) = 6(t) - 8%(t) , and &(t) = 4(t) - 8% (t) (15)

where 8 and 6% are vectors of the desired joint position and eiyp respectively.

Throughout this work, we assume thgt and its derivative are available for online
control computation. In robot tracking tasks, thesided position history is generally
planned ahead of time and its derivatives can biyaabtained.

We now apply the approach presented in the prevalssection in order to
find a fuzzy controller that achieves trackingle tobotic system under consideration.
To this end, let us choose the following Lyapunawdtion candidate

V=_(e+é'e) 6J1
Differentiating with respect to time and using (§B8jes

Vi =68 +6§
To enforce asymptotic stability, it is requiredfited ug so that

Vi =g +8§ <0 1

in some neighborhood of the equilibrium of (16).kihg the controlugg to be
proportional toé, Eqn (17) can be rewritten as:
Vi=e4 +a; §Ues <0 (18)

where @, is positive constant,=1.--,n. Sufficient conditions for (18) to hold can be

|
stated as follows.
(a) if, for eachiO[L---,n], ¢ and ¢ have opposite signs andg; is zero,
inequality (B) holds;
(b) if ¢ and¢ are both positive, then (18) will hold if.; is negative; and
(c) if ¢ and ¢ are both negative, then (18) will hold if, is positive.
i0[L---,n] denotes the joint number.
Using these observations, one can easily obtairfctinerules listed below in
Table 6. In this Table, P, N, denote respectivalgitive, negative errors),, u, and
u, are respectively positive, negative and zero cbmtiputs. These rules are simply
the fuzzy partitions ofg, ¢ and ug which follow directly from the stabilizing
conditions of the Lyapunov function, (16).

In concluding words, the presented approach tramsfcclassical Lyapunov
synthesis from the world of exact mathematical g¢jties to the world of words [25].
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This combination provides us with a solid analftibasis from which the rules are
obtained and justified. Relative to other workss thumber of rules is quite small. For
example, in [8], the rule base of a two-link robmtnsists of 625 rules. After
introducing a rule base reduction approach, théaastin [8] reach to a rule base
consists of 160 rules, which is hard to be impleim@énOtherwise, the results obtained
here contradict the conclusions of a recent suomthe industrial applications of
fuzzy controllers. The authors’ opinion there in6]2is that, all fuzzy control
applications should be tackled in the model bassigd manner. They think that, this
is the way that enables systematic analyses oftituetural properties of the fuzzy
controllers such as stability, controllability, paretric sensitivity and robustness.
Remember that here; we did not use any informatimut the system model.

Table 6. Fuzzy rulesfor the fuzzy feedback controller.
6

P N

P uN uz i=1---n

N uz up

To complete the design, we must specify the fuzamtesn with which the
fuzzy feedback computes the control signal. Heme uge different fuzzy system than
that mentioned in Section 3. The Gaussian memlgeds#fining the linguistic terms in
the rule base is chosen as follows:

—(y— 2

,Upositive(x) = G(X* az) =€ (x-a;)
:unegative(x) = G(x,—az)

Haero(X) = G(x,0)

where a, >0 and z stands for control variable, the product for “araiid center of
gravity inferencing. For some positive constant iO[L---,n] denotes the joint

number, the above four rules can be representedh&yfollowing mathematical
expression:

_ G(8,a5)(-k) +G(g,—ay )(ki) , G(§,a5)(=ki) +G(&,~az)(k)
G(g,ay) +G(g,—ay) G(§,ay) +G(8,~ay)
where a; and a, are positive constants. In more details, the alBmpeation can be
written as:
" - _,{exp(— (e -ay)?)-exil-(a +ay)?) , exdl- (8 ~2,)°)-exil- (8 +a2i>2)}
e (g -a) rexnl- (g +ay)?)  exd- (6 -an)?)+expl- (6 +az)?)
from which
o = i 2me) e 2ay6) | explzaye)-exil-2ase)
" lexd2aye )+ expl-2ay8)  expl2a8)+ expl-2a,8)

FB;
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This yields the fuzzy feedback controller
Ueg = —k; tanh(2a;q ) + tanh(2a, )] , i=1--n (19)

In (19), the inputs are the error in positignand the error in velocitg and

the output is the control input of joiitti.e. it is a PD-type fuzzy feedback controller.
The following remarks are in order:
* The fuzzy controller in (19) is a special caseuzizly systems, where Gaussian
membership functions are used to introduce thetimprables € and &) to

the fuzzy network. Also, the fuzzification and defification methods used in
this study are not unique; see [16] for other aliéives. For example, using
different membership functions (e.g. triangulaaptzoidal ...etc.) will result
in a different fuzzy controller. However, the cailer in (19) is a simple one
and the closed form relation between the inputs #ied output makes it
computationally inexpensive.
* Only three parameters per each DOF need to be tuaetkly, they aré; , a;

and a,; . This greatly simplifies the tuning procedure;cgirthe search space is

quite small relative to other works. For instanites fuzzy controller in [27]
needs 45 parameters to be tuned for a one DOFsyste
* This controller is inherently bounded sidmf(x)| <1.

 Each joint has independent control inpig ,i =12,---n.

* In the case of robotic control, this controller cha regarded as output
feedback controller since the joint's position aredocity are usually the
outputs.

Finally, the fuzzy PD gain, i.ek ,i0[1,---,n] iS chosen so as to minimize the
following quadratic performance index:

3 = Situee 017} (20)

where inputr; is a constant. According to the gradient methbd,l€arning algorithm
of the parametek; in the feedback fuzzy controller (19) can be detias follows:

Ak = —ai = —%
' ok; ugg 0K, (21)

= —hugg [tanh(2cy; € ) + tanh(2c;€ )]

Thus, the fuzzy feedback controller uses ¢heg and ugs, to compute (21)

and update the control gaik given thatk (0)#0. The overall closed-loop control
system is shown in Fig. 8, whevg=ugg +ug is the total input to joint .
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. |Fuzzy Feedforwad

model (2) uFF
64,04 e.,e h\ Ugg U 6.6
P =O 1" 71 | Fuzzy ﬁfed%c)k ;O_', Robot link i |__1" i,
controller (
- N i
The update law

21

Fig. 8. Configuration of the proposed decentralifzezty control scheme of joint i.
6. COMPUTATIONAL COMPLEXITY

Whether a designed controller is practical or reppahds greatly on its computational
complexity because the computing capacity of a ¢ost microprocessor is limited.
This Section provides the complexity of the feedfand and feedback computation of
the control scheme proposed in this paper. Torguepating methods based on robot
inverse dynamics and the feedforward system arepamed. The computational
complexity of the feedback controller is also congglawith that of a self-tuning fuzzy
controller proposed in [28]. We show that the pimab control scheme is
computationally very efficient.

Generally speaking, the computational burden careusduated in terms of
required mathematical multiplication and additiggetions. The controller developed
in this paper consists of a feedforward torque cemsption system and a fuzzy PD
regulator. The computation of the feedforward fuzzystem has three stages:
computation of the membership functions, computatibthe contribution of each rule
and computation of the final output of the fuzzwteyn. The results are provided in
Table 7, wheren is the DOF of the manipulator. For the standardzyusystem
followed in this paper, each variable is supposedhdve at most four subsets and
therefore there are eight fuzzy membership funstiowolved for each joint. For the
optimized fuzzy system, we list the total numbertltd addition and multiplication
operation of the two fuzzy systems obtained in iBacé divided by two. This
manipulation has been adapted because the two &ystgms have different number
of rules and membership functions in each rule .b8sethat, the average number of
arithmetic operations is presented in the lastroaluClearly, the computation of the
optimized fuzzy system is the simplest compared whiat of the inverse dynamic
model and the standard fuzzy system. It should laefied that each minimum
operation is treated as one addition operatiorhi® paper. Table 7 denotes that the
computation burden of the proposed fuzzy torqueptging system is significantly
reduced compared with the conventional torque caimgpumethod, especially when
the freedom of the robot increases.

Table 7. Computational complexity of the fuzzy feedforward system.

Inverse Standard Fuzzy | Optimal Fuzzy
Dynamics System System (aver age)
Addition 11h-24 56 3N
Multiplication 10h-21 33 25n
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The computation of the fuzzy feedback controller aiso be divided into two
parts: computation of (19) and computation of the adaptive gain; k . As a comparison,

we list the computational complexity of our schemvéh the self-tuning fuzzy
controller proposed in [28 see Table 8. We make this comparison because the
feedback controller in [28] is essentially a PD Ziyzcontroller with self-tuning
mechanism. The rule base has been transformedéaision table which is used by a
back-propagation algorithm to adjust the scalingtdies of the fuzzy system. The
difference resides in the fact that the rule bag@8] consists of 49 rules for one DOF
system and the mapped elements &nd €) are obtained by interpolation.
Furthermore, the tuning procedure is composed ofgtages and some learning steps
are needed by the second stage, while the tunisigrayusing (21) is much simpler.
Simulation results, in the coming Section, show thig also efficient.

Table 8. Computational complexity of the fuzzy feedback controller.

Self-tuning fuzzy controller | The proposed fuzzy
[28] controller
Addition 97 6n
Multiplication 11 15n

7. SIMULATION RESULTS

The purpose of the simulation is to investigatertaustness of the proposed control
scheme. The robot system considered in the simualadithe two-link robot presented
in Section 2. In the coming results, it is assuntiedt initial positions of joints

6(0)=6,(000=0°rad and the robot is at rest, i.e. the initial velgst of joints
6,(0)=6,(0) =0°rad kec. This initialization imposes a large initial veiycerror since
60)=-n/2, &(0)=-nrad kec. One can expect uneasy transient stage.

The input torques are shown in Fig. 9 and Fig. H@as the evolution of the
tracking errors. They show that the errors haveveayed to zero. Note that the
transient period is less than 0.5 seconds. Othenwiss interesting to notice how the
control gains evolve with time. Figure 11 depidie evolution of these parameters
with time. They have been initialized &%0) =k, (0) =100N.m.

400 \ \ \ \
u, | | | |
sodfl st S I L]
. | | | |
Z 0 'p_V\T\ | | |
o Uz | |
0 1 2 3 4 5

Time in seconds

Fig. 9. The control effort.



A COMPUTATIONALLY EFFICIENT FUZZY CONTROL ... 165

Error in radian

Time in seconds

Fig. 10. The tracking errors

250
=
Z 150 k1 f
kZ
500 1 2 3 4 5

Time in seconds

Fig. 11. Record of the adaptive control gains dyrrotion.

In order to observe how the controller behaveshi presence of various
uncertainties, three types of uncertainties aresidened, namely, parameter variations,
unmodeled nonlinear friction and unknown payloads.

7.1. Parameter Variations

By parameter variations, we mean here the masshe dihks. It is assumed that they
vary randomly with time every 0.3 second. The mafsthe base link varies in the
range of5 - 7kg (the nominal mass i5kg) and the mass of the elbow lirkk- 5kg

(the nominal mass i25kg). Figure 12 depicts their variation with respectiine and
Fig. 13 shows the corresponding tracking errors.
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Mass of the base link

—*?6’ —l_l_l_l—|—|_|’
] 3 4 5

Mass of the elbow link
5 ; T .
i jj—l_|_ﬁ
o
k¥
SWL |
20 1 2 3 4 5

Time in seconds

Fig. 12. Mass variations during motion of links.

It can be noticed that with respect to previouslliss there is little or no
change has taken place during the transient andttfaely state periods. However, it
has been noticed that increasing the range ofti@gof the masses has resulted in
unstable system. Results of these tests are neemexl here. However, this can be
explained that under such situations, the torquempated from the trained
feedforward fuzzy systems are no longer near tineima torques.

0.05

0,

-0.05

-0.1

Error in radian

0 1 2 3 4 5
Time in seconds

Fig. 13. The tracking errors when the mass of lweses randomly within specified

ranges.

-0.15

7.2. Unmodeled Friction

At the off-line training stage of our simulationewbtain the training samples from the
robot model in (1), which does not consider thelinear friction. In order to examine
the performance of the controller in the preserfcenanodeled nonlinear friction, the
following unmodeled nonlinear friction is addedfa control stage:

F=F +F

where F; and F; are the dynamic and static friction torques, regpely. They can be
expressed by:
_[dicost) 0 }{Xl} and £ {qsgné&)}

Fd . S .
0 d, cos,) || X C,sgnf,)
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We used, =50d, =30 and c, =18c, =12. Results are shown in Fig. 14 and
15. It can be noticed that the transient periodiheseased relative to the cases when
the friction was not considered. Also the inpugtees is relatively higher during this
period. Nevertheless, convergence of the trackiryghas been achieved.

Error in radian

2 3 4 5

Time in seconds

Fig. 14. The tracking errors in the presence of ashefed friction.

400 | | |
2000 - rooooooe oo rooooe- .

£ | | |

z : : :
0 — ‘ - T l
<00 2 3 4 5

Time in seconds

Fig. 15. The control input in the presence of uneted friction.

7.3. Unknown Payload

In robot systems, the unknown payload is one ofrtfagor dynamic uncertainties.
Compared with the parameter uncertainties and uetaddfiction, the influence of
unknown payload is much greater. The coming resuésobtained when the mass and
inertia of the base and elbow links (carrying thglpad) have been increased to 150%.
This increase in the mass and inertia of the tw&sliis supposed to be unknown.
Figure 16 shows that input torque is relativelyhhi@lso, the tracking errors exhibit
larger overshoot during the transient period, Eig. However, convergence of errors
to a narrow region close to zero has taken place.
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Fig. 16. The input torques when the payload in@e&s 150%.
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Fig. 17. The tracking errors in the presence oPA%fcrease in the payload.

8. CONCLUSION

In this paper a decentralized fuzzy control schémne&obot manipulator is developed.
The controller for each joint has a feedforwardzfurorque computing system and a
feedback fuzzy controller. Due to the simple sutetof the fuzzy systems, the on-line
computational burden for nonlinear feedforward cengation is greatly relaxed.
Genetic algorithm is applied to fuzzy system tnagnbecause it is fully data-driven and
is able to optimize the structure of the fuzzy egstsimultaneously. The training
samples can be collected by doing experiments astgblishing an ideal model. We
have demonstrated that the proposed control schveonks well, even if the ideal
model is not in concordance with the real invengeathics.

An important feature of this study is that it heensferred the proposed fuzzy
feedback controller to a closed-form relation betwéhe inputs and the output, leading
to a computationally efficient fuzzy logic contel The rule base consists of only four
rules and has a PD-like structure. The gains amedwn-line based on the gradient
method. This feedback controller is inherently baeoy the upper and lower bounds
can be arbitrary selected by suitably adjust itsupeters. Various simulation results
prove that the proposed controller is effective.

The main advantage of the proposed control appramachat the algorithm
presents a low computational burden; both the faedfrd and feedback part are
computationally simple, particularly when compatedhe standard model predictive
control optimization algorithms. When the optimirat algorithms are used for
controlling complex processes, they usually requ@reonsiderable computational
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effort, which often thwarts their implementation @al industrial systems. Finally, it
can be concluded that using the proposed contrpitoagh presents a convenient
option for controlling a large class of nonlinealMD second order systems.
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