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In this article, an adaptive fuzzy sliding mode control (AFSMC) scheme
is derived for robotic systems. In the AFSMC design, the sliding mode
control (SMC) concept is combined with fuzzy control strategy to obtain
a model-free fuzzy diding mode control. The equivalent controller has
been replaced by a fuzzy system and the uncertainties are estimated on-
line. The approach of the AFSMC has the learning ability to generate
the fuzzy control actions and adaptivdly compensates for the
uncertainties. Despite the high nonlinearity and coupling effects, the
control input of the proposed control algorithm has been decoupled
leading to a simplified control mechanism for robotic systems.
Smulations have been carried out on a two link planar robot. Results
show the effectiveness of the proposed control system.
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1. INTRODUCTION

Performance of many tracking control systems istdichby variation of parameters
and disturbances. This specially applies for didrote robots with highly nonlinear
dynamics and model uncertainties. Payload chany#®mits exact position in the end
effector are examples of uncertainties. The comtrelhodologies that can be used are
ranging from classical adaptive control and rokettrol to the new methods that
usually combine good properties of the classicatrob schemes to fuzzy [1,2], genetic
algorithms [3], neuro-fuzzy [4,5] and neural netiw@8] based approaches. Classical
adaptive control of manipulators requires a pregiathematical model of the system’s
dynamics and the property of linear parameteripataf the system’s uncertain
physical parameters [7].

The study of output tracking problems has a lomagding history. Sliding
mode control (SMC) is often favored basic contr@prach, because of the
insensitivity to parametric uncertainties and exa¢disturbances [7-10]. The theory is
based on the concept of changing the structuréetcontroller to achieve a desired
response of the system. By using a variable higiedswitching feedback gain, the
trajectory of the system can be forced on a chaosanifold, which is called sliding
surfaces or switching surfaces, and remains thieredfthe design of proper switching
surfaces to obtain the desired performance ofystem is very important and has been
the topic of many previous works [11,12]. With thesired switching surface, we need
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to design a SMC such that any state outside thelswg surface can be driven to the
switching surface in finite time. Generally, in tBMC design, the uncertainties are
assumed to be bounded. This assumption may benagalsdfor external disturbance,
but it is rather restrictive as far as unmodellgdainics are concerned.

Nowadays, fuzzy logic control (FLC) systems haverbproved to be able to
solve complex nonlinear control problems. They pievan effective means to capture
the approximate nature of real world. Examples are numerous; see [13] for instance.
While non-adaptive fuzzy control has proven itsueain some applications [1,2,14], it
is sometimes difficult to specify the rule base $ome plants, or the need could arise
to tune the rule-base parameters if the plant adsribhis provides the motivation for
adaptive fuzzy control, where the focus is on tlomatic on-line synthesis and
tuning of fuzzy controller parameters. It means e of on-line data to continually
“learn” the fuzzy controller, which will ensure ththe performance objectives are met.
This concept has proved to be a promising apprdacisolving complex nonlinear
control problems [15,16].

Recently, adaptive fuzzy sliding mode control desigas drawn much
attention of many researchers. Because, controttechry, an inherent problem
associated with SMC, can evoke un-modeled and iredesigh frequency dynamics,
Ho et al. [17] have proposed an adaptive fuzzyirgliianode control with chattering
elimination for nonlinear SISO systems. The ada&ptiaws, however, rely on the
projection algorithms, which can hardly be sati$fie practical problems. In [18], the
authors have established an adaptive sliding cibetrdesign based on T-S fuzzy
system models. The fuzzy system used is rather kcatgd and the upper bound of
the uncertainty is needed to synthesize the cdatroA robust fuzzy tracking
controller for robotic manipulator which uses stiglisurfaces in the control context can
be found in [19]. The control scheme, however, ddpeheavily on the properties of
the dynamic model of robotic manipulators and samto [17], the authors use the
projection algorithms which have practical limitats.

More recently, Li and Huang [20] have designed avil adaptive fuzzy
terminal sliding mode controller for robotic manigtors. In the first phase of their
work, the fuzzy control part relied on some exgerowledge and a trial-and-error
procedure is needed to determine the output somgetin the second phase, they
designed an adaptive control scheme that deterrttiess parameters on-line. The rule
base, however is restricted to five rules per gaictt and the fuzzy singletons should
have values within specified ranges to enforceil#tab

In this work, an adaptive fuzzy sliding mode cohtfdFSMC) scheme is
proposed for robotic systems. The scheme is basethe universal approximation
property of fuzzy systems and the powerfulness MCSheory. A one dimensional
adaptive FLC is designed to generate the apprepiGantrol actions so that the
system's trajectories stick to the sliding surfadetaptive control laws are developed
to determine the fuzzy rule base and the uncemraintVith respect to SMC, the
proposed algorithm eliminates the usual assumptimezled to synthesize the SMC
and better performance can be achieved.

The paper is organized as follows. In Section & afuivalent control method
is used to derive a SMC for rigid robots. SectioimtBoduces the proposed AFSMC
which is a model free approach. Simulation resuhgh include comparison between
AFSMC and SMC are presented in Section 4. Sectioffigss our concluding remarks.
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2. SLIDING MODE CONTROL (SMC) DESIGN

In this Section, the well-developed literature $d to demonstrate the main features
and assumptions needed to synthesis a SMC foricobgstems. SMC employs a
discontinuous control effort to derive the systeajeictories toward a sliding surface,
and then switching on that surface. Then, it wiladpally approach the control
objective, the origin of the phase plane. To thid,econsider a generdl-link robot
arm, which takes into account the friction forcagymodeled dynamics, and
disturbances, with the equation of motion given by

M (X)X + C(X, X)X + G(X) + Fgx+ F¢(X) + T4 (t) = 7(t) ) (1
where
xOR" joint angular position vector of the rok
IOR" applied joint torques (i forces);

M(x)OR™  inertia matrix, positive definit
c(x,9xOR" effect of Coriolis and centrifugal forc

G(x)OR" gravitational torque

Fy OR™" diagonal matrix of viscous and/or dynamic frin coefficient;
F,(X)OR" vector of unstructured friction effects and stdtiction terms

T4OR" vector of generalized input due to disturbancesnonodeled dynamic:

The controller design problem is as follows. Givée desired trajectories
x?,x9,%9, with some (or all) system parameters being unknalenive a control law
for the torque (or force) input(t) such that the position vector and the velocity
vector x can track the desired trajectories, if not exattisn closely. For simplicity,
let (1) rewritten as:

MO)X+ f(x,%) =1(t) 2)
where the vector f(x,x)=C(xX)Xx+G(X)+Fyx+F,(x)+Ty(t). The following
assumptions are needed to synthesis a SMC:

Assumption 1: The matrix M(x) is bounded by a known positive definite matrix
M (X) .
Assumption2: There exists a known estimafex, x) for the vector functionf (x,x) in

(2).

The tracking control problem is to force the statetor to follow desired state
trajectories x?(t). Let et) = x(t) - x(t) be the tracking error vector. Further, let us

define the linear time-varying surfasgt) [21],
sty =&t) - 81,  s(xt) =[sit), S (),..... Sy(D] 3)

where &(t) = x(t) - x4(t) and B(t) is a time varying linear function. Thus from (2)da
(3), we can get the equivalent control (also cailiiecl controller)



176 Abdel Badie Sharkawy and Shaaban A. Salman

Teg(t) = T (x,%) + M(X)[X* + 3] 4)

where 7, (t) is equivalently the average value o) which maintains the system’s
trajectories (i.e. tracking errors) on the slidisgface s(t) =0. To ensure that they
attain the sliding surface in a finite time andréafter maintains the erra(t) on the
sliding manifold, generally the control torquet) consists of a low frequency
(average) component,(t) and a hitting (high frequency) componegt as follows

T(t) = Teq(t) + 71 (1) )

The role ofr,,(t) acts to overcome the effects of the uncertaimstiesbend the

entire system trajectories toward the sliding stefantil sliding mode occurs. The
hitting controllerr,,(t) is taken as [8,21]

1y = —K sgne) ®)

where, K =diag(k,---k,) , k >0, sgn() :[sgn(sl),sgn(sz),---sgn(sn)]T .
To verify the control stability, let us first geh axpression fors(t). Using
eqgns. (3-5), the first derivative of (3) is:
8(x,t) = &(t) - A(t)
=% -%* © - B®)

4 cd (")
=MX[r- f (xb]-%* - B (1)
=Ty
Choosing a Lyapunov function
n 1
V=X oS 0 (8)
and differentiating using (6) and (7), we obtain:
V=3 s (081 =5 O, ©)

<> ks?<0.

which provides an exponentially stable system.

Since the parameters of (2) depend on the manguatucture and payload it
carries, it is difficult to obtain completely acete values for these parameters. In SMC
theory, estimated values are usually used in thralocontext instead of the exact
parameters. So that (4) can be written as:

Teg(®) = f (6 +M (X + 4] (10)

where M (), f (x,x) are bounded estimates fM (x), and f (x,X) respectively. As

mentioned earlier in Assumption 1 and 2, they asimed to be known in advance.
In sliding mode, the system trajectories are goseioy [9]:

5(1)=0, §()=0, i=1--.n (11)
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So that, the error dynamics are determined byuhetion (t) . If coefficients
of B(t) were chosen to correspond to the coefficients Biuewitz polynomial, it is
thus implying thatim, _ e(t) =0. This suggest®(t) taking the following form:

B =-ciq®-cyfadt, withc,,c, >0 (12)
So that, in a sliding manifold, the error dynamgs
&) +cyg(t)+cya(t) =0 (13)

and the desired performance is governed by thdicesits c, andc, .

In summary, the sliding mode control in (5), (6Xai0) can guarantee the
stability in the Lyapunov sense even under parameteiations. As a result, the
system trajectories are confining to the time vagysurfaces (3). With this in hand, the
error dynamics is decoupled i.e. each degree etitren is dependent on its perspective
error function, (13). The control law (10) howevehows that the coupling effects
have not eliminated since the control signal fahedegree of freedom is dependent on
the dynamics of the other degrees of freedom. leddency is usually preferred in
practice. Furthermore, to satisfy the existenceditmm, a large uncertainty bound
should be chosen in advance. In this case, theatlamtresults in large implementation
cost and leads to chattering efforts.

3. DECOUPLED ROBOT TRACKING CONTROL DESIGN

In this Section, we propose a fuzzy system thatldvapproximate the equivalent
control (4). The main challenge facing the applaratof fuzzy logic is the
development of fuzzy rules. To overcome this prohlan adaptive control law is
developed for the on-line generation of the fua#gs. The input of the fuzzy system
is the sliding surfaces (3), and the output iszzyuwcontroller, which substitutes for the
equivalent (4). With this choice, no bounds aredeeeabout the system functions.
Furthermore, the uncertainties are estimated antimeeusly compensated for, which
means that the hitting controlley, (6) is adaptively determined on-line.

The coming Subsection gives a brief introductiorfuzey logic systems and
characterizes them with the type, which is utilibethis contribution.

3.1. Fuzzy Logic Systems

A fuzzy logic system consists of a collection offuzzy IF-THEN rules. A one-input
one-output fuzzy system has the following form:

Rulel : IFsis ATHENT, is &' (14)

wherel =12,....... L is the rule numbers andz; are respectively, the input and output

variables.A is the antecedent linguistic term in ruleand @, 1=1..L is the label of

the rule conclusion, a real number calfazzy singleton. The conclusion of each rule
(control action), a numerical value not a fuzzy, sah be considered pse-defuzzified

output. Defuzzification maps output fuzzy sets miedi over an output universe of
discourse to a crisp output, . In this work, we have adopted singleton fuzzjfier
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product inference, the center-average defuzzifibickv reduces the fuzzy rules (14)
into the following fuzzy logic system:

L
PICAINC
ri(sf) =1t —— (15)

Z'UA (s)
1=1
where u, is the membership grade of the inpsuinto the fuzzy se# . In eqn. (15), if

6'’s are free (adjustable) parameters, then it carWeitten as:
11 (6,5)=8"&(9) (16)

where 9=(6",...6"%) is the parameter vector arfds) =[£'(s),..£-(s)]" is a regression
vector given by

f9= a7)

Z/'IAI (S)
1=1

Generally, there are two main reasons for usinguhey systems in egn. (16)
as building blocks for adaptive fuzzy controllgfastly, it has been proved that they
are universal approximators [22]. Secondly, all paeameters iré(s) can be fixed at

the beginning of adaptive fuzzy systems expansesigth procedure so that the only
free design parameter vector 4. In this case,r(6,s) is linear in parameters. This
approach is adopted in synthesizing the adaptimér@daw in this paper.

Without loss of generality, Gaussian membershigtions have been selected
for the input variables. A Gaussian membership tioncis specified by two
parametersc, o} :

_ 2
,UAlj (Xj) = gaussiarx; ;c,c) = ex{-%[ XjJ c] }

wherec represents the membership function’s center@ndetermines its width.

The fuzzy system used in this contribution is onput one output system,
(14). The input of the fuzzy system is normalizethg L number of equally spaced
Gaussian membership functions inside the univefsiisoourse. Slopes are identical,
see Fig. 1.

Equal divisions

4_4,\44_” |
\
— | = 2 = =
| =1 | ' ‘ | 3. . ‘ | =L

| | \ \
| \ \

| |

¢ c, C C
Universe of discourse——mMm —»

A

Fig. 1. Input fuzzy sets.
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The described fuzzy system is used to approxintegenonlinear dynamics of
robotic systems. In a decoupled manner, the coattibn is computed for each degree

of freedom, based on the corresponding slidingeserf The control actiond (output
singletons) which are contained in the parametetoved should be known. In the
coming Subsection, adaptive laws are derived téhdotask. The antecedent part is
fixed with Gaussian membership functions.

3.2. The Adaptation Mechanism

Fuzzy systems are universal function approximatdisey can approximate any
nonlinear function within a predefined accuracgnbugh rules are used. This implies
the necessity of using expert knowledge in the fafnarge number of rules and
suitable membership functions. Usually trial angeprocedure is needed to achieve
the requested accuracy. Assigning parameters duttay systems (or some of them)
adaptively greatly facilitates the design (e.gudthe number of rules) and enhances
the performance (saves the computation resources).

In this Subsection, we derive an adaptive contesk Ito determine the
consequent part (control actions contained in patanvectord) of the fuzzy system
which is used to approximate the unknown nonlirigaramics of robotic systems. The
proposed scheme saves the need to expert knowksuyg¢edious work needed to
assign parameters of the fuzzy system. Furthermdisturbances, approximation
errors and uncertainties are determined on-linditggto a stable closed loop system.

Lyapunov stability analysis is the most popularrapph to prove and evaluate
the convergence property of nonlinear controllerg,, sliding mode control, fuzzy
control system. Here, Lyapunov analysis is employednvestigate the stability
property of the proposed control system. By thevensial approximation theorem [22],
there exists a fuzzy controllet (s,6) in the form of (16) such that

Tmi(t)zrfi(si’gi)+£i:HiT§t+5i i=1--,n (18)

where & is the approximation error and is bounded|hls< E; . Employing a fuzzy
controller ffi(s,é!,) to approximatereqi (t) as
71,(5.6)=6'& o1

whereé?I is the estimated value of the parameter ve@toMNow, the SMC in (5) can
be rewritten as:
G(t)=7¢,(5.8)+ 1 () (20)

where the fuzzy controllerffi(s,é,) is designed to approximate the equivalent

controller 7, (t). Define 7, =1, -7(.(s.8), §=6-8, and use (17), then it is
obtained that
7y, =86 +¢ (21)
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An expression fos(t) can be expressed as follows:
8(xt) = &(t) - A(t)
=% (1) -x* (1) - B(t)

=M ()7 -M(X) f (x,X) - %4 = B(t) (22)
=M 0)(Teq + i) =M 0O F () = X4 = (1)
Substituting from (19-21):
$=M () (Uy ~O~¢) (23)

where ©T = |67 &,67&,,-,87 &,]. Now, assume thait “*(x) can be approximated by
known constant positive definite diagonal matm& . Unlike constant control gain

schemes (see [23,24] for example), this assumgtam been taken into account as
follows. Equation (23) can be rewritten as

§ :'\Wi,i(uhti_eiTEi_Ei)a i=1--n (24)

where E; is the sum of approximation errors and uncertegtA control goal would
be the on-line determination of its estimag(t) . The estimation error is defined by

E(t)=E -E(t), i=1--n (25)
Define a Lyapunov function as
= n 1 2 — éTé — E'Z:|
VoIs(t),6,E)=> . | =5 "+M;; =—+M;; —— 26
,(50).6.E) Z,_l{za Mg (26)

wheren, and, are positive constants. Differentiating (25) widspect to time and
using (23), it is obtained that

Y = n R — éTé I ~~
VZi(S'&,Ei)=Zi:1[ss +M;; — +Mi,iﬁ}
Thi i

> _ 8’4 _— EE
:2'”—1 S'Wii(uhti_5!|T<ti_Ei)"'|V|ii6g 6€ "‘MiiE]
" ’ R/ /7

n |l = 6. — _ EE
=Y I MUIET(S& +—D)]+M; s (Upy —E) + M E}
Thi 17

2i

To satisfyV, <0, the adaptive laws can be selected as

é = 1SS (27)
Uy; = -E sgng) 128
Using (20)

éi(t):_éi =1n5ls| (29)
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then (22) can be rewritten as

Vo(s0).8.E)= 0 M s son) - £1-Is|E2]
<->in|sMii(E -|E)<0

Therefore,V, is reduced gradually and the control system iblstavhich

(30)

means that the system trajectories converge telitiag surfacess(t) while & and E

remain bounded. Now, if we let
r=Y"|sM;(E -E) <V, (31)

and integrater(t) with respect to time, then it is shown that
(32)

j;r(r)dr <V, (s(0),8, E) -V, (s(t), 8, E)
BecauseV, (s(0),4,E) is bounded andv,(s(t),d,E) is non-increasing and
bounded, it implies that
|immj;r(r)drs<>o (33)

Furthermore,/” is bounded, so that by Barbalat's lemma [7], it ba shown
that Iimtﬂmj.gf(r)dr =0. That is,s(t) - 0 ast - 0. As a result, the proposed AFSMC

is asymptotically stable.
Hence, the control law (18) can be rewritten a®¥ob
u (=0 (s.8)-Esgng),  i=1--.n (34)

In summary, the adaptive fuzzy sliding mode cotaro{34) has two terms;
u, (s 6) given in (19) with the parametér adjusted by (27) and the uncertainties and

approximation boundg; adjusted by (29). By applying these adaptive laths,
AFSMC is model free and can be guaranteed to lidestar any nonlinear system has

the form of (2).

—>| Adaptation law (27) |-—

\i

Xd Rule base M
s(t):e—ﬂ-b M - Fuzzy [
Inference I
Defuzzification

Fuzzification system

Adaptation law (29)

Y

Fig. 2. The closed loop control system utilizingSWC.
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It should be noted that implementing the algoritimplies that the both error
dynamics and control signals has been decoupleck giach of them is dependent only
on the perspective sliding surface. Unlike SMC,gheposed AFSMC does not require
any knowledge about the system functions nor theinds. It adaptively determines
and compensates for the unknown dynamics and exteisturbances leading to a
stable closed loop system. Figure 2 shows the glaments of the control system.
Remark 1. Since the control laws (6) and (34) contain thgnsfunction, direct
application of such control signals to the robsiistem may result in chattering caused
by the signal discontinuity. To overcome this pesh| the control law is smoothed out

within a thin boundary layes [7,21] by replacing the sign function by a satiomt

sat[i] -
a) |s ‘3
] @

4. SIMULATION RESULTS

In this Section, we simulate the AFSMC and SMC. 8ation tests are carried out
using MATLAB R2009a, version 7.8 under Windows ¥iesnment. A two link robot
arm with varying loads is used to generate dathersimulation tesiFig. 3. The arm
is depicted as 2-input, 2-ouput nonlinear systelne dontrol architecture shown in Fig.
2 represents the closed loop system, in which ¢betris the plant to be controlled.
The detailed descriptions of the matriteeq), C(x,x) and G(x) in (1) for this robot

can be found in [7]. We consider the state varialeletor as the joint positions; i.e.
x=[x, %]" . They are usually available feedback signals thinoencoders mounted on

the motor shafts.
Link parameters arem =2+2xrand(), m, =1+3xrand(l), |,=10m and

l,=07m, where the mass of link onsy, and link two m, are randomly varied;
rand()) is a pseudo-random number ranges from- 10. Figure 4(a) shows their
time history. A random disturbance torque has [@skted to the gravity torque of link
two, such thatr, = [0,7xrand(1)]" , Fig. 4(b). Dynamic and static friction torquesrae
selected as follows:

<1

d =

5cosf,) O = 1.8sgnfx,)
[o 3cos¢<2)] S_L.ZSQH(XZJ
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Fig. 3. A two link rigid robot.

:04 I I 8 ; ;
- | |
plLL Lt TS
2 1 2 3 §_4 \‘\M “‘
B L
e 2y - UERS (1Al \
| |
00 i é 3 O0 1 2 3
Time in seconds Time in seconds
(a) (b)

Fig. 4. Mass of links (a) and disturbance (b) pesti

The friction and disturbance torques were unknowthe algorithm. Random
signals were generated by ttand function in MATLAB. The desired trajectories for

x, and x, were set as:
xd(t) = -Asin(@it), x3(t) =-A,sin(@;t), with A =12 rad,
A,=16rad, w=m/2rad s, w,=mrad s

Initially, the arm is assumed at rest, i%.,=[00]" rad/s, and position of
links as x.,=[7/12-7/12]" rad, which resulted in initial position error

8- = [15° ~15°]" degree and velocity error,_, = [189-503]" rad/s.

The AFSMC has been simulated under the followingregs. Two rules were
implemented to determine each of the two equivatentrol components, i.d. =2 in
(14). Each rule base has one inpsitand one outputre, where the subscript=12
denotes the joint number. This means that a tdtélrales were used to determine the
two equivalent torques. This is relatively a quteall number of rules. In a similar
study [25], the rule base consists of 36 rulesaf@ene degree of freedom system (the
inverted pendulum).
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Coefficients of the sliding surfaces in (12) weiekpd asc, = [4040]" and
c, =[33]" . After few simulation tests, the learning rategevadjusted ag, =[151.5
and ;7 =[456]. The estimated errors in (28) have been initigted =[-300-10q" .

As mentioned earlier, the sign function in (6) af@8) has been replaced by the
saturation function withy =1, i =12.

Evolution of the parameter vectors is given in FH@n). Zeros were used to
initiate their elements. The superscripts denotertie number, 1 and 2. The rates of
adaptation for the parameter vectors are depictédg. 5(b). As it can be noticed, the
rate of adaptation of rule 1 is very close to r2l®r the same joint. This remark was
noticed by the authors from an enlarged figure; 5(b). Time history of the estimated
errors is shown in Fig. 6.

With respect to SMC in (5), (6) and (10), we hawauwated it under the
following settings. The control system has beenidtéd with the same initial
conditions (i.e.ee and ¢ ¢) followed by the AFSMC. Similar to what we did tvit
respect to the AFSMC, the sign function in (6) bagn replaced by the saturation
function. The gaink of the hitting controller gain in (6) was set lis= 701 where!|
is 2x2 identity matrix. This value oK has been selected as the maximum possible
one, which means maximum possible rate of convemyeharger value results in

chattering. To synthesize the SM@,(x) and f(x,%) in (10) were selected as follows:
M =51 which means that it is a time-independent matnit a

~ | 050 |2 .
f= X+|, [+Fgx+F+Ty
005 1

where Fy, F, andT, are defined above.

e E— S — —— N 00— =1 w
| 923 Joint one 911 an:d 2 i Joint one
| —
200 ‘ ‘
0 1 2 3
o= ) | Jointt
Lard " Joint two
VLN
20 1 1
0 1 2 3
Time in seconds Time in seconds
@ (b)

Fig. 5. Time history of (a) parameter vectors (@@ntrol actions) and (b) adaptation rate.
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100 e ————————————
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-200f - - - - - ro--2- Fo---
| |
| |
| |
|

g
B300p -~ 71—~
\ [ /:(
1 1
-400 : :
0 1 2 3

Time in seconds

Fig. 6. Time history of the estimated errors.

Similar to AFSMC, the friction and disturbance toeg were unknown to the
control algorithm. Results are shown in Figs. 7A2lose look to these figures shows
that the AFSMC was little-bit faster than SMC. Téteady state error for the two
controllers is quite small as it can be noticedFig. 11. Figure 12 depicts the control
signals. In the transient phase, the maximum ibpnaues of the SMC exhibits larger
values than those of the AFSMC.

In order to quantify the performance of the twotcolters, we have used the
following three criteria.

(a) Integral of the absolute value of error (IAE):

IAE = j;‘ le(t)] i

(b) Integral of time multiplied by the absolute valdetwe error (ITAE)
ITAE = j;‘ tle(t)| dt

(c) Integral of the square value (ISV) of the contrgiit
ISV = j; u2(t) ot

Both IAE and ITAE are used as objective numeric&asures of tracking
performance for an entire error curve, wheyerepresents the total running time (3

seconds). The IAE criterion gives an intermediasult. In ITAE, time appears as a
factor; it will heavily emphasize errors that octate in time. The criterion ISV shows
the consumption of energy. Results are given inléfdb These results slightly differ
when we run the software more than one time unkdersame conditions. This is
referred to the random signals involved in the $ition (masses of the links and the
disturbances).

Table 1. The performance indices.
IAE (rad) ITAE (rad-s) ISV (N-

Controller  Joint

x102 x107%  x102 x1072 m)®x 10°x10™
AFSMC  Joint 1 2.80 1.6 1.447
Joint 2 2.92 1.2 0.15
SMC Joint 1 2.86 1.62 2.41

Joint 2 4.26 2 0.37
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Nevertheless, one can clearly notice that the AFSMCperforms the SMC

with respect to all the performance indices.

Finally, it can be concluded that all signals o firoposed control system are
bounded, the states have converged to the equilibgoints and the control targets

have been met.
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5.CONCLUSIONS

In this article, we utilized the universal approaiion property of fuzzy systems and
powerfulness of SMC theory to compose an AFSMC sehéor robotic systems.
Optimal parameters of the fuzzy system and uncgytddound are generated on-line.
The proposed control scheme has the following adgms: (a) does not require the
system model; (b) guarantees the stability of theed loop system; (c) uses a simple
rule base (one-input one-output fuzzy system). ddptive control law generates on-
line the fuzzy rules. Furthermore, the uncertamtiee learned on-line and adaptively
compensated for. In comparison with SMC, the predasontrol scheme is decoupled
and has eliminated the assumptions, which are lysuedded to synthesize a SMC.
The control scheme has been simulated on a twoplewkar robot. The fuzzy
system needs only two rules per joint to deterntivee control signal. The approach
significantly eliminates the fuzzy data base burded reduces the computing time,
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thereby increasing the sampling frequency for fdssimplementation. It should be
emphasized that, the developed adaptive laws kb&rfiuzzy rules and uncertainties.
Zeros have been used to initiate them. Results gheveffectiveness of the overall
closed-loop system performance.

REFERENCES

[1] A.B. Sharkawy, H. El-Awady, and K.A.F. MoustafaaBle Fuzzy Control for a
Class of Nonlinear Systems, Trans. of the Instibit&easurement and Control,
Vol. 25, No. 3, pp. 265-278, (2003).

[2] J. Lin, R-J. Lian, C-N. Huang and W-T. Sie, Enhah¢aizzy Sliding Mode
Controller for Active Suspension Systems, Mechatsrvol. 19, pp. 1178-1190,
(2009).

[3] P.C. Chen, C.W. Chen and W.L. Chiang, GA-Based HxliAdaptive Fuzzy
Sliding Mode Controller for Nonlinear Systems, ExpeSystems with
Applications, Vol. 36, pp. 5872-5879, (2009).

[4] S. Kaitwanidvilai and M. Parnichkun, Force Continla Pneumatic System
Using Hybrid Adaptive Neuro-Fuzzy Model Referencen@ol, Mechatronics,
Vol. 15, pp. 23-41, (2005).

[5] Lon-Chen Hung, Hung-Yuan Chung, Decoupled Slidingeel with Fuzzy-
Neural Network Controller for Nonlinear Systemstehmational Journal of
Approximate Reasoning, Vol. 46, pp. 74-97, (2007).

[6] Y. Zhiyong, W. Jiang and M. Jiangping, Motor-Mectsam Dynamic Model
Based Neural Network Optimized Computed Torque f@braf a High Speed
Parallel Manipulator, Mechatronics, Vol. 17, pp1380, (2007).

[7] J-J. Slotine and W. Li, “Applied Nonlinear ContfdPrintice-Hall International,
Inc. (1991).

[8] V.l Utkin, Sliding Modes and their Applications Wariable Structure Systems,
Moscow, Russia: Mir Publishers, (1978).

[9] V.l Utkin, Sliding Modes in Control and Optimizati, Springer-Verlag, Berlin
(1992).

[10] A. Harifi, A. Aghagolzadeh, G. Alizadel and M. Satle Designing a Sliding
Mode Controller for Slip Control of Antilock Brak8ystems, Transportation
Research Part C, Vol. 16, pp. 731-741, (2008).

[11] B. Yao, S.P. Chan and D. Wang, Variable Structudapiive Motion and Force
Control of Robot Manipulator, Automatica, Vol. 38lo. 9, pp. 1473-1477,
(1994).

[12] B. Yao, S.P. Chan, and D. Wang, Unified Formulata@dnVariable Structure
Control Schemes for Robot Manipulators, IEE Trams. Automatic Control,
Vol. 39, No. 2, pp. 371-376, (1994).

[13] K. Passino and S. Yurkovich, Fuzzy Control, Addisgasley Longman, Inc.,
(1998).

[14] R. Ordonezet al., Adaptive Fuzzy Control: Experiments and Compuaeati
Analysis, IEEE Transactions on Fuzzy Systems, BoINo. 2, pp. 167-188,
(1997).



AN ADAPTIVE FUZZY SLIDING MODE CONTROL SCHEME ... 189

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

F.H. Hsiao, C.W. Chen, Y.W. Liang, S.D. Xu and W@hiang, “T-S Fuzzy
Controllers for Nonlinear Interconnected TMD Syssekvith Multiple Time
Delays,” IEEE Trans. Circuits and Systems, Paxtdl. 52, No. 9, pp. 1883-
1893, (2005).

F.H. Hsiao, J.D. Hwang, C.W. Chen and Z.R. Tsaplitst Stabilization of
Nonlinear Multiple Time-Delay Large-Scale Systens Becentralized Fuzzy
Control,” IEEE Trans. On Fuzzy Systems, Vol. 13, Mpopp. 152-163, (2005).
H.F. Ho, Y.K. Wong and A.B. Rad, Adaptive Fuzzydsig Mode Control with
Chattering Elimination for SISO Systems, Simulatiglodeling Practice and
Theory, Vol. 17, pp. 1199-1210, (2009).

C-C. Cheng and S-H. Chien, Adaptive Sliding Modattaller Design Based on
T-S Fuzzy System Models, Automatica, Vol. 42, gp03-1010, (2006).

H.F. Ho, Y.K. Wong and A.B. Rad, Robust Fuzzy TiagkControl for Robotic
Manipulators, Simulation Modelling Practice and @ty Vol. 15, pp. 801-816,
(2007).

T-H. S. Li and Y-C. Huang, MIMO Adaptive Fuzzy Tdmal Sliding-Mode
Controller for Robotic Manipulators, Information iSaces, Vol. 180, 4641-
4660, (2010).

Stephaneko, Y. and Su, C-Y., Variable Structuret@biof Robot Manipulators
with Nonlinear Sliding Manifolds, Int. J. ControVol. 58, No. 2, pp. 285-300,
(1993).

L.X. Wang, Adaptive Fuzzy Systems and Control, FPrBntice Hall, (1994).
S.-J. Huang and W.-C. Lin, Adaptive Fuzzy Controliéth Sliding Surface for
Vehicle Suspension Control, IEEE Trans. on Fuzzst&ys, Vol. 11, No. 4, pp.
550-559, (2003).

A. Poursamad and A. H. Davaie-Markazi, Robust AdepFuzzy Control of
Unknown Chaotic Systems, Applied Soft Computing,|.V@, pp. 970-976,
(2009).

M. Roopaei, M. Zolghadri and S. Meshksar, Enhankddptive Fuzzy Sliding
mode Control for Uncertain Nonlinear Systems, ComriNwnlinear Sci Numer
Simulat, Vol. 14, pp. 3670-3681, (2009).

Ad¥) Ul aadiiy Adlia phaad 53 (g a0 aSal AU

<Nslall (AFSMC) daljiall mhan) Jlasindy tolgn (b oSa alas (ilasy il ) il Congy

huaa Lellas ()5S0 aadlgl) 4ndail) e adliall by siasall Jlaxioly aSail) asgin pdiing & el Hlall L 4gy)
e aSall Sl fpuaigl) Aoshaiall (palyl) #35ailly 4diss adyee o 2 (adaptive) el aSaill
sl 553k (SMC) dtliall mlansll Jlesianly oSall 4l 3 aiial) oSl LS pe (e aalaindl] & 228

Y ) Jae ol Logalilis Logallan aant (Say 5 aadla e 4uililly 4aadla

o3 (b An il HSatl Aaghiie Gn DA Caags g3V S T Dl e Al s8lae dee

Ll aSal) Ul ojlies <yl bl ¢ jelals (SMC) aaljiall mhan) g 55 (g aSae Cpass syl



