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In this article, an adaptive fuzzy sliding mode control (AFSMC) scheme 
is derived for robotic systems. In the AFSMC design, the sliding mode 
control (SMC) concept is combined with fuzzy control strategy to obtain 
a model-free fuzzy sliding mode control. The equivalent controller has 
been replaced by a fuzzy system and the uncertainties are estimated on-
line. The approach of the AFSMC has the learning ability to generate 
the fuzzy control actions and adaptively compensates for the 
uncertainties. Despite the high nonlinearity and coupling effects, the 
control input of the proposed control algorithm has been decoupled 
leading to a simplified control mechanism for robotic systems. 
Simulations have been carried out on a two link planar robot. Results 
show the effectiveness of the proposed control system.  

KEYWORDS: Sliding mode control (SMC), Adaptive fuzzy sliding 
mode control (AFSMC), Fuzzy logic control (FLC), Adaptive laws, 
Robotic control.  

 
1.  INTRODUCTION 

Performance of many tracking control systems is limited by variation of parameters 
and disturbances. This specially applies for direct drive robots with highly nonlinear 
dynamics and model uncertainties. Payload changes and/or its exact position in the end 
effector are examples of uncertainties. The control methodologies that can be used are 
ranging from classical adaptive control and robust control to the new methods that 
usually combine good properties of the classical control schemes to fuzzy [1,2], genetic 
algorithms [3], neuro-fuzzy [4,5] and neural network [6] based approaches. Classical 
adaptive control of manipulators requires a precise mathematical model of the system’s 
dynamics and the property of linear parameterization of the system’s uncertain 
physical parameters [7].  

The study of output tracking problems has a long-standing history. Sliding 
mode control (SMC) is often favored basic control approach, because of the 
insensitivity to parametric uncertainties and external disturbances [7-10]. The theory is 
based on the concept of changing the structure of the controller to achieve a desired 
response of the system. By using a variable high speed switching feedback gain, the 
trajectory of the system can be forced on a chosen manifold, which is called sliding 
surfaces or switching surfaces, and remains thereafter. The design of proper switching 
surfaces to obtain the desired performance of the system is very important and has been 
the topic of many previous works [11,12]. With the desired switching surface, we need 
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to design a SMC such that any state outside the switching surface can be driven to the 
switching surface in finite time. Generally, in the SMC design, the uncertainties are 
assumed to be bounded. This assumption may be reasonable for external disturbance, 
but it is rather restrictive as far as unmodelled dynamics are concerned.  

Nowadays, fuzzy logic control (FLC) systems have been proved to be able to 
solve complex nonlinear control problems. They provide an effective means to capture 
the approximate nature of real world. Examples are numerous; see [13] for instance. 
While non-adaptive fuzzy control has proven its value in some applications [1,2,14], it 
is sometimes difficult to specify the rule base for some plants, or the need could arise 
to tune the rule-base parameters if the plant changes. This provides the motivation for 
adaptive fuzzy control, where the focus is on the automatic on-line synthesis and 
tuning of fuzzy controller parameters. It means the use of on-line data to continually 
“learn” the fuzzy controller, which will ensure that the performance objectives are met. 
This concept has proved to be a promising approach for solving complex nonlinear 
control problems [15,16].  

Recently, adaptive fuzzy sliding mode control design has drawn much 
attention of many researchers. Because, control chattering, an inherent problem 
associated with SMC, can evoke un-modeled and undesired high frequency dynamics, 
Ho et al. [17] have proposed an adaptive fuzzy sliding mode control with chattering 
elimination for nonlinear SISO systems. The adaptive laws, however, rely on the 
projection algorithms, which can hardly be satisfied in practical problems. In [18], the 
authors have established an adaptive sliding controller design based on T-S fuzzy 
system models. The fuzzy system used is rather complicated and the upper bound of 
the uncertainty is needed to synthesize the controller. A robust fuzzy tracking 
controller for robotic manipulator which uses sliding surfaces in the control context can 
be found in [19]. The control scheme, however, depends heavily on the properties of 
the dynamic model of robotic manipulators and similar to [17], the authors use the 
projection algorithms which have practical limitations.  

More recently, Li and Huang [20] have designed a MIMO adaptive fuzzy 
terminal sliding mode controller for robotic manipulators. In the first phase of their 
work, the fuzzy control part relied on some expert knowledge and a trial-and-error 
procedure is needed to determine the output singletons. In the second phase, they 
designed an adaptive control scheme that determines these parameters on-line. The rule 
base, however is restricted to five rules per each joint and the fuzzy singletons should 
have values within specified ranges to enforce stability.  

In this work, an adaptive fuzzy sliding mode control (AFSMC) scheme is 
proposed for robotic systems. The scheme is based on the universal approximation 
property of fuzzy systems and the powerfulness of SMC theory. A one dimensional 
adaptive FLC is designed to generate the appropriate control actions so that the 
system's trajectories stick to the sliding surfaces. Adaptive control laws are developed 
to determine the fuzzy rule base and the uncertainties. With respect to SMC, the 
proposed algorithm eliminates the usual assumptions needed to synthesize the SMC 
and better performance can be achieved.  

The paper is organized as follows. In Section 2, the equivalent control method 
is used to derive a SMC for rigid robots. Section 3 introduces the proposed AFSMC 
which is a model free approach. Simulation results which include comparison between 
AFSMC and SMC are presented in Section 4. Section 5 offers our concluding remarks.  
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2.  SLIDING MODE CONTROL (SMC) DESIGN 

In this Section, the well-developed literature is used to demonstrate the main features 
and assumptions needed to synthesis a SMC for robotic systems. SMC employs a 
discontinuous control effort to derive the system trajectories toward a sliding surface, 
and then switching on that surface. Then, it will gradually approach the control 
objective, the origin of the phase plane. To this end, consider a general n -link robot 
arm, which takes into account the friction forces, unmodeled dynamics, and 
disturbances, with the equation of motion given by 

)()()()(),()( ttTxFxFxGxxxCxxM dsd τ=+++++ &&&&&                                                  (1) 

where 
nRx ∈  joint angular position vector of the robot; 
nR∈τ  applied joint torques (or forces); 

nnRxM ×∈)(  inertia matrix, positive definite; 
nRxxxC ∈&&),(  effect of Coriolis and centrifugal forces; 

nRxG ∈)(  gravitational torques; 
nn

d RF ×∈  diagonal matrix of viscous and/or dynamic friction coefficient; 
n

s RxF ∈)(  vector of unstructured friction effects and static friction terms; 
n

d RT ∈  vector of generalized input due to disturbances or unmodeled dynamics.  
 

The controller design problem is as follows. Given the desired trajectories 
,,, ddd xxx &&&  with some (or all) system parameters being unknown, derive a control law 

for the torque (or force) input )(tτ  such that the position vector x  and the velocity 
vector x&  can track the desired trajectories, if not exactly then closely. For simplicity, 
let (1) rewritten as:  

)(),()( txxfxxM τ=+ &&&                                                                                              (2) 

where the vector )()()(),(),( tTxFxFxGxxxCxxf dsd ++++= &&&& . The following 
assumptions are needed to synthesis a SMC:  

Assumption 1: The matrix )(xM  is bounded by a known positive definite matrix 

)(ˆ xM .  

Assumption2: There exists a known estimate ),(ˆ xxf & for the vector function ),( xxf &  in 
(2).  

The tracking control problem is to force the state vector to follow desired state 
trajectories )(txd . Let )()()( txtxte d−=  be the tracking error vector. Further, let us 

define the linear time-varying surface )(ts  [21], 

)()()( ttets β−= & ,    T
n tstststxs )](),......,(),([),( 21=                                                     (3) 

where )()()( txtxte d
&&& −=  and )(tβ  is a time varying linear function. Thus from (2) and 

(3), we can get the equivalent control (also called ideal controller) 
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])[(),()( βτ &&&& ++= d
eq xxMxxft                                                                               (4) 

where )(teqτ  is equivalently the average value of )(tτ  which maintains the system’s 

trajectories (i.e. tracking errors) on the sliding surface 0)( =ts . To ensure that they 

attain the sliding surface in a finite time and thereafter maintains the error )(te  on the 

sliding manifold, generally the control torque )(tτ  consists of a low frequency 
(average) component )(teqτ  and a hitting (high frequency) component htτ  as follows 

)()()( ttt hteq τττ +=                                                                                                  (5) 

The role of )(thtτ  acts to overcome the effects of the uncertainties and bend the 
entire system trajectories toward the sliding surface until sliding mode occurs. The 
hitting controller )(thtτ  is taken as [8,21] 

)sgn(sKht −=τ                                                                                                        (6) 

where, ),( 1 nkkdiagK L= , 0>ik , T
nssss )]sgn(),sgn(),[sgn()sgn( 21 L= . 

To verify the control stability, let us first get an expression for )(ts& . Using 
eqns. (3-5), the first derivative of (3) is: 

[ ]
ht

i
d

d

txtxfxM

ttxtx

ttetxs

τ
βτ

β

β

=
−−−=

−−=

−=

−

          

)(),()(          

)()()(          

)()(),(

1 &&&

&&&&&

&&&&

                                                                     (7) 

Choosing a Lyapunov function 

)(
2

1 2
11 tsV i

n

i∑ ==                                                                                                       (8) 

and differentiating using (6) and (7), we obtain: 
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ihtii
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                                                                                  (9) 

which provides an exponentially stable system.  
Since the parameters of (2) depend on the manipulator structure and payload it 

carries, it is difficult to obtain completely accurate values for these parameters. In SMC 
theory, estimated values are usually used in the control context instead of the exact 
parameters. So that (4) can be written as: 

])[(ˆ),(ˆ)( 1 βτ &&&& ++= − d
eq xxMxxft                                                                            (10) 

where )(ˆ xM , ),(ˆ xxf &  are bounded estimates for )(xM , and ),( xxf &  respectively. As 
mentioned earlier in Assumption 1 and 2, they are assumed to be known in advance.  

In sliding mode, the system trajectories are governed by [9]:  
,0)( =tsi            0)( =tsi& ,           ni ,,1L=                                                              (11) 
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So that, the error dynamics are determined by the function )(tβ . If coefficients 

of )(tβ  were chosen to correspond to the coefficients of a Hurwitz polynomial, it is 

thus implying that 0)(lim =∞→ tet . This suggests )(tβ  taking the following form:  

∫−−= dt)( 21 iiiii ectecβ ,      with 0, 21 >ii cc                                                        (12) 

So that, in a sliding manifold, the error dynamics is: 
0)()()( 21 =++ tectecte iiiii &&&                                                                                      (13) 

and the desired performance is governed by the coefficients 1c  and 2c .  
In summary, the sliding mode control in (5), (6) and (10) can guarantee the 

stability in the Lyapunov sense even under parameter variations. As a result, the 
system trajectories are confining to the time varying surfaces (3). With this in hand, the 
error dynamics is decoupled i.e. each degree of freedom is dependent on its perspective 
error function, (13). The control law (10) however, shows that the coupling effects 
have not eliminated since the control signal for each degree of freedom is dependent on 
the dynamics of the other degrees of freedom. Independency is usually preferred in 
practice. Furthermore, to satisfy the existence condition, a large uncertainty bound 
should be chosen in advance. In this case, the controller results in large implementation 
cost and leads to chattering efforts.  
 

3. DECOUPLED ROBOT TRACKING CONTROL DESIGN 

In this Section, we propose a fuzzy system that would approximate the equivalent 
control (4). The main challenge facing the application of fuzzy logic is the 
development of fuzzy rules. To overcome this problem, an adaptive control law is 
developed for the on-line generation of the fuzzy rules. The input of the fuzzy system 
is the sliding surfaces (3), and the output is a fuzzy controller, which substitutes for the 
equivalent (4). With this choice, no bounds are needed about the system functions. 
Furthermore, the uncertainties are estimated and continuously compensated for, which 
means that the hitting controller htu  (6) is adaptively determined on-line.  

The coming Subsection gives a brief introduction to fuzzy logic systems and 
characterizes them with the type, which is utilized in this contribution.  

 

3.1.  Fuzzy Logic Systems 

A fuzzy logic system consists of a collection of L  fuzzy IF-THEN rules. A one-input 
one-output fuzzy system has the following form:  

l
flAsl θτ   is  THEN is  IF: Rule                                                                                (14) 

where Ll ,.......,2,1=  is the rule number, s  and fτ  are respectively, the input and output 

variables. lA  is the antecedent linguistic term in rule l ; and lθ , Ll .....1=  is the label of 
the rule conclusion, a real number called fuzzy singleton. The conclusion of each rule 
(control action), a numerical value not a fuzzy set, can be considered as pre-defuzzified 
output. Defuzzification maps output fuzzy sets defined over an output universe of 
discourse to a crisp output, fτ . In this work, we have adopted singleton fuzzifier, 
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product inference, the center-average defuzzifier which reduces the fuzzy rules (14) 
into the following fuzzy logic system: 

)(

)(

),(

1

1

s

s

s
L

l
A

A

L

l

l

f

l

l

∑

∑

=

=
×

=
µ

µθ
θτ                                                                                         (15) 

where 
lAµ  is the membership grade of the input s  into the fuzzy set lA . In eqn. (15), if 

lθ ’s are free (adjustable) parameters, then it can be rewritten as: 
)(),( ss T

f ξϑθτ =                                                                                                   (16) 

where ),....( 1 Lθθϑ =  is the parameter vector and TL sss )](),...([)( 1 ξξξ =  is a regression 
vector given by 

∑
=

=
L
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A

Al

s

s
s

l

l

1
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)(
)(

µ

µ
ξ                                                                                                   (17) 

Generally, there are two main reasons for using the fuzzy systems in eqn. (16) 
as building blocks for adaptive fuzzy controllers. Firstly, it has been proved that they 
are universal approximators [22]. Secondly, all the parameters in )(sξ  can be fixed at 
the beginning of adaptive fuzzy systems expansion design procedure so that the only 
free design parameter vector is ϑ . In this case, ),( sθτ  is linear in parameters. This 
approach is adopted in synthesizing the adaptive control law in this paper.  

Without loss of generality, Gaussian membership functions have been selected 
for the input variables. A Gaussian membership function is specified by two 
parameters { }σ,c : 
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cx
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j
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j
 

where c  represents the membership function’s center and σ  determines its width.  
The fuzzy system used in this contribution is one input one output system, 

(14). The input of the fuzzy system is normalized using L  number of equally spaced 
Gaussian membership functions inside the universe of discourse. Slopes are identical, 
see Fig. 1.  
 

1=l 3=l2=l Ll =

3c1c 2c Lc

 
Fig. 1. Input fuzzy sets.  
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The described fuzzy system is used to approximate the nonlinear dynamics of 
robotic systems. In a decoupled manner, the control action is computed for each degree 
of freedom, based on the corresponding sliding surface. The control actions lθ  (output 
singletons) which are contained in the parameter vector θ  should be known. In the 
coming Subsection, adaptive laws are derived to do this task. The antecedent part is 
fixed with Gaussian membership functions. 

 

3.2. The Adaptation Mechanism  

Fuzzy systems are universal function approximators. They can approximate any 
nonlinear function within a predefined accuracy if enough rules are used. This implies 
the necessity of using expert knowledge in the form of large number of rules and 
suitable membership functions. Usually trial and error procedure is needed to achieve 
the requested accuracy. Assigning parameters of the fuzzy systems (or some of them) 
adaptively greatly facilitates the design (e.g. reduce the number of rules) and enhances 
the performance (saves the computation resources).  

In this Subsection, we derive an adaptive control law to determine the 
consequent part (control actions contained in parameter vector θ ) of the fuzzy system 
which is used to approximate the unknown nonlinear dynamics of robotic systems. The 
proposed scheme saves the need to expert knowledge and tedious work needed to 
assign parameters of the fuzzy system. Furthermore, disturbances, approximation 
errors and uncertainties are determined on-line leading to a stable closed loop system.  

Lyapunov stability analysis is the most popular approach to prove and evaluate 
the convergence property of nonlinear controllers, e.g., sliding mode control, fuzzy 
control system. Here, Lyapunov analysis is employed to investigate the stability 
property of the proposed control system. By the universal approximation theorem [22], 
there exists a fuzzy controller ),( θτ sf  in the form of (16) such that 

i
T
iiiiifieq st εξθεθττ +=+= ),()(                 ni ,,1L=                                            (18) 

where iε  is the approximation error and is bounded by ii E≤ε . Employing a fuzzy 

controller )ˆ,(ˆ iiif s θτ  to approximate )(t
ieqτ  as  

i
T
iiiif s ξθθτ ˆ)ˆ,(ˆ =                                                                                                     (19) 

 

where iθ̂  is the estimated value of the parameter vector iθ . Now, the SMC in (5) can 
be rewritten as:  

)()ˆ,(ˆ)( iihtiiifi sst τθττ +=                                                                                        (20) 

where the fuzzy controller )ˆ,(ˆ iiif s θτ  is designed to approximate the equivalent 

controller )(t
ieqτ . Define )ˆ,(ˆ~

iiifieqif s θτττ −= , iii θθθ ˆ~ −= , and use (17), then it is 

obtained that 

ii
T

iif εξθτ += ~~                                                                                                        (21) 



Abdel Badie Sharkawy and Shaaban A. Salman 

 

180 

An expression for )(ts&  can be expressed as follows:  

)(),()())((          

)(),()()(          

)()()(          
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Substituting from (19-21):  
))((1 ε−Θ−= −

htuxMs&                                                                                          (23) 

where [ ]n
T

n
TTT ξθξθξθ ~

,,
~

,
~

2211 L=Θ . Now, assume that )(1 xM −
 can be approximated by 

known constant positive definite diagonal matrix M . Unlike constant control gain 
schemes (see [23,24] for example), this assumption has been taken into account as 
follows. Equation (23) can be rewritten as 

)
~

(, ii
T

iihtiii EuMs −−= ξθ& ,        ni ,,1L=                                                              (24) 

where iE  is the sum of approximation errors and uncertainties. A control goal would 

be the on-line determination of its estimate, )(ˆ tEi . The estimation error is defined by 

)(ˆ)(
~

tEEtE iii −= ,    ni ,,1L=                                                                                (25) 

Define a Lyapunov function as 
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where 1η  and 2η  are positive constants. Differentiating (25) with respect to time and 
using (23), it is obtained that 
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To satisfy 02 ≤V& , the adaptive laws can be selected as 

iiii s ξηθ 1
~ −=&                                                                                                            (27) 

)sgn(ˆ
iiiht sEu −=                                                                                                    (28) 

Using (20) 

iiii sEtE 2
~

)(ˆ η=−= &&                                                                                                 (29) 
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then (22) can be rewritten as 

( ) [ ]
 0)ˆ(                        

~
])sgn(ˆ[

~
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Therefore, 2V  is reduced gradually and the control system is stable which 

means that the system trajectories converge to the sliding surfaces )(ts  while θ̂  and Ê  
remain bounded. Now, if we let 

 )ˆ( 2,1
VEEMsΓ(t) iiii

m

i i
&−≤−≡∑ =                                                                           (31) 

and integrate Γ(t)  with respect to time, then it is shown that 

)
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EtsVEsVdΓ

t
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Because
 

)
~

,
~

),0((2 EsV θ  is bounded and
 

)
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~

),((2 EtsV θ  is non-increasing and 
bounded, it implies that 

∞≤∫∞→ ττ dΓ
t

t 0
)(lim                                                                                              (33) 

Furthermore, Γ
&  is bounded, so that by Barbalat's lemma [7], it can be shown 

that
 

0)(lim
0

=∫∞→ ττ dΓ
t

t . That is, 0)( →ts  as 0→t . As a result, the proposed AFSMC 

is asymptotically stable.  
Hence, the control law (18) can be rewritten as follows 

)sgn(ˆ)ˆ,(ˆ)( iiiifi sEsutu
i

−= θ ,        ni ,,1L=                                                         (34) 

In summary, the adaptive fuzzy sliding mode controller (34) has two terms; 

)ˆ,(ˆ θsu
if  given in (19) with the parameter iθ̂  adjusted by (27) and the uncertainties and 

approximation bound iÊ  adjusted by (29). By applying these adaptive laws, the 
AFSMC is model free and can be guaranteed to be stable for any nonlinear system has 
the form of (2).  
 

β−= ets &)(
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htu

u x
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Fig. 2. The closed loop control system utilizing AFSMC.  
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It should be noted that implementing the algorithm implies that the both error 
dynamics and control signals has been decoupled, since each of them is dependent only 
on the perspective sliding surface. Unlike SMC, the proposed AFSMC does not require 
any knowledge about the system functions nor their bounds. It adaptively determines 
and compensates for the unknown dynamics and external disturbances leading to a 
stable closed loop system. Figure 2 shows the main elements of the control system.  
Remark 1. Since the control laws (6) and (34) contain the sign function, direct 
application of such control signals to the robotic system may result in chattering caused 
by the signal discontinuity. To overcome this problem, the control law is smoothed out 
within a thin boundary layerφ  [7,21] by replacing the sign function by a saturation 
function defined as:  
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4. SIMULATION RESULTS 

In this Section, we simulate the AFSMC and SMC. Simulation tests are carried out 
using MATLAB R2009a, version 7.8 under Windows 7 environment. A two link robot 
arm with varying loads is used to generate data in the simulation tests; Fig. 3. The arm 
is depicted as 2-input, 2-ouput nonlinear system. The control architecture shown in Fig. 
2 represents the closed loop system, in which the robot is the plant to be controlled. 
The detailed descriptions of the matrices )(xM , ),( xxC &  and )(xG  in (1) for this robot 
can be found in [7]. We consider the state variable vector as the joint positions; i.e. 

Txxx ],[ 21= . They are usually available feedback signals through encoders mounted on 
the motor shafts.  

Link parameters are )1(221 randm ×+= , )1(312 randm ×+= , ml  0.11 =  and 
ml  7.02 = , where the mass of link one 1m  and link two 2m  are randomly varied; 

)1(rand  is a pseudo-random number ranges from 0.10.0 → . Figure 4(a) shows their 
time history. A random disturbance torque has been added to the gravity torque of link 
two, such that T

d randT )]1(7 ,0[ ×= , Fig. 4(b). Dynamic and static friction torques were 
selected as follows:  
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Fig. 3. A two link rigid robot.  
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(a)                                                                 (b) 

Fig. 4. Mass of links (a) and disturbance (b) profiles. 
 

The friction and disturbance torques were unknown to the algorithm. Random 
signals were generated by the rand function in MATLAB. The desired trajectories for 

1x  and 2x  were set as: 

  ),sin()(   , )sin()( 222111 tAtxtAtx dd ωω −=−=  with radA    2.11 = ,  

radA   6.12 = , 1
1   2/ −= sradπω , 1

2   −= sradπω . 

Initially, the arm is assumed at rest, i.e. sradx T
t / ]0,0[0 ==& , and position of 

links as radx T
t  ]12/,12/[0 ππ −== , which resulted in initial position error 

degree ]15,15[0
Too

te −==  and velocity error srade T
t / ]03.5,89.1[0 −==& .  

The AFSMC has been simulated under the following settings. Two rules were 
implemented to determine each of the two equivalent control components, i.e. 2=L  in 
(14). Each rule base has one input, is  and one output, 

ieqτ , where the subscript 2,1=i  

denotes the joint number. This means that a total of 4 rules were used to determine the 
two equivalent torques. This is relatively a quite small number of rules. In a similar 
study [25], the rule base consists of 36 rules for a one degree of freedom system (the 
inverted pendulum).  
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Coefficients of the sliding surfaces in (12) were picked as Tc ]40,40[1 =  and 
Tc ]3,3[2 = . After few simulation tests, the learning rates were adjusted as ],1.515[1 =Tη  

and ]6,45[2 =Tη . The estimated errors in (28) have been initiated as TE ]100,300[ˆ −−= . 
As mentioned earlier, the sign function in (6) and (28) has been replaced by the 
saturation function with 1=iφ , 2,1=i .  

Evolution of the parameter vectors is given in Fig. 5(a). Zeros were used to 
initiate their elements. The superscripts denote the rule number, 1 and 2. The rates of 
adaptation for the parameter vectors are depicted in Fig. 5(b). As it can be noticed, the 
rate of adaptation of rule 1 is very close to rule 2 for the same joint. This remark was 
noticed by the authors from an enlarged figure; 5(b). Time history of the estimated 
errors is shown in Fig. 6.  

With respect to SMC in (5), (6) and (10), we have simulated it under the 
following settings. The control system has been initiated with the same initial 
conditions (i.e. e  and e& ) followed by the AFSMC. Similar to what we did with 
respect to the AFSMC, the sign function in (6) has been replaced by the saturation 
function. The gain K  of the hitting controller gain in (6) was set as IK 70=  where I  
is 22×  identity matrix. This value of K  has been selected as the maximum possible 
one, which means maximum possible rate of convergence. Larger value results in 

chattering. To synthesize the SMC, )(ˆ xM and ),(ˆ xxf &  in (10) were selected as follows: 

IM 5ˆ =  which means that it is a time-independent matrix and  

dsd TFxFxf +++







+








= &&

1

2

5.0  0

0  5.0ˆ  

where sd FF  ,  and dT  are defined above.  
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Fig. 5. Time history of (a) parameter vectors (i.e. control actions) and (b) adaptation rate. 
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Fig. 6. Time history of the estimated errors.  
 

Similar to AFSMC, the friction and disturbance torques were unknown to the 
control algorithm. Results are shown in Figs. 7-12. A close look to these figures shows 
that the AFSMC was little-bit faster than SMC. The steady state error for the two 
controllers is quite small as it can be noticed in Fig. 11. Figure 12 depicts the control 
signals. In the transient phase, the maximum input torques of the SMC exhibits larger 
values than those of the AFSMC.  

In order to quantify the performance of the two controllers, we have used the 
following three criteria.  

(a) Integral of the absolute value of error (IAE):  

∫= ft
dtteIAE

0
 )(  

(b) Integral of time multiplied by the absolute value of the error (ITAE) 

∫= ft
dttetITAE

0
 )(.   

(c) Integral of the square value (ISV) of the control input 

∫= ft
(t) dtuISV

0

2  

Both IAE and ITAE are used as objective numerical measures of tracking 
performance for an entire error curve, where ft  represents the total running time (3 

seconds). The IAE criterion gives an intermediate result. In ITAE, time appears as a 
factor; it will heavily emphasize errors that occur late in time. The criterion ISV shows 
the consumption of energy. Results are given in Table 1. These results slightly differ 
when we run the software more than one time under the same conditions. This is 
referred to the random signals involved in the simulation (masses of the links and the 
disturbances).  

 

Table 1. The performance indices.  

Controller Joint 
IAE (rad) 

210−×  
ITAE (rad-s) 

210−×  
ISV (N-

m)2 410−×  

AFSMC Joint 1 2.80 1.6 1.447 
 Joint 2 2.92 1.2 0.15 

SMC Joint 1 2.86 1.62 2.41 
 Joint 2 4.26 2 0.37 
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Nevertheless, one can clearly notice that the AFSMC out performs the SMC 
with respect to all the performance indices.  

Finally, it can be concluded that all signals of the proposed control system are 
bounded, the states have converged to the equilibrium points and the control targets 
have been met.  

 

0 1 2 3
-100

-50

0

50

100

1x
dx1

2x

dx2

0 1 2 3
-100

-50

0

50

100

1x

dx1

2x

dx2

 
Fig. 7. The desired joint angles, dx  and actual angles x .  
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Fig. 8. Time history of the sliding surfaces.  
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Fig. 9. Phase plots.  
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Fig. 10. Velocity tracking errors.  
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Fig. 11. Trajectory tracking errors.  
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Fig. 12. The inputs.  

 

5. CONCLUSIONS 

In this article, we utilized the universal approximation property of fuzzy systems and 
powerfulness of SMC theory to compose an AFSMC scheme for robotic systems. 
Optimal parameters of the fuzzy system and uncertainty bound are generated on-line. 
The proposed control scheme has the following advantages: (a) does not require the 
system model; (b) guarantees the stability of the closed loop system; (c) uses a simple 
rule base (one-input one-output fuzzy system). The adaptive control law generates on-
line the fuzzy rules. Furthermore, the uncertainties are learned on-line and adaptively 
compensated for. In comparison with SMC, the proposed control scheme is decoupled 
and has eliminated the assumptions, which are usually needed to synthesize a SMC.  

The control scheme has been simulated on a two link planar robot. The fuzzy 
system needs only two rules per joint to determine the control signal. The approach 
significantly eliminates the fuzzy data base burden and reduces the computing time, 
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thereby increasing the sampling frequency for possible implementation. It should be 
emphasized that, the developed adaptive laws learn the fuzzy rules and uncertainties. 
Zeros have been used to initiate them. Results show the effectiveness of the overall 
closed-loop system performance.  
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لأنظمه المناولات الآليههايئ ذو أسطح منزلقة نظام تحكم هلامى م  

للمناولات  (AFSMC)بأستعمال الأسطح المنزلقة  هلامى مهايئتحكم يهدف البحث الى أستنتاج وتحليل نظام 

النظام المقترح يستخدم مفهوم التحكم بأستعمال المستويات المنزلقه مع الأنظمه الهلاميه ليكون نظاما جديدا . الآليه

. مراد التحكم بهاللمنظومة الهندسية ال لايعتمد على معرفه مسبقه بالنموذج الرياضى (adaptive) هايئمالللتحكم 

بأخرى أحدها   (SMC)المتبع فى طريقة التحكم بأستعمال الأسطح المنزلقةفـقد تم الأستعاضه عن مركبات التحكم 

  . هلاميه والثانيه غير هلاميه و يمكن تحديد معالمهما وتأقلمهما أثناء عمل المناول الآلى

قارنة بين منظومة التحكم المقترحة فى هذه مبهدف العلى مناول آلى ثنائى الأزرع تم عمل محاكاة رياضية 

  .نتائج قدرات ممتازه لنظام التحكم المقترحالأظهرت ف (SMC)الدراسة وبين محكم من نوع الأسطح المنزلقة 


