Journal of Agricultural Chemistry and Biotechnology

Journal homepage: <u>www.jacb.mans.edu.eg</u> Available online at: <u>www.jacb.journals.ekb.eg</u>

Effect of lactic acid bacteria on fermented legumes

Aida H. Afify^{1*}; A. F. Fathallah²; M. A. E. Selim¹ and Fatma M. Elzamazamy²

¹Microbiology Dept. Fac. of Agriculture ,Mansoura University, Mansoura, Egypt²Home Economics Dept. Fac. of Specific Education , Mansoura University, Mansoura, Egypt

ABSTRACT

The bacterial cultures from yogurt (Y) containing *Lactobacillus bulgaricus* and *Streptococcus thermophilus* as lactic acid bacteria were used to study their effect on the properties (such as sensory ,chemicaly and microbiologicaly) of some food products prepared from legumes . This lactic acid bacteria were isolated and identified by morphological, biochemical and molecular characteristics. Results revealed that Y Soy bean (puree) recorded the highest scores in appearance (8.5 ± 0.2), color (8.3 ± 0.2) and mouth feeling (8.4 ± 0.2), however Y Faba bean (puree) had the best taste and over all acceptability scores (8.2 ± 0.2), (8.2 ± 0.1) respectivily. Odor was the best for Y Chick pea (8.2 ± 0.2). Results indicated that the highest values of chemical parameters were recorded for Y Soy bean in moisture , ash, lipids and proteins which were (5.9 ± 0.1), (5.0 ± 0.1), (20.0 ± 0.1) and (37.8 ± 0.1) respectively. While , Y Chickpea and Y Faba bean were the best in carbohydrates (62.2 ± 0.2), (62.1 ± 0.1) respectively. Results obtained shows the effect of *Lactobacillus bulgaricus* of yogurt -fermented Faba bean, Chick pea and Soy bean. Generally, results represent show that ten storage days value at (5.6 ± 0.3) for the Chik pea and Soy bean. While , results represent show that ten storage days value at (5.8 ± 0.5) for the Soy bean with *Streptococcus thermophilus*. Finaly , the results concluded that the counts of yogurt bacterial isolates were improved the sensory and chemicaly evaluation of fermentated legumes when increased with storage days.

Keywords: Lactic acid bacteria; Legumes purees; Lactobacilli; Streptococci; Food productes.

INTRODUCTION

LAB are known for their fermentative ability and thus promoting food safety, improving sensory attributes, increasing health benefits and enriching nutrients. Many LAB species play an important role in cheese manufacture through the ripening process, especially in improving the consistency, flavor and aroma Hosono and Hisamatsu ,(1995). Certain LAB strains characterized by their ability to transform lactose and therefore improves the digestibility of fermented dairy products Wang and Hesseltine,(1981) as well as their preservative effects. LAB also is utilized for improvement of the texture, viscosity and taste in the dairy products manufacture. Fermented foods and beverages vegetables, milk and milk products can be used for recovering of lactic acid bacteria. Lactic acid bacteria (LAB) are a group of non-sporulating, gram positive, anaerobic or facultative aerobic rods or cocci, which produce lactic acid as one of the major fermentation products of the carbohydrates metabolism Axelsson ,(2004). Lactic acid bacteria (LAB) have been used for food fermentation since ancient days and today their main applications are still in the feed and food industry used as starter cultures Berente et al., (1993). The aim of this investigation to determine characteristics and the effect of lactic acid bacteria (Lactobacilli and Streptococci) on sensory, chemical and microbiological of legumes purees .

MATERIALS AND METHODS

Source of legumes

Faba bean (Vicia faba L.), Chick pea (Cicer arietinum L.) and Soy bean (Glycine max) were purchased

from local market at Meet- Ghamr City, Dakahlia Governorate, Egypt.

Starter cultures

Yogurt milk (*Lactobacillus bulgaricus* and *Streptococcus thermophilus*) were used as starter cultures after isolated and identified.

Isolation and identification of yogurt cultures

Lactic acid bacteria were isolated from yogurt samples using the pour plate technique on M17 / MRS agar according to International Dairy Federation (IDF Standaed 306, 1995). M17 agar with aerobic incubation was used for *St. thermophilus* while , MRS agar was applied for *L. bulgaricus* (Fathallah, 2019). The purified isolates were examined to their morphological and biochemical characteristics. Then , isolates were also identified by molecular characterization at Sigma Company, Cairo, Egypt.

Preparation of legume purees

Legumes puree (P) was prepared by mixing of salt (2g/100g), lemon (15 drops/100g) and sesame paste (Tahina) (20g/100g) in the blinder after soaked legumes according to Shah, (2003).

Fermentation of legumes

Faba bean, Chickpea and Soy bean were fermented using yogurt bacterial isolates (*Lactobacillus bulgaricus* and *St. thermophilus*) as starter by adding 10% yogurt, samples were incubated at 37° C until pH 5.2 was reached according to Kabeir *et al.*, (2005) and stored in refrigerator at 5 ° C.

Sensory evaluation of fermented Legumes

Sensory characteristics of fermented legumes were evaluated using members 15 panel of adult inviduals including the participants in our study according to Sanni *et al.*, (1998). Members were asked to evaluate samples the first day after manufacture for color, texture, taste, odor and thickness using a ten-point score system (10 excellent, 1 unacceptable).

Chemical analysis of fermented legumes

Moisture, proteins, fats and ash were determined according to the methods of A.O.A.C. (2005).

Statistical analysis

The collected data were statistical analyzed, using SPSS version 18.0 following descriptive statistics (mean and standard deviation) as well as analytical tests analysis of varians (ANOVA).

RESULTS AND DISCUSSION

Identification of yogurt bacterial isolates

Morphological and biochemical characteristics of the bacterial isolates

The results of the morphological and biochemical characteristics of the bacterial isolates are presented in Table (1). The bacterial isolates No. 6 &9 are belonging to *Streptococcus thermophilus* and *Lactobacillus bulgaricus* respectively according to Axelsson ,(2004) reported that lactic acid bacteria (LAB) are a group of nonsporulating , gram positive , anaerobic or facultative aerobic rods or cocci , which produce lactic acid as one of the major fermentation products of the carbohydrates metabolism .

Molecular identification of the selected bacterial isolates

Molecular identification was done by Sigma Scientific Services Co.using 16S rRNA gene. The resulted nucleotide sequences was blasted in National Center for Biotechnology Information database (NCBI) (www.ncbi.nlm.nih.gov/blast) to identify the DNA sequence. To functionally characterize the isolated DNA fragment, similar sequence of ITS in many bacteria related to our targets species.

Table	1.	Some	morphological	and	biochemical
	ch	aracteri	stics of the vogur	bact	erial isolates

Characters	Bacterial isolates No.		
	9	6	
Morphological			
Gram stain	+	+	
Cell shape	rods	cocci	
Spore forming	-	-	
Motility	+	-	
Capsule formation	-	-	
Measurement (µm)	(1 x 4)	(1.5)	
Biochemical			
Indole production	-	-	
Voges Proskauer test	+	+	
Methyl Red test	+	+	
Citrate utilization	+	+	
Catalase production	+	+	
Starch hydrolysis	+	+	
Casein hydrolysis	+	+	
Gelatin liquefaction	+	+	
Cellulase production	-	-	
Glucose assimilation	+	+	
Manitol assimilation	-	-	
Sucrose assimilation	+	+	
Fructose assimilation	+	-	
Lactose assimilation	+	-	
Dextrin assimilation	-	-	
Xylose assimilation	-	-	
Glycerol assimilation	-	-	

Genomic DNA for the two isolates were subjected to PCR to amplify the 16SrRNA GENE using universal primers. The amplified PCR amplicones (350 dp) were then subjected to DNA sequencing. The resultant 16SrRNA Sequences (Table 2) were analyzed using the basic local alignment search tool (BLASTN) at NCBI database. The results showed that two isolates were identified as *Streptococcus thermophilus* with sequence identity 99% and *Lactobacillus bulgaricus* with sequence identity 98%. The obtained 16SrRNA sequences were submitted to Gen Bank under accession numbers as shown in Table (2).

Table 2. The resultant 16S rRNA Sequences

Isolate No.	Scientific name	Partial sequence
9	Lactobacillus bulgaricus	CGGGTTTAGATATAGGAAGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGCA ACTGACGCTGAGGCTCGAAAGCCCATGGGTAGCGAACAGGATTTAGATACCCTGGTAGT CCATGGGCCGTAAACGATGAGTGCTAAGTGTTGGGAAACGGTTTCCGCCTCTCACGTGC TGCAGCACTAACGCATTAAGCACTCCGCCTGGGGAGTACGACCGCAAGGTTGAAACTCA
		AAGGAATATGACGGCGGGGCCCGGCACACAAGCGGTGGAGCATGTGGTTTAATTCGAAG CAACGCGAAGAACCTTACCAGGTCTTGACAAAT.
6	Streptococcus thermophilus	GGTCCCCCGGACCTCACCTCATATCCACCAATCATCTGTCCCACCTTAGGCGGCTGGCT

Sensory evaluation

Sensory attributes of boiled Faba bean, Chick pea and Soy bean purees fermented by yogurt bacteria are represented in Table (3). Data indicated that yogurt (Y) Soy bean puree recorded the highest scores in appearance (8.5 ± 0.2), however Y Faba bean had the best taste (8.2 ± 0.2)and Y Chickpea puree had the best odor($8.2 \pm$ 0.2). On the other hand; the lowest sensory attributes was noticed for Y Faba bean in mouth feeling (7.5 ± 0.3) and Y Soy bean in overall acceptability (7.7 ± 0.1) . Also, Y Faba bean had the lowest scores in appearance (8.2 ± 0.3) . Studies indicated that lactic acid bacteria can contribute to the taste, overall appearance, aroma and generally produce moreover pleasing sourness .These results come in agreement with Devlin, (2006) and Modu, (2010) but different in color, taste and odor.

Table 3. Sensor	y attributes of	'legumes pure	e fermented	by yogu	rt bacteria

Samples	Appearance	Color	Taste	Odor	Mouth feeling	Overall acceptability
Y. Faba bean	8.2± 0.3 ^a	7.9± 0.2 ^a	8.2±0.2ª	6.9±0.4 a	7.5±0.3 ^a	8.2±0.1 ^a
Y. Chick pea	8.3± 0.2 ^a	7.9± 0.2 ^a	8.0 ± 0.2^{a}	8.2 ± 0.2^{b}	7.9 ± 0.2^{b}	8.0 ± 0.1^{b}
Y. Soy bean	8.5±0.2 ª	8.3 ± 0.2^{a}	8.0 ± 0.2^{a}	7.8 ± 0.2^{b}	8.4 ± 0.2^{b}	$7.7 \pm 0.1^{\text{ b}}$
	A	1 101 1 1100				

Means in column with different letters are significantly different (P<0.05).

Chemical evaluation

Chemical composition of Faba bean, Chickpea and Soy bean purees fermented by yogurt bacteria are shown in Table (4). Results indicated that the highest values of chemical parameters were recorded for Y Soy bean in moisture which were (5.9 ± 0.1), in lipids had (20.0 ± 0.1), , protein was (37.8 ± 0.1), Y Chickpea in carbohydrates was (62.2 ± 0.2). The results were in Hassan ,(2013) found that moisture content of legumes was 5.9%. Hosono and Hisamatsu, (1995) reported that fat content in legumes were a range from 0.91% to 1.70%, and protein content for legumes were 30.89 to 37.14%. Kadooka *et al.*, (2010) found that carbohydrate content of 36.8% for legumes, while found that carbohydrate in Faba bean were a range from 60.80 to 62.12%.

Table 4. Chemical	l composition of]	legumes puree f	fermented l	by yogurt	bacteria

Samples	Moisture	Ash	Lipids	Proteins	Carbohydrates
Y. Faba bean	3.7±0.1 ^a	4.5±0.0 ^a	1.3±0.0 ^a	28.1±0.1 ^a	62.1±0.1 ^b
Y. Chickpea	5.0±0.2 ^b	4.2±0.1 ^b	1.6±0.0 ^a	27.9±0.1 ^a	62.2±0.2 ^b
Y. Soy bean	5.9±0.1°	5.0±0.1°	20.0±0.1 ^b	37.8±0.1 ^b	31.1±0.1 ^a
	5.5±0.1	5.0±0.1	20.0±0.1	57:0±0:1	51.1±0.1

Means in column with different letters are significantly different (P<0.05).

Microbiological evaluation

Results represent in Table (5) shows that zero storage days value at Faba bean ,Chick pea and Soy bean was $(4.8\pm0.3, 5.3\pm0.2 \text{ and } 5.1\pm0.3)$ respectively. On the other hand, the zero storage days value of the Chick pea was (5.3 ± 0.2) it could be noticed from this data a highest value while the lowest value with the Faba bean (4.8 ± 0.3)

In Table (5) the three storage days value at Faba bean , Chick pea and Soy bean was $(4.9 \pm 0.3, 5.4 \pm 0.3)$, and 5.3 ± 0.3) this data increase value in Chick pea was (5.4 ± 0.3) and decrease value in Faba bean was (4.9 ± 0.3) .

Table (5) also shows that seven storage days value at Faba bean , Chick pea and Soy bean was $(5.3 \pm 0.5, 5.5 \pm 0.3$ and 5.5 ± 0.3). It was the highest value for Soy bean and Chick pea was (5.5 ± 0.3) and decreased value was in Table (5) shows that in Faba bean (5.3 ± 0.5) . On the other hand Table (5) shows the ten storage days value of Faba bean, Chick pea and Soy bean, also shows that decreased value at Faba bean was (5.4 ± 0.5) as the highest value was for the Chick pea and Soy bean (5.6 ± 0.3) .

Table 5. *Lactobacillus bulgaricus* counts (cfu x10³/g) as yogurt-fermented Faba bean, Chick pea and Soy bean sauces during storage periods

Samples	Storage days					
Samples	0	3	7	10		
Faba bean	4.8±0.3 ^a	4.9±0.3 ^a	5.3±0.5 ^a	5.4±0.5 ^a		
Chick pea	5.3±0.2 ^a	5.4±0.3 ^a	5.5±0.3 ^a	5.6±0.3 ^a		
Soy bean	5.1±0.3 ^a	5.3±0.3 ^a	5.5±0.3 ^a	5.6±0.3 ^a		
Means in column	with differen	nt letters are	significant	ly different		

Means in column with different letters are significantly different (P<0.05).

Results obtained in Table (6) show the effect *Streptococcus thermophilus* of yogurt -fermented Faba bean, Chick pea and Soy bean and reavaled that zero storage days value at Faba bean, Chick pea and Soy bean was $(4.7\pm0.3, 5.3\pm0.5 \text{ and } 5.2\pm0.3)$ respectively.

While, the zero storage days value of the Chick pea was (5.3 ± 0.5) it could be noticed from this data a highest value and the Faba bean was (4.7 ± 0.3) it could be noticed from this data a lowest value.

In Table (6) the three storage days value at Faba bean , Chick pea and Soy bean was(4.8 ± 0.2 , 4.8 ± 0.2 , and 5.4 ± 0.3) this data increase value in Soy bean was

 $(5.4\pm\,0.3$) and decrease value in Faba bean and Chick pea $(4.8\pm0.2$) .

Table (6) also shows that seven storage days value at Faba bean , Chick pea and Soy bean was $(5.3 \pm 0.3, 5.4 \pm 0.2$ and $5.5 \pm 0.3)$ it was the highest value for Soy bean was (5.5 ± 0.3) and decreased value shows that in Faba bean (5.3 ± 0.3) . On the other hand Table (6) shows the ten storage days value of Faba bean, Chick pea and Soy bean, also shows that decreased value with Faba bean was (5.3 ± 0.3) and the highest value with the Soy bean (5.8 ± 0.5) .

Lactic acid bacteria (LAB), in particular, contribute to the fermentation process and ensure the safety of legumes puree Ashenafi, (1994).

Table 6. *Streptococcus thermophilus* counts (cfu x10⁵/g) as yogurt -fermented Faba bean, Chick pea and Soy bean sauces during storage periods

une	und boy beam sudees during storage periods							
Samples		Storage days						
Samples	0	3	7	10				
Faba bean	4.7±0.3 ^a	4.8±0.2 ^a	5.3±0.3 ^a	5.3±0.3 ^a				
Chick pea	5.3±0.5 ^a	4.8±0.2 ^a	5.4±0.2 ^a	5.6±0.2 a				
Soy bean	5.2±0.3 ^a	5.4±0.3 ^a	5.5±0.3 ^a	5.8±0.5 ^a				
Means in column with different letters are significantly different								

Means in column with different letters are significantly different (P<0.05).

REFERENCES

- Ashenfani , M. (1994). Microbiological evaluation of tofu and tempeh during processing and storage. Plant for Human Nutr., 45 : 183 – 189.
- Axelsson, L.(2004). Lactic Acid Bacteria: Classification and Physiology. In Lactic Acid Bacteria: Microbiol. and Functional Aspects, Third Edition (Salminen, S., von Wright, A., Ouwehand, AMarcel Dekker, New York, U.S.A.: 1-66.
- AOAC (2005). Official Method of Analysis of the Association of Analytical Chemists.18th Edition, A.O.A.C., Washington DC.
- Bernet,M.F. ; Brassart D. ; Neeser J.R. and Servin A.L. (1993). Adhesion of Human Bafidobacterial Strains to Cultured Human Intestinal Epithelial Cells and Inhibition of Enteropathogen- Cell Interactions . Appl. and Environm. Micobiol. 59 : 4121-4128.
- Chandan, M.E. (1999). Quantitative determination of serum triglycerides by use of enzymes. Clin. Chem .; 19:476-482.

- Dave, R. I. and Shah N.P. (1998). Characterization of bacteriocin like substances produced by Lactobacillus acidophilus (BDLA - 1,2409 ,MOLA - 2), Lactobacillus fermentum (5174) and Lactobacillus plantarum (2903). J. of Appl. Bacteriol. 75: 95-107.
- De Man J.C.; Rogosa M. and Sharp M.E. (1960). A medium for the cultivation of Lactobacilli . J. Appl. Bacteriol., 23:130-135.
- Devlin, S.S. (2006). Fermented Grain Legumes, Seeds and Nuts, a Global Perspective FAO Agricultural Services Bulletins. 142.
- Fabre-Gea (2000). Effect of fermented milk containing *Lactobacillus acidophilus* and *Bifidobacterium longumon* plasma lipids of women with normal or moderately elevated cholesterol. The J. Dairy Res. 76: 469–474.
- Fathallah , A. F. (2019). Effect of probiotic bacteria fermentation on properties of some food products prepared from legumes . M. Sc. Thesis , Agric. Microbiol. Mansoura Univ. pp. 108.
- Fujimori, Martinez-Villaluenga C. and Peñas E. (2009). Fermented Foods in Health and Disease Prevention (Fermented Pulses in Nutrition and Health Promotion). Amsterdam • Boston •
- Hassan, M. A. M. (2013). Studies on Egyptian Sesame Seeds (*Sesamum indicum* L.) and Its Products. 3. Effect of Roasting Process on Gross Chemical Composition, Functional Properties, Antioxidative Components and Some Minerals of Defatted Sesame Seeds Meal (*Sesamum indicum* L.). World J. Dairy and Food Sci., 8: 51-57.
- Hoover, D.G. (2000). *Bifidobacterium*. In Encyclopedia of Food Microbiol., Vol. 1(Robinson, R.K., Batt, C.A. & Patel, P.D., eds.). Academic Press, San Diego, U.S.A.: 210-217.
- Hosono A. and Hisamatsu S. (1995). Binding of amino acid pyrolysates and aflatoxins to autoclaved cells of *Enterococcus faecalis* FK-23. Bio. Sci., Biotechnol. and Biochem., 59, 940-942.
- International Dairy Federation (IDF) standard (1995). Fermented and non-fermented milk products . Detection and enumeration of *Lactobacillus acidophilus* culture media . FIL-IDF Standard 306. Brussels: International Dairy Federation.
- Kabeir ,B.M. ; Abd-Aziz,S.; Muhammad,K.; Shuhaimi ,M. and Yazid,M.A. (2005). Growth of *Bafidobacterium longum* BB536 in media (fermented cereal porridge) and their survival during refrigerated storage. Letters In Appl. Microbiol., 41:125-131.
- Kadooka Y.; Sato M.; Imaizumi K.; Ogawa A.; Ikuyama K.; Akai Y.; Okano M.; Kagoshima M. and Tsuchida T. (2010). Regulation of abdominal adiposity by probiotics (*Lactobacillus gasseri* SBT 2055) in adults with obese tendencies in a randomized controlled trial. European J. of Clinical Nutr. 64, 636–643.

- Kirii K. ; Mizoue T.; Iso H. ; Takahashi Y. ; Kato M.; Inoue M.; Noda M. and Tsugane S .(2009). Calcium, vitamin D and dairy intake in relation to type 2 diabetes risk in a Japanese cohort. Diabetologia 52 (12), 2542–2550.
- Marteau P. and Rambaud J.C. (2002). Potential of using lactic acid bacteria for therapy and immunomodulation in man. FEMS Microbiol. Rev. 12, 207-220.
- Marteau P.R.; de Vrese M.; Cellier C.J. and Schrezenmeir J. (2001). Protection from strointestinal diseases with the use of Probiotics. Am. J. Clin. Nutr.(Suppl.);73:430–436.
- Modu S.S. (2010). Effect of local food processing on phytate levels in cassava, cocoyam, yam, maize, sorghum, rice, cowpea and soybean. J. of Agric. and Food Chem., 38:1580–1585.
- Montero Marin; Thorsten Wagener and Hoshin Gupta (2006). Regionalization of constraints on expected Waters hed response behavior for improved predictions in ungaugedasins; Advances in Water Resources 30:1756–1774.
- Ng S.C.; Hart A.L. ; Kamm M.A.; Stagg A.J. and Knight S.C. (2009). Mechanisms of Action of Probiotics: Recent Advances Inflamm. Bowel Dis.15:300–310.
- Sanni A.I.; Onilude A.A. and Ibidapo O.T. (1998). Biochemical composition of infantweaning food fabricated from fermented blends of cereal and soybean. Food Chemistry,65 (1),35 - 39.
- Shah, R. (2003). The Spo12 protein of *Saccharomyces cerevisiae* : a regulator of mitotic exit whose cell cycle-dependent degradation is mediated by the anaphase-promoting complex. Genetics159(3):965-80.
- Terzaghi Z.Y. and Sandine A.F. (1975). Effect of fermented milk containing *Lactobacillus acidophilus* and *Bifidobacterium longumon* plasma lipids of women with normal or moderately elevated cholesterol. The J. Dairy Res. 76: 469–474.
- Tannock V.M. and Gerald S.L. (2005). Lactic acid bacteria and human clinical infection. J. of Appl. Bacteriol. 75: 95-107.
- Wang, H.L. and Hesseltine C.W. (1981). Use of microbial cultures : Legume and cereal products. Food Technol., 35:79-83.

تأثير بكتيريا حمض اللاكتيك على البقوليات المتخمره عايدة حافظ عفيفى¹ ، أحمد فتح الله فتح الله الرفاعى² ، محمد عبدالله العوضى سليم¹ و فاطمه محمد الزمزمى² ¹قسم الميكروبيولوجيا الزراعيه ـ كلية الزراعه ـ جامعة المنصوره ـ المنصوره- مصر ²قسم الاقتصاد المنزلى ـ كلية التربيه النوعيه ـ جامعة المنصوره ـ المنصوره- مصر

إستخدمت بكتيريا حمض اللاكتيك (بكتيريا الزبادى) فى إعداد بعض البقوليات المتخمره مثل الفول و الحمص و الصويا بعد نقعهم و طهيهم حيث أجريت الإختبار ات المور فولوجيه والبيوكيميائيه وكذلك الجزيئيه لتعريف هذه البكتيريا على أنها Lactobacillus bulgaricus and St. thermophilus ون قيمت المنتجات من البقوليات المتخمره حسيا و كيميائيا و ميكروبيولوجيا. أظهرت النتائج أن أفضل درجات القابليه و الطعم فى بيوريه فول الصويا والتنوق فى بيوريه الحمص والنكهه و المنوي على قيم حيث أجريت الإختبار ات المتخمره حسيا و كيميائيا و ميكروبيولوجيا. أظهرت النتائج أن أفضل درجات القابليه و الطعم فى بيوريه فول الصويا والتنوق فى بيوريه الحمص والنكهه و المظهر فى بيوريه الفول البلدى وأظهرت النتائج الكيميائيه ان أعلى القيم التى سجلت فى الرطوبه و الرماد و الدهون والبروتين فى بيوريه فول الصويا واما الكربو هيدرات ففى بيوريه الحمص وكما أظهرت النتائج الميكروبيولوجيه ان أعلى القيم التى سجلت فى الرطوبه و الرماد و الدهون والبروتين فى بيوريه فول الصويا واما الكربو هيدرات فقى بيوريه الحمص وكما أظهرت النتائج الميكروبيولوجيه ان أعلى القيم التى سجلت فى الرطوبه و الرماد و الدهون والبروتين فى بيوري فول الصويا واما الكربو هيدرات فى بيوريه الحمص وكما أظهرت النتائج الميكروبيولوجيه ان أعلى القيم التى سجلت لي للمونية لي الموليه و البروتين فى بيورين فى بيوري معلى المويا والما الكربو هيدرات فى بيوريه الحمص وكما معربي النتائج الميكروبيولوجيه ان افضل القيم كانت ليكتيريا لعالي المولية لمائير للاكنين فى بيوريم الحمص و فول الصويا خلال عشرة أيلم وبكتيريا مع معا علم معلت أعلى القيم فى بيوريولوجيه ان افضل القير النهائية أن زيادة أعداد بكتريا حص الاكتيك تحسن من الخصانص الحمي اليوليات .