Egyptian Poultry Science Journal

http://www.epsaegypt.com

ISSN: 1110-5623 (Print) - 2090-0570 (On line)

EFFECT OF DIETARY L-CARNITINE SUPPLEMENTATION ON PRODUCTIVE PERFORMANCE AND CARCASS QUALITY OF LOCAL DUCK BREEDS IN SUMMER SEASON

A. L. Awad; H. N. Fahim and M.M. Beshara

Anim. Prod. Res. Institute, Agric. Res. Center, Ministry of Agric. Dokki, Giza.

Received: 07/12/2015

Accepted: 10/01/2016

ABSTRACT: A total number of 270 Domyati ducklings at 21-day-old were used, weighed and divided into five experimental groups to investigate the effect of dietary L-carnitine (LC) supplementation level (0, 150, 300, 450 and 600 mg/kg) on growth performance, carcass quality, hematological and blood serum constituents as well as economic efficiency in summer season. The results indicated that dietary LC supplementation resulted in a significant (P≤0.01) improvement in live body weight at 63 and 84 day of age, while body weight gain, feed conversion ratio and production index were significantly (P≤0.01) improved as compared to the control group during the overall experimental period (21-84 day of age). Eviscerated carcass and total edible parts (%) were significantly ($P \le 0.05$) improved by supplementing different LC levels to the diet as compared to the control, but abdominal fat (%) was significantly (P≤0.01) decreased. Breast and thigh yield (%) were significantly (P \leq 0.01) higher for ducklings fed diets supplemented with 450 and 600 mg LC/kg than those fed the control diet. Dietary supplementation of different LC levels resulted in a significant improvement in muscles (%) for both breast and thigh, while skin with subcutaneous fat (%) was significantly decreased as compared to the control. Dietary supplementation of different LC levels resulted in a significant (P<0.01) increase in crude protein and decrease in ether extract content for breast and thigh muscles than the control group. Hemoglobin content was significantly higher for ducklings fed diet supplemented with 300 up to 600 mg LC/kg as compared to those fed the control diet. Lymphocytes (L) cells (%) was significantly ($P \le 0.01$) increased, while heterophils (H) cells (%) and H/L ratio were significantly (P≤0.01) decreased for ducklings fed diets supplemented with different LC levels than the control. Serum triglycerides constituent was significantly decreased for ducklings fed diets supplemented with different LC levels than those fed the control diet, while, total cholesterol was significantly decreased by feeding these diets except for 150 mg LC/kg diet which was insignificantly decreased. Economic efficiency was significantly higher for ducklings fed diets supplemented with different LC levels, while, 300 and 450 mg LC/kg diet recorded the best values than those fed the control diet .

Key Words: Ducks, L-Carnitine, Growth Performance, Carcass Quality.

Corresponding author: awad1512@yahoo.com

These results indicate that dietary L-carnitine supplementation with 300 or 450 mg/kg for Domyati ducklings in summer season could maximize and improve the productive and physiological performance, carcass traits and quality as well as economic efficiency during growth period.

INTRODUCTION

Shortage of food and nutrients, especially animal protein sources, is one of the most important nutritional problems of the world, especially in third world countries. Poultry industry, is one of the most effective methods for producing animal protein in the world (Ardekani et al., 2012). Egyptian duck production was 42.0 thousand tons representing about 1.7% from the world production in 2006 (Soltan et al., 2014). It is becoming specialized and attention focused lately to increase meat production especially from local breeds. Domyati ducks is one of the local duck breeds which reared for diverse production situations and it's more favorable to the Egyptian consumer (Awad et al., 2011). However, ducks are genetically predisposed to the fatness. Excessive fat in ducks is unattractive to consumers who are concerned about the negative effects of saturated fat intake on health (Arslan et al., 2003). This fat represents a waste product from ducks, so, numerous attempts have been made minimize this fat to accumulation, either genetically or by dietary manipulation, with different degrees of success (Awad et al., 2014).

Recently, poultry diets are formulated based mainly on plant sources, especially with the concern of consumer's health from animal feedstuffs sources. Poultry diets have a high percentage of cereal grains that are poorly in essential amino acids for better performance (**Baumgartner and Blum**, **1997**). Moreover, the stress of high ambient temperature may negatively influence the performance of poultry production by reducing feed intake, live weight gain and feed efficiency as well as environmental stress causes oxidative stress and impairs antioxidants status and bird resistance (**Sahin, et al., 2001**). Therefore, improving performance and carcass composition by using a natural feed additives has become a main focus in poultry researches (Taklimi et al., 2015). Although, L-carnitine is synthesized in the body from lysine and methionine, and it is formed with contributions from vitamins B₃, B₆, B₁₂, C and folic acid, as well as iron (Michalczuk et al., 2012). According to Harmeyer (2002) the body can not produce enough Lcarnitine to fully cover its own needs because some conditions such as stress, disease, and physical strain may result in Lcarnitine deficiency. So that, dietary Lsupplementation resulted carnitine in improving growth rate, feed conversion efficiency, breast and thigh meat yield and reduced abdominal fat in broilers (Rabie et **1997**). Also, dietary L-carnitine al., supplementation decreased serum cholesterol and triglyceride levels in broilers (Line and Horng, 2001). Furthermore, it could play a role in reducing the undesirable fat in broiler carcasses (Rabie and Szilagyi, 1998), increasing the chick's resistance for the acute heat stress. Additionally, Lcarnitine strengthened immune function by enhancing antibody responses (Deng et al., 2006). Moreover, L-carnitine is used in poultry for multi-functional purposes that include promoting growth and improving antioxidant status (Adabi et al., 2011).

Because the literature related to the usage of L-carnitine and its eff ect on growth performance and carcass quality for ducks are scarce, the objective of this study was to investigate the potential effect of dietary Lcarnitine supplementation on growth performance, carcass traits and quality as well as economic efficiency for local duck breeds (Domyati ducklings) during summer season.

MATERIALS AND METHODS

Birds and management:-

This study was carried out at El – Serw Water Fowl Research Station. Animal Production Research Institute. Agricultural Research Center, Ministry of Agriculture, Egypt. It was carried out in summer 2015. A total number of two hundred and seventy Domyati ducklings, 21-day-old were used, weighed and distributed into five experimental groups (54 ducklings each). Each experimental group was consisted of three replicates (18 ducklings each). Ducklings were reared under similar hygienic, environmental and managerial conditions. Feed and fresh water were available all the time through the experimental period. Ducklings were fed a grower diet from 22 up to 42 day and a finisher diet from 43 to 84 day of age. The basal experimental diets were prepared and divided into five parts then supplemented with graded levels of Lcarnitine (0, 150, 300, 450 and 600 mg / kg diet) and fed to ducklings from 22 until 84 day of age. The composition and calculated analysis of the basal diets are shown in Table 1.

Data collection and estimated parameters:

- 1. Growth performance parameters: Body weight of ducklings was recorded at 21, 42, 63 and 84 day of age. Feed consumption (FC) and mortality were recorded. Body weight gain, FC and feed conversion ratio were calculated through the periods from 21– 42, 42–63, 63–84 and 21–84 day of age, whereas, viability percentage was calculated during the overall experimental period. Production index (PI) was calculated for each period as live body weight (Kg)/ feed conversion x 100 according to North (1981).
- 2. Hematological parameters: At day 77, blood samples were collected in vial tubes containing EDTA as anticoagulant from six ducklings (three males and three females) per each treatment to determine

hemoglobin, red blood cell counts and total leukocytes counts as outlined by the standard avian guidelines introduced by **Ritchie et al. (1994).** Total white blood cells were determined by the Unopett method (**Campbell, 1995**). Heterophils (H) and lymphocytes (L) were counted in different microscopic fields in a total of 200 WBCs by the same person, and the H: L ratios were calculated (**Gross and Siegel, 1986**).

- 3. Serum biochemical analysis: During slaughter test, blood samples were individually collected in centrifugation tubes from six ducklings (three male and three female) per each treatment without anticoagulant and kept at room temperature for one hour to clot. The samples were centrifuged at 3500 rpm for 15 minutes to separate clear serum. After that, serum total protein, triglycerides, total cholesterol and liver enzymes activities (AST and ALT) were calorimetrically determined using available commercial Kits.
- 4. Slaughter traits: At the end of the 84thday, six ducklings (three males and three females) per each treatment group were randomly taken, fasted for 12 hours before slaughtering and individually weighed pre-slaughtering and post complete bleeding. Then, scalding, feather picking and evisceration were performed and different body parts, organs and abdominal fat were dissected and weighed. Relative weights of carcass traits were expressed as a percentage of live body weight. Breast and thigh parts were cut from the carcass and weighed, then expressed as a percentage of eviscerated carcass weight. Muscles and skin with subcutaneous fat for both breast and thigh were dissected, weighed and expressed to eviscerated carcass weight. Samples of breast and thigh muscles were taken, chopped and dried, then chemically analyzed for crude protein (CP), ether extract (EE), and ash

according to **AOAC** (1995) and the values were expressed on DM basis.

- 5. Muscles drip loss: In order to determine drip loss for carcass muscles, both breast and thigh were placed in duly identified polyethylene bags, sealed at atmospheric pressure, and frozen for 48 hours at -4°C. After this time, parts were again weighed (Bridi et al., 2003). Drip loss for breast and thigh muscles was calculated as the difference between initial weight and final weight, and expressed as a percentage.
- 6. Economical efficiency and net return were calculated based on the prices of Lcarnitine (68.7%) tartrate (150 LE/ one kg), one kg of live body weight (21.0 LE) and the price of one duckling at 21 day of age (5.50 LE) prevailing during year 2015.
- **7. Statistical analysis:** Data was statistically analyzed according to SAS program (SAS, 2004) using general linear model (GLM) based on the following model ;

 $\begin{array}{ll} Yij = \mu + Ti + eiJ & \text{where,} & Yij = \\ \text{an observation,} & \mu = \text{Overall mean,} \\ Ti = \text{Effect of treatment} \left(1, 2, \dots, 5\right), \end{array}$

and eiJ = Random error.

The significant differences among treatments were determined by Duncan's multiple range test (**Duncan**, **1955**).

RESULTS AND DISCUSION

Growth performance:-

Dietary L-carnitine supplementation (LC) resulted in a significant improvement in live body weight (LBW) for Domyati ducklings at 63 and 84 day of age (Table 2). Ducklings LBW were significantly improved by 7.14, 11.20, 12.74 and 9.74% for ducklings fed diet supplemented with 150, 300, 450 and 600 mg LC/kg, respectively as compared with those fed the control diet at 84 day of age. Also, dietary LC supplementation caused a significant improvement in body weight gain (BWG) at all experimental periods except of 21-42 day

of age than the control group (Table 2). Ducklings BWG was significantly improved by feeding diets supplemented with 300 up to 600 mg LC/kg than the control group during the periods of 42-63 and 63-84 day of age. Generally, BWG was significantly improved by 8.95, 15.11, 16.50 and 12.92% for ducklings fed diet supplemented with 150, 300, 450 and 600 mg LC/kg, respectively as compared with those fed the control diet during the overall experimental period (21-84 day of age). Generally, ducklings fed diet supplemented with 300 or 450 mg LC/kg diet recorded the higher LBW and BWG value than the control. These improvements may be due to Lcarnitine play a major role by increasing plasma insulin-like growth factor-I concentration, which serves as stimulating substances for chick's growth (Xu et al., 2003). Also, it may be due to improve the utilization of dietary ingredients as a result of L-carnitine transfer the long-chain fatty across the inner mitochondrial acids membrane and controls the rates of β oxidation of long-chain fatty acids as well as it plays a pivotal role in energy metabolism (Arslan, 2003). These results are in agreement with those of Abdel-Fattah et al. (2014)who showed dietary that supplementation of L-carnitine (200-400 mg/kg) significantly increased live body weights and cumulative body weight gains for Japanese quail. Parsaeimehr et al. (2014) reported that dietary L-carnitine supplementation (300)mg/kg) had significantly improved body weight and body weight gain for broiler chickens. Also, Taklimi et al. (2015) found that bird's BWG had significant increase by supplementing 600 up to 800 mg LC/kg diet for broiler chickens. However, Sarica et al. (2005) revealed that supplementation of L-carnitine (25-100 mg/kg) to commercial male broilers diet had no significant effect on daily body gain. Also, Deng et al. (2006) found that feeding diets supplemented with 100 or 1000 mg LC/kg to egg Leghorn type chickens for short-term period (4 wks) after hatching induced no difference in growth performance.

Feed consumption:-

Significant effects were observed in consumption (FC) for Domyati feed ducklings fed diet supplemented with different L-carnitine (LC) levels during some experimental periods (Table 2). Feed consumption was significantly decreased by 6.21 % for ducklings fed diet supplemented with 150 LC/kg at the period of 21-42 day of age, while it was significantly decreased by 4.42% as a result of supplementing 450 mg LC/kg diet during the period of 63-84 day of age than those fed the control diet. However, FC was numerically similar for ducklings fed different LC diets as compared to those fed the control diet during the overall experimental period (21-84 day of age). This may be due to ducklings are able to compensate their feed intake according to their energy requirements as well as the experimental diet had similar metabolizable energy. This result is similar with Xu et al. (2003) who reported that the supplementation of dietary L-carnitine did not affect feed intake of broiler chickens and young turkeys. Murali et al. (2015) reported that dietary L-carnitine (900 mg/kg diet) supplementation did not affect feed consumption in broilers during growing period (0-6 wks). However, Bayram et al. (1999) detected significant decreases in feed intake in quails fed diet supplemented with 500 mg LC/kg.

Feed conversion ratio:-

Significant differences were observed in feed conversion ratio (FCR) among experimental treatments due to supplementing different LC levels to the diet (Table 2). Feed conversion ratio was improved for ducklings fed diets supplemented with different LC levels during different experimental periods with or without significant than those fed the control diet. Generally, FCR was significantly improved by 9.67, 14.96, 14.05 and 10.77 % for ducklings fed diet

supplemented with 150, 300, 450 and 600 mg LC/kg, respectively than those fed the control diet during the overall experimental period. Generally, the improvement in FCR is associated with decrease or similar FC and increase BWG of ducklings. So that, ducklings fed diet supplemented with 300 or 450 mg LC/kg diet recorded the best FCR value than the control. The improvement in FCR in this study may be due to L-carnitine enhances fatty acid burning, thus decreasing calorie requirements, as well as, it improves intestinal mucous membrane by active and passive mechanisms (Fathi and Farahzadi, 2014). These results are similar with those obtained by Parsaeimehr et al. (2014) who reported that dietary LC supplementation (200-300 mg/kg) resulted in improving feed conversion ratio of broiler chickens during growing period (45 day). Also, Abdel-Fattah et al. (2014) reported that a significant improvement in FCR of quails was occurred as a result of dietary supplementation with 200 - 400 mg LC/kg than the control. However, Xu et al. (2003) revealed that FCR had not significantly affected due to LC supplementation (25-100 mg/kg) to commercial male broilers diet. Also, Deng et al. (2006) found that Lcarnitine (100)or 1000 mg/kg) supplementation had no significant effect on feed utilization efficiency for egg Leghorn type chickens during four weeks after hatching.

Production Index (PI):-

Significant differences were observed in production index (PI) among the experimental treatments due to L-carnitine (LC) supplementation during all the experimental periods (Table 2). Ducklings PI value was significantly higher by 18.57, 30.58, 31.06 and 22.93% for ducklings fed diet supplemented with 150, 300, 450 and 600 mg LC/kg, respectively as compared with those fed the control during the overall experimental period (21-84 day of age). Generally, ducklings fed diet supplemented with 300 or 450 mg LC/kg recorded the best PI value than the control. These results may be due to L-carnitine improves body weight gain and feed conversion ratio as well as not increases feed consumption during the overall experimental period. Also, it may be due to L-carnitine has the ability to improve the use of dietary nitrogen, whether directly through sparing its precursors (methionine and lysine) for protein biosynthesis and other cellular functions or indirectly by optimizing the balance between essential and nonessential amino acids within the cell (**Sarica et al. , 2005**), which subsequently improved growth performance.

Duckling's viability (%):-

No Significant differences were observed in duckling's viability (%) among the experimental treatments due to Lcarnitine (LC) supplementation during the overall experimental period (Table 2). Ducklings fed diets supplemented with different LC levels had higher viability (%) comparing to the control group. These results may be due to L-carnitine had strengthened immune function by enhancing antibody responses (Deng et al., 2006). Also, it may plays a major role in stabilizing cell membranes and in regulating the function of ion channels (role in calcium transport) by reducing the amount of oxidative damage that occurs as a result of peroxidation of polyunsaturated fatty acids membrane phospholipids found in (Kalaiselvi and Panneerselvam, 1998).

Carcass traits:-

Results of Table 3 show the effects of dietary L-carnitine (LC) supplementation on carcass traits (expressed as percentages of LBW). Eviscerated carcass and total edible (%) were significantly improved, while abdominal fat (%) was significantly decreased by supplementing different LC levels to the diets as compared to the control. The improvement of eviscerated carcass and total edible parts (%) were reached from 3.54 to 4.57 and 3.94 to 4.47 %, respectively for ducklings fed diets supplemented with different LC levels as

compared to the control, while, abdominal fat (%) was decreased by 36.14 to 45.18%. Generally, the improvement of eviscerated carcass and total edible parts percentage may be due to improving the final live weight and decreasing un-edible parts as a result of supplementing LC to the diet. The current findings are in agreement with those obtained by Ibrahiem et al. (2011) who reported that carcass percentage of geese was significantly (P≤0.05) improved by supplementing 150 mg L-carnitine /kg diet as compared to the control group. Oladele et al. (2011) found that dressing carcass percentage significantly (P≤0.05) increased with increasing inclusion levels of Lcarnitine in broiler diets. Also, Abdel-Fattah et al. (2014)showed that supplemental L-carnitine (400 mg/kg diet) significantly increased the dressing percent of quails. However, Daskiran and Teeter (2001) observed no significant effect in dressing percentage of broilers in response to dietary L-carnitine. Also, Sarica et al. (2005) found that weights and yields of carcasses tended to be insignificantly improved in Japanese quail fed diet contained 200 mg LC/kg. The decrease of abdominal fat may be due to L-carnitine prevents fatty tissue buildup, decreases the calorie requirement and increases the tolerance to effort because it may plays a major role to facilitate the removal of short and medium-chain fatty acids from the mitochondria that accumulate as a result of normal and abnormal metabolism and promotes the β -oxidation of these fatty acids in order to generate adenosine triphosphate energy and improve energy (ATP) utilization by reduce the amount of longfatty acids availability chain for esterification to triacylglycerols and storage in the adipose tissue (Xu et al. 2003). These result are similar Parsaeimehr et al. (2014) who found that supplementing L-carnitine (300)mg/kg) significantly reduced percentage of broiler abdominal fat chickens.

Breast and thigh yield and their contents:-

Breast or thigh yield (expressed as percentages of eviscerated carcass weight) was significantly improved due to dietary supplementation of L-carnitine with 450 and 600 mg/kg (Table 3). Breast yield (%) was significantly improved by 4.41 and 5.54% while thigh yield (%) was significantly higher by 5.94 and 9.77% for ducklings fed diet supplemented with 450 and 600 mg LC/kg than those fed the control diet, respectively. Moreover, breast and thigh muscles (%) were significantly higher for ducklings fed diets supplemented with different LC levels than those fed the control diet, while, skin with subcutaneous fat (%) was significantly decreased. Breast muscles (%) was significantly higher by 8.18-11.20 %, while breast skin with subcutaneous fat (%) was significantly lower by 10.02 - 15.47 % for ducklings fed diet supplemented with different LC levels than those fed the control diet, respectively. Also, thigh muscles (%) was significantly increased by 12.21-15.62 %, while thigh skin with subcutaneous fat (%) was significantly lower by 7.55 -12.55% % for ducklings fed diet supplemented with different LC levels than those fed the control diet, respectively. Muscles drip loss (%) for both breast and thigh was insignificantly lower as a result of supplementing LC to the diet than the control. These results are in the same line with those obtained by Xu et al. (2003) who reported that the addition of L-carnitine significantly increase the proportion of breast muscle in the carcass for broiler. Parsaeimehr et al. (2014) and Cyril et al. (2015) reported that leg and breast muscles were significantly ($P \le 0.05$) improved by supplementing L-carnitine to broiler diets. However, Zhang et al. (2010) and Michalczuk et al. (2012) found that nonsignificant increase in carcass yield and the proportion of breast muscle in the carcass by dietary supplementing LC.

Chemical analysis of breast and thigh muscles:-

Dietary LC supplementation had significant effects on both crude protein and ether extract content (%) for breast and thigh muscles, while dry matter (%) for breast muscles and ash (%) for thigh muscles were not significantly affected (Table 3). Crude protein content (%) was significantly increased by increasing LC supplementation for breast and thigh muscles than the control, while ether extract (%) was significantly decreased. Crude protein (%) was significantly higher by 8.13 - 22.62 and 6.04 - 18.11%, respectively in breast and thigh muscles for ducklings fed different LC diets than the control. Whereas, ether extract (%) was significantly decreased by 16.73, 21.10, 52.77 and 50.72% in breast muscles, and 10.50, 18.85, 45.59 and 50.27% in thigh muscles for ducklings fed diet supplemented with 150, 300, 450 and 600 mg LC/kg, respectively than those fed the control diet. These results may be due to L-carnitine may acts to decrease the total activities of glucose-6 phosphate dehydrogenize, malic dehydrogenize, iso-citrate dehydrogenize and lipoprotein lipase and total activities of carnitine palmitoyltransferase-I in breast muscles (Xu et al., 2003). Or, it accelerate lipid flux into oxidative metabolism, and consequently reduce the body lipid accumulation (Shuenn et al., 2012). These results are contrary with those obtained by Celik and Ozturkcan (2003) reported that the supplementation of L-carnitine to the broiler diet did not significantly affect the matter, CP, and ether extract dry components of breast or thigh meat. Sarica, et al., (2005) recorded that dietary Lcarnitine supplementation did not significantly affect the dry matter or moisture, CP, and ether extract contents of the total edible meat (breast plus high meat) of 35-dold Japanese quail. Also, Younis (2015) reported that chemical composition of breast muscle didn't influence by addition L-carnitine supplementation (500)of mg/kg).

Hematological parameters:-

Results of Table 4 show the effect of dietary LC supplementation on some hematological parameters of Domyati ducklings at the 77th day of age. Blood hemoglobin (HB) content was significantly higher 5.28, 7.56 and by 16.10%, respectively for ducklings fed diet supplemented with 300, 450 and 600 mg LC/kg than those fed the control diet. Red blood cells (RBC) count was significantly increased by feeding diet supplemented with 450 and 600 mg LC/kg than the control, while white blood cells (WBC) count was insignificantly increased by supplementing 150, 450 and 600 mg LC/kg diet. Moreover, lymphocytes (L) cells (%) was significantly increased, while, heterophils (H) cells (%) and H/L ratio were significantly decreased by supplementing different LC levels to the diet as compared to the control. Generally, H/L ratio was significantly decreased by 29.41, 35.29, 37.25 and 45.10% for the groups fed diet supplemented with 150, 300, 450 and 600 mg LC/kg than the control, respectively. These results may be due to Lcarnitine had strengthened immune function by enhancing antibody responses (Deng et al., 2006). Also, it may plays a major role in stabilizing cell membranes and in regulating the function of ion channels (role in calcium transport) by reducing the amount of oxidative damage that occurs as a result of peroxidation of polyunsaturated fatty acids membrane phospholipids found in (Kalaiselvi and Panneerselvam, 1998). These results are in agreement with those obtained by Jameel (2014) who reported that RBCs count and hemoglobin content were increased, while H/L ratio was significantly ($P \le 0.05$) decreased for chicks fed diet supplemented 50 mg LC/ Kg as compared with those fed the control diet.

Blood serum constituents:-

Dietary LC supplementation had no significant effects on all studied serum constituents except of triglycerides and total

cholesterol (Table 4). Serum triglycerides level was significantly decreased by 26.58, 28.85, 22.58 and 17.86% for ducklings fed diet supplemented with 150, 300, 450 and 600 mg LC/kg, respectively than those fed the control diet. However, serum total cholesterol level was significantly lowered by 10.86, 9.12 and 13.89% for ducklings fed diet supplemented with 300, 450 and 600 mg LC/kg than those fed the control diet, respectively. The decrease of serum triglycerides level for ducklings fed diets supplemented with L-carnitine probably related to increasing oxidation of fatty acids by increasing the transportation capacity of fatty acids to inner mitochondrial membrane (Shuenn et al., 2012). Also, it may be due to L-carnitine increased the activity of lipase and decrease activity of lipoprotein lipase, thereby leading to a higher concentration of fatty acid in serum by accelerating hydrolysis of triglycerides to glycerol and fatty acid (Zhang et al., 2010). The reduction of serum total cholesterol by L-carnitine supplementation was attained mostly via a decrease of cholesteryl esters rather than by a decrease in free cholesterol. Moreover, it may be due to an increase in biliary sterol excretion or an increase in the conversion of cholesterol to bile acids (Maritza et al., 2006). These results are in agreement with those obtained by Xu et al. (2003) who reported that adding L-carnitine to diet significantly decreased the level of serum triglyceride in broilers. However, Tufan (2015)found et al. that supplementing L-carnitine (150 mg/kg diet) to Japanese quails had no significant effect on serum total cholesterol.

Economical efficiency:-

Calculations of economic efficiency (EE) were listed in Table 5. Different levels of L-carnitine (LC) supplementation had significant effects on both total cost and return as well as economic efficiency values. Total cost was significantly higher by 4.59% for ducklings fed 600 mg LC/kg diet, while it was insignificantly higher by 3.18% for ducklings fed 450 mg LC/kg diet comparing to those fed the control diet. However, total return was significantly increased by 7.15, 11.18, 12.74 and 9.73% for ducklings fed diet supplemented with 150, 300, 450 and 600 mg LC/kg, respectively than those fed the control diet. Generally, net return and EE values were significantly higher by feeding diet supplemented with different LC levels than the control. Economical efficiency value was significantly improved by 27.16, 38.83, 32.99 and 17.51% for ducklings fed diet supplemented with 150, 300, 450 and 600 mg LC/kg, respectively than those fed control diet. the It's clearly that supplementing 300 or 450 mg LC/kg diet resulted in the best EE during the experimental period (21-84 day of age) for Domyati ducklings.

CONCLUSION

Based on the present data, it is concluded that dietary L-carnitine supplementation with 300 or 450 mg/kg had positive effects on growth performance, duckling's viability and carcass traits and quality as well as economic efficiency for Domyati ducklings during summer season.

Ingredients %	Grower (22-42 day)	Finisher (43-84 day)
Yellow Corn	67.80	71.00
Soybean meal (44 %)	23.78	17.60
Wheat bran	4.62	7.60
Di-calcium phosphate	1.62	1.60
Limestone	1.48	1.50
Vit. & Min. premix ¹	0.30	0.30
NaCl	0.35	0.35
DL. Methionine	0.05	0.05
Total	100.0	100
Calculated Analysis ²		
Crude protein %	17.00	15.02
ME (Kcal / kg)	2861	2870
Ether extract . %	2.91	3.07
Crude fiber %	3.66	3.63
Calcium (%)	1.01	1.00
Av. phosphorus (%)	0.43	0.42
Lysine %	0.84	0.70
Methionine %	0.33	0.30
Methio + Cyst %	0.63	0.58
Sodium	0.16	0.16
Price (LE/kg) ³	3.165	2.879

Table (1): Composition and calculated analysis of the basal diets.

- 1- Each 3 kg of the Vit and Min. premix manufactured by Agri-Vit Company, Egypt contains: Vitamin A 10 MIU, Vit. D 2 MIU, Vit E 10 g, Vit. K 2 g, Thiamin 1 g, Riboflavin 5 g, Pyridoxine 1.5 g, Niacin 30 g, Vit. B12 10 mg, Pantothenic acid 10 g, Folic acid 1.5 g, Biotin 50 mg, Choline chloride 250 g, Manganese 60 g, Zinc 50 g, Iron 30 g, Copper 10 g, Iodine 1g, Selenium 0. 10 g, Cobalt 0.10 g. and carrier CaCO3 to 3000 g..
- 2- According to Feed Composition Tables for animal and poultry feedstuffs used in Egypt (2001).
- 3- Price of one kg (LE) at time of experiment for different ingredients : yellow corn , 2.60; Soy bean meal, 4.50; wheat bran, 1.95; Di-calcium Phosphate, 8.0; limestone, 0.25; Vit&Min., 25.0; Nacl, 1.0 and Meth., 60.0.

		GEM	G •								
Age (day)	0.0	150	300	450	600	SEM	51g.				
Live body weight (g/ duckling)											
21	495.0	500.0	485.0	495.0	490.0	3.0	NS				
42	1317.4	1355.3	1323.0	1350.4	1361.7	9.1	NS				
62	1806.4 ^b	1908.9ª	1931.6ª	1955.6ª	1951.7ª	16.9	**				
84	2171.7 °	2326.7 ^b	2415.0 a	2448.3 a	2383.3 ^{ab}	27.3	**				
	B	ody weight	gain (g/du	ckling/ 21 d	lay)						
21-42	822.4	855.3	838.0	855.4	871.7	7.3	NS				
42-63	489.0 ^b	553.6 ^{ab}	608.6 ^a	605.2 a	590.0 a	16.0	*				
63-84	365.3 ^b	417.8 ^{ab}	483.4 ^a	492.7 ^a	431.6 ^a	15.5	**				
21-84	1676.7°	1826.7 ^b	1930.0 ^a	1953.3ª	1893.3ª	27.7	**				
	Fe	ed consum	ption (g/du	ckling/21 d	lay)						
21-42	2.639 ^a	2.475 ^b	2.531 ^{ab}	2.629 ^a	2.611 ^a	0.022	**				
42-63	3.381	3.482	3.412	3.552	3.500	0.025	NS				
63-84	3.168 ^a	3.087 ^{ab}	3.063 ^{ab}	3.028 ^b	3.150 ^a	0.019	*				
21-84	9.188	9.044	9.006	9.209	9.261	0.040	NS				
	Fe	ed conversi	ion ratio (g	feed/ g. B	WG)						
21-42	3.21 ^a	2.89 ^b	3.02 ^{ab}	3.07 ^{ab}	3.00 ^{ab}	0.04	*				
42-63	6.91 ^a	6.28 ^{ab}	5.61 ^b	5.86 ^b	5.93 ^b	0.17	*				
63-84	8.67 ^a	7.39 ^{ab}	6.34 ^b	6.14 ^b	7.30 ^b	0.29	**				
21-84	5.48 ^a	4.95 ^b	4.66 °	4.71 ^{bc}	4.89 ^{bc}	0.08	**				
	Pro	duction in	dex (LBW,	kg/ FCR x	100)						
21-42	41.05 b	46.84 a	43.80 ab	43.94 ^{ab}	45.46 ^{ab}	0.76	*				
42-63	26.13 ^b	30.35 ^{ab}	34.45 ^a	33.32 ^a	32.90 ^a	1.10	*				
63-84	25.05 °	31.50 ^b	38.11 ^a	39.84 ^a	32.65 ^b	1.62	**				
21-84	39.63 °	46.99 ^b	51.75 a	51.94 a	48.72 ^ь	1.25	**				
			Viability, 9	/0							
21-84	97.22	98.61	100.0	98.15	100.0	0.56	NS				

Table 2: Effect of dietary L-carnitine supplementation on growth performance traits for Domyati ducklings at different ages during growth period.

SEM = standard error mean; LBW : live body weight; BWG: body weight gain NS : non-significant; $* = P \le 0.05$; $** = P \le 0.01$ a,b,c: means in the same row within each item bearing different superscripts are

a,b,c: means in the same row within each item bearing different superscripts significantly different ($P \le 0.05$),

Table	3:	Effect	of	dietary	L-carnitine	supplem	nentation	on	carcass	traits	and	parts	and
		chemi	ical	analysi	s of breast a	and thigh	muscles	for	Domyat	i duck	lings	at 84	day
		of age	Э.										

T ! 4		SEM	C:a							
1 raits	0.0	150	300	450	600	SEM	51g.			
SLBW, (kg)	2.325	2.316	2.393	2.383	2.358	0.075	NS			
Carcass traits (% of SLBW)										
Evs. carcass	69.84 ^b	73.04 a	72.88 a	72.32 a	72.72 a	0.42	*			
Liver	1.79	1.80	1.86	1.90	1.74	0.03	NS			
Gizzard	3.08	3.23	3.13	3.33	3.16	0.05	NS			
Heart	0.73	0.74	0.78	0.79	0.79	0.01	NS			
Total giblets	5.60	5.77	5.77	6.02	5.69	0.07	NS			
Total ed. parts	75.44 ^b	78.81 ^a	78.65 ª	78.34 ª	78.41 ^a	0.43	*			
Abdominal fat	1.66 ^a	1.06 ^b	0.94 ^b	0.98 ^b	0.91 ^b	0.09	**			
breas	st yield ar	nd their co	ontents (%	of eviscera	ted carcass)				
yield	40.59 ^b	40.94 ^b	41.86 ^{ab}	42.38 a	42.83 a	0.36	*			
Muscle	20.53 ^b	22.21 ^a	22.69 ^a	22.75 ^a	22.83 ^a	0.28	**			
Skin with subc. fat	10.99ª	9.51 ^b	9.29 ^b	9.32 ^b	9.01 ^b	0.25	**			
Thig	h yield ar	nd their co	ontents (%	of eviscera	ted carcass)				
yield	31.32 °	31.83 bc	32.11 bc	33.18 ^{ab}	34.38 ª	0.35	**			
Muscle	15.81 ^b	17.96 ^a	17.74 a	18.20 a	18.28 ^a	0.30	**			
Skin with subc. fat	10.20 ^a	9.24 ^b	9.42 ^b	9.37 ^b	8.92 ^b	0.15	*			
		D	rip loss, %							
Breast muscles	3.53	2.17	2.53	2.06	2.80	0.36	NS			
Thigh muscles	3.91	2.78	2.83	2.54	2.73	0.39	NS			
	Chen	nical analy	ysis of brea	st muscles,	%					
Dry matter	30.50	30.23	29.57	30.48	30.01	0.28	NS			
Crude protein	65.17 °	70.47 ^b	72.93 ^b	79.86 ^a	79.91 ^a	1.54	**			
Ether extract	22.89 ^a	19.06 ^b	18.06 c	10.81 ^d	11.28 ^d	1.25	**			
Ash	6.65 ^b	7.15 ^{ab}	7.45 ^{ab}	7.64 ^a	7.54 ^{ab}	0.14	*			
	Chemical analysis of thigh muscles, %									
Dry matter	29.79 ^b	30.82 ^{ab}	30.49 ^{ab}	29.91 ^b	31.13 ^a	0.18	*			
Crude protein	67.93 ^d	72.03 °	74.08 ^b	79.83 ^a	80.23 ^a	1.30	**			
Ether extract	23.71 ^a	21.22 ^b	19.24 °	12.90 d	11.79 ^d	1.26	**			
Ash	5.05	5.74	5.71	5.67	6.05	0.14	NS			

SEM = standard error mean; SLBW : slaughter live body weight, Evs. : eviscerated NS : non-significant; $* = P \le 0.05$; $** = P \le 0.01$

a,b,c, d : means in the same row within each item bearing different superscripts are significantly different ($P \le 0.05$),

Demonster		CEM	C .								
Parameters	0.0	150	300 450 600		600	SEM	51g.				
Hematological parameters											
Hemoglobin (g/dl)	12.30 ^c	12.22 ^c	12.95 ^b	13.23 ^b	14.28 ^a	0.21	**				
RBC (x10 ⁶ /mm3)	2.07 ^b	2.20 ^b	2.21 ^b	2.95 ^a	2.57 ^{ab}	0.12	*				
WBC (x10 ³ /mm ³)	17.00	18.17	17.00	19.00	18.50	0.41	NS				
Heterophils, %	33.75 ^a	29.04 ^b	25.00 °	24.42 °	21.83 °	1.19	**				
Lymphcytes, %	66.25 °	70.96 ^b	75.00 a	75.58 ^a	78.17 ^a	1.19	**				
H/L	0.51 ^a	0.41 ^b	0.33 °	0.32 °	0.28 °	0.02	**				
		Serun	n constituer	nts							
T. protein (g/dl)	4.30	4.71	4.48	4.51	4.43	0.06	NS				
Triglycer. (mg/dl)	124.65ª	91.52 ^{cd}	88.69 ^d	96.51 ^{bc}	102.39 ^b	3.51	**				
T. cholest.(mg/dl)	154.10 ^a	145.55 ^{ab}	137.36 ^{bc}	140.04 ^{bc}	132.69 °	2.34	**				
AST (U/dl)	70.85	70.89	70.77	70.69	68.60	0.51	NS				
ALT (U/dl)	17.80	16.60	17.67	17.23	16.70	0.19	NS				

 Table 4: Effect of dietary L-carnitine supplementation on hematological and serum constituents for Domyati ducklings.

SEM = standard error mean ; NS : non-significant; $* = P \le 0.05$; $** = P \le 0.01$ a,b,c: means in the same row within each item bearing different superscripts are significantly different ($P \le 0.05$),

Table 5: Effect of dietary L-carnitine supplementation on economical efficiency (EE) for Domyati ducklings during the whole experimental period.

De merer et enn		SEM	C:a				
Parameters	0.0	0.0 150 300 450 600		SEM	Sig.		
Feed cost (LE)	27.21	26.75	26.65	27.27	27.41	0.14	NS
LC cost (LE)	0.00 ^e	0.31 ^d	0.63 °	0.98 ^b	1.30 a	0.12	**
Duckling price(LE)	5.50	5.50	5.50	5.50	5.50	0.00	NS
Total cost (LE)	32.71 bc	32.56 °	32.78 ^{bc}	33.75 ^{ab}	34.21 ^a	0.21	**
Total return (LE)	45.61 ^d	48.87 ^c	50.71 ^{ab}	51.42 a	50.05 ^b	0.56	**
Net return (LE)	12.90 ^d	16.31 ^{bc}	17.93 ^a	17.67 ^{ab}	15.84 °	0.51	**
Economic efficiency	0.394 °	0.501 ^{ab}	0.547 ^a	0.524 ^{ab}	0.463 ^b	0.016	**

Total cost = feed cost+ LC cost+ duckling price; LE= Egyptian pound.

SEM = standard error mean; NS: non-significant; * = $P \le 0.05$; ** = $P \le 0.01$

a,b,c...e : means in the same row within each item bearing different superscripts are significantly different ($P \le 0.05$),

REFERENCES

- Abdel-Fattah, S.A.; E. F. El-Daly and N. G.M. Ali (2014).Growth performance, immune response, serum metabolites and digestive enzyme activities of Japanese quail fed supplemental L-Carnitine. Global Vet., 12: 277-286.
- Adabi, G.S.H.; R.G. Cooper; N. Ceylan and M. Corduk (2011). L-carnitine and its functional effects in poultry nutrition. World's Poult. Sci. J., 67, 277-296.
- AOAC. (1995). Official Methods of Analysis. 16th ed. Assoc. Off. Anal. Chem., Washington, DC.
- Ardekani, H. M.; M. Shevazad;M. Chamani; M. Aminafshar and E. D. Arani (2012). The effect of Lcarnitine and low crude protein supplemented with crystalline essential amino acids diets on broiler chickens. Annals of Bio. Res., 3 (2):1085-1093.
- Arslan, C.; M. Citil and M. Saatc (2003). Effects of L-carnitine administration on growth performance, carcass traits, blood serum parameters and abdominal fatty acid composition of ducks. Arch. Anim. Nutr., 57: 381 – 388.
- Awad, A.L.; A.F. Ibrahim; H. N. Fahim and M.M. Beshara (2014). Effect of dietary betaine supplementation on growth performance and carcass traits of Domyati ducklings under summer conditions. Egypt. Poult. Sci., 34:1019-1038.
- Awad, A. L.; M.A.A. Hussein; A.I.A. Ghonim and M.G. Kasim (2011). Effect of dietary inclusion level of distillers dried grains with solubles on growth performance of Domyati ducklings. Egypt Poult. Sci., 31: 65 -75.
- Baumgartner, M. and R. Blum (1997). Typical L-carnitine contents in feedstuffs. In: Baumgartner, M. (Ed.):

L-carnitine in animal nutrition, Lonza, Basel, Switzerland.

- Bayram İ.; Z. Akıncı and H. Uysal (1999). Effects of dietary supplementation of L-carnitine and vitamin C on growth and laying performance in Japanese quail (Coturnixcoturnix Japonica), (in Turkish). J. Vet. Fac. YüzüncüYıl Uni., 10: 32-37.
- Bridi, A.M.; S. Nicolaiewsky; J.M. Rübensam; M.C. Both and J.F.P. Lobato (2003). Efeito do genótipohalotano e de diferentessistemas de produçãonaqualidade da carne suína. Rev.aBrasileira Zoot., 32:942-950.
- Campbell, T.W. (1995). Avian hematology and cytology, Iowa State University Press, Ames, Iowa, USA. PP: 3-19.
- Celik, L. and O. Ozturkcan (2003). Effects of dietary supplemental L-carnitine and ascorbic acid on performance, carcass composition and plasma Lcarnitine concentration of broiler chicks reared under different temperature. Arch. Anim. Nutr. 57, 27-38.
- Cyril, H.; S. Verguliaková; P. Svorad; J. Weis; H. A.; S. Mindek; M. Fik and J. Bujko (2015). Effect of L-carnitine supplementation on fattening and carcass parameters of broiler chickens. Actafytotechn. zootechn., 18 (1): 15–19.
- Daskiran, M. and R.G. Teeter (2001). Effects dietarv L-carnitine of supplementation (carniking@) on overall performance and carcass characteristics of seven-week-old broiler chickens. Animal Science Research Report. http://www.ansi.okstate.edu/research/ 2001rr/35/35.htm
- Deng, K.; C.W. Wong and J.V. Nolan (2006). Long-term effects of early-life dietary L-carnitine on lymphoid organs and immune responses in leghorn- type chickens. J. Anim. Phys. Anim. Nutr., 90: 81-86.

- **Duncan, D.B.** (1955).Multiple range and multiple F tests. Biometrics, 11:1-42.
- Fathi, E. and R. Farahzadi (2014). Application of L-carnitine as nutritional supplement in veterinary medicine. Rom. J. Biochem., 51: 31-41.
- Feed Composition Tables for Animals and Poultry Feedstuffs Used in Egypt (2001). Technical Bulletin No., 1, Central Lab. For Food and Feeds (CLFF) Ministry of Agric. Res. Cent. Egypt.
- Gross, W.B. and P.B. Siegel (1986). Effects of initial and second periods of fasting on heterophil/lymphocyte ratios and body weight. Av. Dis., 30:345 346
- Harmeyer, J. (2002). The physiological role of Lcarnitine. Lohman Information, 27: 15-21.
- Ibrahiem, Z. A. ; W. Ezzat; A.A. El-Zaiat and M.S. Shoeib (2011). Effect of 1-carnitine on the growth, serum components, carcass traits and histological structure of muscles in the growing geese. Egyptian J. Anim. Prod., 48:91-104.
- Jameel, Y.J. (2014).Effect of the content of fish oil, 1- carnitine (50 mg/kg) and their combination in diet on immune response and some blood parameters of broilers. Int. J. Sci. Nat. vol., 5: 501-504
- Kalaiselvi, T. and C. Panneerselvam (1998). Effect of L-carnitine on the status of lipid peroxidation and antioxidants in aging rats. J. Nutr. Biochem. 9: 575-581.
- Line, T. F. and Y.M. Horng (2001). The effect of supplementary dietary L-Carnitine on the growth performance, serum components, carcass traits and enzyme activities in relation to fatty acid beta-oxidation of broiler chickens. Br. Poult. Sci., 42:92-95.
- Maritza, F.D.; A.U. Julio; L. Flor and H.R. Frank (2006). L-carnitineinduced modulation of plasma fatty

acids metabolism in hyperlipidemic rabbits. Rev Electron Biomed/Electron J Biomed., 1: 33-41.

- Michalczuk, M.; M. Lukasiewicz; J. Niemiec; A. Wnuk and N. M. Sosnowska (2012). Effect of Lcarnitine on performance and dressing percentage of broiler chickens. Anim. Sci., 51: 89–99.
- Murali, P.; S. K. George; K. Ally and M. T. Dipu (2015). Effect of L-carnitine supplementation on growth performance, nutrient utilization, and nitrogen balance of broilers fed with animal fat. Vet. World vol., 8(4): 482-486.
- North, O.M. (1981).Commercial chicken production manual. 2nd Ed., AVI Publishing company, Inc., Westpor, Connecticut.
- Oladele, O.A.; F. Adeboye; S. Richard and H. Zainob, H. (2011). Growth response, carcass yield and serum biochemistry of broiler chicken feds with supplemental L-carnitine in feed or drinking water. J. Poult. Sci., 48: 223-228.
- Parsaeimehr. **K.:** М. Afrouziveh Hoseinzadeh and S. (2014). The effects of Lcarnitine and different levels of anim al fat on performance, carcass characteristics, some blood parameters and immune r esponse in broiler chicks. Iranian J. of Appl. Anim. Sci., 4: 561-566.
- **Rabie, M. H. and M. Szilagyi (1998).** Effects of L-carnitine supplementation of diets differing in energy levels performance, abdominal fat content, and yield and composition of edible meat of broilers. Br. J. Nutr., 80:391-400
- Rabie, M.H.; M. SzilÁgyi; T. Gippert; E.
 Votisky and D. Gerendai D. (1997).
 Influence of dietary L-carnitine on performance and carcass quality of broiler chickens. Acta. Biol. Hung., 48: 241-252

- Ritchie, B. W.; J. G. Harrison, and R. L. Harrison (1994). Avian Medicine. Winger's publishing Inc, Florida, USA, pp. 176-198.
- Sahin, K.; N. Sahin; M. Onderci; S. Yaralioglu and O. Kucuk (2001). Protective role of supplemental vitamin E on lipid peroxidation, vitamins E, A and some mineral concentrations of broilers reared under heat stress. Vet. Med. 46:140– 144.
- Sarica, S.; M. Corduk and K. Kilinc (2005). The effect of dietary L– carnitine supplementation on growth performance, carcass traits and composition of edible meat in Japanese quail. J. Appl. Poult. Res., 14: 709-715.
- SAS (2004). SAS User's Guide: Statistics. Edition 9.1. SAS Institute Inc., Cary, NC.
- Shuenn, D.Y.; G.I. Fu and H.I. Chyng (2012). Effects of dietary L-carnitine, plant proteins and lipid levels on growth performance, body composition, blood traits and muscular carnitine status in juvenile silver perch (Bidyanusbidyanus). Aquaculture, 342–343.
- Soltan, M.E.; A.A. Enab; G.M. Gebriel and M.S. Kandil (2014). Meat production efficiency of two lines of Pekin ducks under two different

feeding systems. Minufiya J. Agric. Res., 39:521-535.

- Taklimi, S.M.; K. Ghazvinian and M. R. A. Kasgari (2015). Effect of Lcarnitine on performance and carcass quality of broiler chickens.Acad. J. Sci. Res., 3: 50-54.
- Tufan, T.; C. Arslan; Ö. Durna; K. Önk ; M. Sarı and H. Erman (2015). Effects of chito-oligosaccharides and L-carnitine supplementation in diets for Japanese quails on performance, carcass traits and some blood parameters. Arq. Bras. Med. Vet. Zootec., 67:.283-289.
- Xu, Z.R.; M.Q. Wang; H.X. Mao; X.A. Zhan and C.H. Hu (2003). Effects of L-carnitine on growth performance, carcass composition and metabolism of lipids in male broilers. Poult. Sci., 82: 408-413.
- Younis, M. E. M. (2015). Influence of dietary 1-carnitine on productive performance, internal organs and carcass characters of two duck breeds reared for foiegras production. Alex. J. Vet. Sci., 44: 159-168.
- Zhang Y.;Q. Ma ; X. Bai ; L. Zhao; Q. Wang ;C. Ji ; L. Liu and H. Yin (2010). Effects of dietary acetyl-Lcarnitine on meat quality and lipid metabolism in Arbor Acres broilers. Asian-Australasian J. Anim. Sci., 12:1639–1644.

الملخص العربى

تأثير إضافة إل-كارنيتين للعليقة على الأداء الانتاجى وجودة الذبيحة لسلالات البط المحلية في فصل الصيف

عوض لطفي عوض، هاني نبيل فهيم ، ملاك منصور بشاره معهد بحوث الإنتاج الحيواني – مركز البحوث الزراعية – وزارة الزراعة - الدقي - جيزة

إستخدم فى هذه الدراسة عدد ٢٧٠ كتكوت بط دمياطى عمر ٢١ يوم وذلك لدراسة تأثير إضافة مستويات متدرجة من إل-كارنيتين للعليقة (صفر ، ١٥٠ ، ٢٠٠ ، ٤٥٠ ، ٢٠٠ ملجم / كجم) على أداء النمو وصفات وجودة الذبيحة وبعض مقابيس الدم ومحتويات السيرم فضلا عن الكفاءة الاقتصادية خلال فترة النمو (٢١-٤٤ يوم من العمر) . تم وزن وتقسيم الكتاكيت الى خمسة مجموعات تجريبية (٤٠ كتكوت لكل مجموعة) وكذلك قسمت العليقة المستخدمة إلى خمسة أجزاء ليضاف إلي كل منها أحد المستويات المستخدمة من إل-كارنيتين وتم تقديمها للمجموعات التجريبية خلال فترة التجربة . تم تسجيل وزن الكتاكيت و كمية العليقة المأكولة و عدد النافق ، كما تم أخذ عينات دم وسيرم لتقدير بعض محتوياتهم ، كما تم إجراء تجربة ذبح لعدد ٣ ذكور و ٣ اناث من كل مجموعة الاقتصادية خلال عينات من لحم الصدر والفخذ لاجراء التحليل الكيماوى لها ، كما تم حموية الاقتصادية ومكوناتها وأخذت عينات من لحم المدر والفخذ لاجراء التحليل الكيماوى لها ، كما تم حموعة الاقتصادية ومكوناتها وأخذت عينات من الحموم والفخذ لاجراء التحليل الكيماوى لها ، كما تم حمومة الاقتصادية والموسيات الذبيرية عينات من الحموم والفرا الفترة الكتاكيت و مية العليما و ٢٠ اناث من كل مجموعة الموات النورية واخذت محتوياتهم ، كما تم إجراء تجربة ذبح المد ٣ ذكور و ٣ اناث من كل مجموعة الاقتصادية خلال الفترة الكلية للتجربة عينات من الحم الصدر والفخذ لاجراء التحليل الكيماوى لها ، كما تم حساب الكفاءة الاقتصادية خلال الفترة الكلية للتجربة (٢٠-٢٤ موم) .

وتوضح النتائج ما يلي :-

لوحظ أن إضافة المسنويات المختلفة من إل-كارنيتين للعليقة أدت الى زيادة معنوية فى وزن الجسم عند ٦٣ ، ٢٩ يوم من العمر ، بينما سجل معدل الزيادة الوزنية للجسم ومعدل التحويل الغذائى و الدليل الانتاجى تحسنا معنويا مقارنة بالكنترول خلال الفترة الكلية للتجربة (٢١-٢٤ يوم من العمر). لوحظ تحسنا معنوبا لنسبتى الذبيحة المفرغة والأجزاء المأكولة الكلية بينما إنخفضت نسبة دهن البطن معنويا بإضافة المستويات المختلفة من إل-كارنيتين للعليقة بالمقارنة عبموعة الكنترول. كما تحسنت معنويا نسبتى محصول الصدر والفخذ بإضافة ٥٠ و ٢٠٠ ملجم إل-كارنيتين/كجم عليقة مقارنة بالكنترول، بينما تحسنت معنويا نسبة عضلات الصدر والفخذ بإضافة ٢٠٠ و ٢٠٠ ملجم إل-كارنيتين/كجم معنويا بإضافة المستويات المختلفة من إل-كارنيتين للعليقة مقارنة بالكنترول. لوحظ إرتفاع معنوي فى محتوى عضلات الصدر والفخذ من البروتين بإضافة المستويات المختلفة من إل-كارنيتين/كجم الأثيرى مقارنة بالكنترول ، بينما تحسنت معنويا نسبة عضلات الصدر والفخذ بإضافة ٢٠٠ و ٢٠٠ ملجم إل-كارنيتين/كجم الصدر والفخذ من البروتين بإضافة المستويات المختلفة من إل-كارنيتين للعليقة بينما إنخفض محتوى عضلات الصدر والفذ من البروتين بإضافة المستويات المختلفة من إل-كارنيتين للعليقة بينما إنخفض محتواها من المستخلص الأثيرى مقارنة بالكنترول. لوحظ إرتفاع محتوى هيموجلوبين الدم معنويا بإضافة ٢٠٠ ملجم إل-كارنيتين لكل الإثيرى مقارنة بالكنترول. لوحظ إرتفاع محتوى هيموجلوبين الدم معنويا بإضافة معنوي فى محتوى عضلات المولية بإضافة المستويات المختلفة من إل-كارنيتين العليقة معنوي ألمعاد الى الأثير كار التيتين لكل معنوي مان الأثيري مقارنة بالكنترول. لوحظ إرتفاع محتوى هيموجلوبين الدم معنويا بإضافة ٢٠٠ ملجم إل-كارنيتين لكل الليمفاوية بإضافة المستويات المختلفة من إل-كارنيتين العليقة بينما إنخفض محد ملجم إلى الاثير الكاني المالماليا المعاد ألم معنويا بإضافة المستويات العليقة معار أل المنتول كم لوحظ إنخفاض مستوى الجليس يدات معنوي مالم معنويا بإضافة المستويات المختلفة من إل-كارنيتين بينما إنخفض مستوى الكلي المعنوان بإضافة ٢٠٠ معنويا بإضافة المستويات المختلفة من إل-كارنيتين بينما إنخفض مستوى الكراي المعنور ال ماليمان معنوي ألمان معنويا ألمان ٢٠٠ أو مال كحم عليقة مال حاريتين بيناه إنخفض معنوي ألمان معنوي المختلفة المنتول المنويات المنتويات ال

وقد خلصت الدراسة إلى أن إضافة إل كارنيتين لعلائق كتاكيت البط الدمياطى خلال فترة النمو بمستوى ٣٠٠ أو ٤٥٠ ملجم / كجم يمكن أن يؤدى الى تحسين الأداء الانتاجى والفسيولوجى لها و صفات وجودة الذبيحة فضلا عن الكفاءة الاقتصادية أثناء فصل الصيف