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This paper investigates how SISO nonlinear systems can be adaptively 

identified using fuzzy systems which are independent of human knowledge. 

The proposed methodology uses the on-line data to build up the fuzzy 

system which approximate the nonlinear dynamics. After filtering the input, 

the nonlinear system is approximated by a set of fuzzy rules that describes 

the local linear systems. The Lyapunov direct method is utilized to derive 

the adaptive law of the proposed identification procedure. Theoretical 

results are simulated on a one-link robot. Results show that the proposed 

on-line identifier can consistently track mechanical friction and pay-load 

variations.  
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1. INTRODUCTION 

Difficulties encountered in conventional modeling can arise from poor understanding 

of the underlying phenomena, inaccurate values of various process parameters, or from 

the complexity of the resulting model. A complete understanding of the underlying 

mechanisms is virtually impossible for a majority of real systems. For instance, in 

robotic systems variations of the pay-load are usually ignored in the modeling stage to 

simplify the equation of motion [1]. If all sources of uncertainty have been included, 

the resulting differential equations become very complex and hardly to deal with. Even 

if the structure of the model is determined [2], a major problem of obtaining accurate 

values for the parameters remains. It is the task of the system identification to estimate 

the parameters from measured data.  

System identification, whether on-line or off-line, is an essential part of system 

design. Typical applications are the simulation, prediction and the control system 

design. In recent years, rapid development of intelligent control methodologies such as 

neural network [3,4], fuzzy logic theory[5-7], and rule-based expert systems [8] have 

provided alternative tools to tackle the problem of system identification. Fuzzy, neuro-

fuzzy [3,6] and genetic-fuzzy systems [9,10] have been widely considered in literature. 

The aim is to establish optimal fuzzy systems that locally approximate the nonlinear 

system. Optimization is carried out using different criterion like stochastic and gradient 

methods [3,6,7,11]. However, most of these algorithms are advocated for off-line 

identification i.e. discrete-domain. Although, discrete fuzzy approximation models of 
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continuous-time systems are useful in many engineering applications, continuous-time 

models are often desired for the subsequent control system design [12,13].  

Fuzzy identification of nonlinear systems is generally based on a fuzzy model that is 

constituted by a set of fuzzy if-then rules that maps inputs to outputs. A fuzzy model 

has excellent capability in complex and uncertain system description and is particularly 

suitable for modeling the nonlinear system by a set of fuzzy local models that are 

combined using a fuzzy inference mechanism corresponding to various operating 

points [14,15].  

The aim of this paper is to develop a fuzzy input-output model expressed in the 

continuous-time domain which is an on-line identification for nonlinear SISO systems. 

The dynamic system is described by a group of fuzzy rule sets. Each fuzzy rule set is 

formed by a local linear dynamic system. The method utilizes the fact which states that 

any dynamic system (linear or nonlinear) can be approximated by a finite number of 

such rule sets, [7].  

The paper is organized as follows. Section 2 introduces the underlying 

identification problem statement. In Section 3, the fuzzy system followed in this paper 

is introduced. The Section also includes Sub-Section for filter design. In Section 4, the 

adaptive law is derived. Section 5 demonstrates the implementation methodology. 

Simulation tests for one-link robots are given in Section 6. Section 7 offers our 

concluding remarks.  

 

2. PROBLEM FORMULATION 

Suppose an n-order SISO nonlinear system is bounded input bounded output (BIBO) 

stable system. It is expressed as follows: 
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where )( ty  is the output of the plant, )( tY  is the vector of higher derivatives of the 

output, 
Tn

tytytY )](,),([)( 
1

 , 
n

R)( tY , )(tu  is the input of the plant, and 

)(tU  is the higher derivatives of the input, 
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tututU )](,),([)( 
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 , 
n

R)( tU , 

RRR(.)
nn
f  is an unknown smooth mapping defined on a compact set 

nn
RRQ  .  

The nonlinear system can be approximated by a piecewise local linear system. 

The local linear system may be obtained by taking the Taylor series expression of 

nonlinear function around each equilibrium point.  

Although, the exact mathematical expression of the real system is difficult to 

derive; the dynamics of local linear models at various operating points can be 

identified on-line from the measured input )(tu  and output )( ty  data pairs. Then, by 

associating the local linear system with the fuzzy membership function, the fuzzy 

dynamic model is formed. From the point of view of the fuzzy logic system, the fuzzy 

input-output model can be seen as a generic fuzzy system (see Fig. 1) which includes 

stable filter, fuzzy rule base, fuzzy inference engine and defuzzification. The coming 

Section gives details of the fuzzy logic system and the stable filter used in this work.  
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Fig. 1. Fuzzy input-output model.  

 

3. FUZZY LOGIC AND FILTER DESIGN 

 3.1. Fuzzy Rule Base 

The characteristics of the nonlinear system are described by a group of fuzzy rule sets 

shown as follows:  
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The antecedent in each rule is the input and output fuzzy sets and the consequent 

part is the crisp function representing the local linear characteristic. The parameter 

vectors 
l

U

*
  and 

l

Y

*
  represents the nominal parameters of the fuzzy model. )(tU  and 

)( tY  are filtered higher derivative vectors of input and output, respectively. Note that 

it is neither desirable nor practical to obtain the actual derivatives of signals, which are 

inherently noisy.  

The antecedents of the rule set describe fuzzy regions of the system states and 

input, and the consequent part of the rule is crisp function expressed in the state space 

equation. This fuzzy state-space model requires that the states in the antecedents are 

either measurable or estimated accurately.  

 

 3.2. Filter Design 

The general practice in continuous-time identification is to filter the signal first and 

then obtain the filtered higher derivative [16]. Therefore, the higher derivative vectors 

)(tU  and )( tY  in each rule set can be replaced by the output )(
)(

tw
u

p
, )(

)(
tw

y

p
 of two 

filters acting on the input )(tu and output )( ty , Fig.1. The rule set can then be 

expressed as:  
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The consequent part of the rule sets is derived from the linear transfer function of 

the local system dynamics. Suppose the transfer function of the local dynamic system 

in the l
th
 rule set is expressed as: 
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where )( sy
l

p
, )( su

l
 are the Laplace transform of the output and input of the local 

linear system.  

To identify the parameters of the transfer function, the higher derivatives of the 

output signals are required. A monic Hurwitz polynomial of degree n given in Equation 

(5) is introduced.  
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The main requirement is to make sure that this filter covers the bandwidth of 

interest in order to ensure all modes of the local linear model are accounted for. From 

(4), we obtain (6) as follows:  
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Therefore, (6) can be rewritten as 
 

)()()(ˆ
)(*)(*

swaswbsy
u

p

ly

p

ll

p
              (9) 

 



ADAPTIVE FUZZY IDENTIFICATION FOR NONLINEAR….. 669 

The time response of the output of local dynamic system is expressed as 
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So that, the output of each local linear system is a linear combination of the filter 

output. 

  

 3.3. Fuzzy Inference Engine 

Fuzzy logic principles are used to combine the IF-THEN rules into a mapping from 

fuzzy sets in 
ll

i
BAW   to fuzzy sets in identifies output 

l

o
CW  . For each rule set, 

the fuzzy implication 
l

R  is equal to the following equation: 
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The truth value of the proposition )()( tyty
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  is calculated by Eq. (12) in which the 

product operation rule of fuzzy implication is adapted. 
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For simplicity, we assume 1
l

R . Therefore, the truth value of the consequence 

obtained is as follows: 
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 3.4. Fuzzification 

The fuzzifier performs a mapping from crisp point 
i

T
Wtytu ))(),((  into a fuzzy sets 

),(
ll

BA . The fuzzy sets (membership functions) represent the meaning of the 

linguistic variables of the input and output measurements of the SISO nonlinear system. 

Throughout this work, Gaussian membership functions are used to compute the truth of 

each rule. This is a requirement for the fuzzy system to be regarded as universal 

approximator; [7].  

The universe of discourse of )(tu  and )( ty  are equally divided into fuzzy m  

subspaces, Fig. 2. The number of fuzzy partition m  represents the granularity of the 

fuzzy model. It is directly related to the matching accuracy of the model of the 

nonlinear system. The larger the fuzzy partition, the more accurate the fuzzy model is. 

The number of rules is 
2

m . It should be noted that as the number of rules increases, 

the dimension of the parameter matrix increases as well. Thus, the choice of the 

number of rules is based on a compromise between matching performance and the 

computation load.  
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Fig. 2. Fuzzy partition of the universe of discourse.  

 

3.5. Defuzzification 

The defuzzfier performs a mapping from fuzzy sets in 
o

W  to a crisp point 
o

Wy  . 

There are several methods for defuzzification [3,6] such as maximum defuzzification, 

center average defuzzification, and height defuzzification. In this work, center average 

defuzzifier is adopted. The final value output )( ty  of the nonlinear system inferred 

from nk  implication is given an average of all )(ty
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is the parameter matrix to be identified.  
  can be viewed as the degree vector denoting the contribution of each local 

linear system on the overall system. It includes the influence of the membership 

function for the antecedent and consequent reference fuzzy sets, and operators for the 

logic connectives, inference and defuzzification.  
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At current stage of the research, we have selected the fuzzy system and the 

coming Section clarify the adjustment of the parameter matrix 
nnk

Θ
2

ˆ . The parameter 

matrix 
nnk

Θ
2

ˆ  is a set of the free parameters that can be adjusted during the 

identification in order to make the output of fuzzy model )(ˆ ty  track the actual output 

of the plant.  

 

4. FUZZY ON-LINE IDENTIFICATION 

From the above discussion, we deduce that for a given nonlinear system, there exists an 

approximate fuzzy input-output model. Therefore, the nonlinear on-line identification 

is transformed into the problem of on-line identification of each local linear system. 

The task of fuzzy on-line identification is to tune the parameter matrix 
nnk

Θ
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ˆ  in the 

fuzzy model to a nominal parameter matrix 
*ˆ
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Θ

2
. In this work, the performance 

index indicating the goodness of the approximation is defined as the square of 

difference between the identification data )( ty  and the fuzzy model estimation )(ˆ ty . 
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Consequently, the identification problem has been transformed to an optimization 

problem. The on-line identification should arrive at the following objective:  
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4.1. Error Analysis 

Fuzzy on-line identification aims at identifying the parameters of each local linear 

system. At the beginning of identification, the parameter vector series 
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where  
l*

  is the optimal value of the parameter vector in the l
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 rule,  

l
̂  is the identified value of the parameter vector in the l
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 rule, 
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   is the error parameter vector in the l

th
 rule, 
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 ΘΘΘ  is the error in parameter matrix, 
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Θ  is a constant nominal parameter matrix.  

The objective of identification can be stated as the determination of an algorithm 

for adjusting 
l

̂  or Θ̂  so that the error parameter vector 
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~

 or the error parameter 

matrix Θ
~

 tend to zero as t . It is clear that if input )(tu  and output )( ty  are 

uniformly bounded and 
l
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~

 or Θ
~

 tend to zero the error )(te  will also tend zero 

asymptotically. Hence, if exact parameter estimation is carried out, the convergence of 

the output error to zero will necessarily follow. 

  

4.2. Adaptive Law Synthesis 

The following theorem summarizes the convergence analysis of fuzzy on-line 

identification algorithm. The direct Lyapunov method is used in the proof.  
 

Theorem. For a single input/single output nonlinear system, subject to any bounded 

continuous input )(tu  with the bounded output )( ty , there exists a fuzzy model )(ˆ ty  

in the following form: 
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Proof. The justification for the choice of the update law (21) is based on the following 

Lyapunov function candidate: 
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The time derivative is obtained as: 
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Integrating both sides of Eq. (26), we get from 0t  to t :  
 

)()(

*








 VV
g

c
de

o

2

1

0

2 1 
    where ))(

~
( 0ΘVV

o
            (29) 

 

According to the definition of 
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L  space [17], we know that 
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filtered signals w  and w  belong to 
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implies 0)(te  as t . This implies that for a SISO nonlinear system with 

bounded input and output, there exists a fuzzy model (Eqs. 14 - 15), with the output 

error )(te , such that:  
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Remark 1. The adaptive law (21) is proportional to the gradient of the output squared. 

This can be easily verified as follows:  
 













nk

l pp

l

nk

l p

lll

twΘtw

twtytyΘe

1

1

         )(
~

)(
~

)()ˆ()()(ˆ)(
*




                    (31) 

 



Sharkawy, Abdel Badie 674 

and 
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This suggests that the update law (21) can be regarded as the steepest decent 

solution to the underlying identification question.  

Remark 2. For linear dynamic system, perfect identification depends on the nature of 

the input [18]. The input signal should have the property of persistent excitation in 

order to guarantee that the error converges to zero. The same condition applies to the 

nonlinear system and the local linear models.  

 

5. IMPLEMENTATION 

The proposed algorithm for the fuzzy on-line identification is concluded from the 

above analysis. A step by step procedure for the implementation of the algorithm is 

now stated. 

1. Select a stable filter for the input and output of the plant (5). The order of the 

stable filter is equal to that of the plant n .  

2. Initialize the parameter matrix 
nnk

Θ
2

ˆ . 

3. Apply the filter to the input and output of the plant, then their higher 

derivatives can be obtained from the regressive vector 

)](),([)(
)()(

twtwtw
y

p

u

pp
 .  

4. Fuzzify the input )(tu  and output )( ty . The membership functions are 

selected as Gaussian and m  linguistic variables for both )(tu  and )( ty . The 

number of rules describing the nonlinear system is 
2

mnk  . Therefore, the 

truth value of the proposition )()( tyty
l

  is calculated as Eq. (13) and the 

output weighting vector   is calculated according to (15).  

5. In each rule, the characteristic of the plant is described as the following local 

linear system: 

)(ˆ)(thenis)(andis)(if: twtyBtyoutputAtuinputR
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The output of the plant )(ˆ ty  is calculated from (14).  

6. Calculate the error between the output of fuzzy model and the output of the 

actual nonlinear plant: )()(ˆ)ˆ( tytyΘe  . 

7. Update the parameter matrix 
nnk

Θ
2

ˆ  according to Eq. (21).  

8. Return to step 3. 

The two parameters which should be known before identification are the order 

n of the plant and the pole   of the filter. These two parameters are determined based 

on the prior information of the plant. The requirement of )( s  is not very restrict. 

Besides being a stable Hurwitz polynomial, )(/ s1  should cover the bandwidth of 

interest. If the exact order n  of the plant is not known, an approximate value around n  

of each local linear plant still ensures the match accuracy of the fuzzy model. The 
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reason is that the parameters of each linear local system are tuned to the “optimal” 

values to make the output of the fuzzy model to match the output of the plant.  

 

 
 

Fig. 3. Fuzzy on-line identification implementation 

 

6. SIMULATION TESTS OF ONE-LINK ROBOT 

In this Section, the following one link robot is used to demonstrate the proposed fuzzy 

on-line identification algorithm. As second order systems, robots can be viewed as 

highly nonlinear systems. Figure 4 shows a diagrammatic sketch for one-link robot 

whose dynamic equation of motion can be described as [1]: 
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)(

)()(

qu

uqmglqFqIkI
mr

cos 10

sin 
2



 
 

 

where I  is the load mass moment of inertia, l  and m  are its length and mass, 1
r

K  

is the gear ratio, 
m

I  is the motor mass moment of inertia and F  is the friction torque. 

The parameter values are listed in Table 1.  

 

 
 

Fig. 4. One-link robot.  

 

Parameter Value Value after 50 sec 

m  mass (kg)  1.0 15.0 

l  length (m)  0.6 No change 

F  friction coefficient radmN sec/..  10.0 No change 

r
K  reduction ratio 20.0 No change 

I  inertia around c.g. (
2

.mkg ) 5.0 20.0 

m
I  inertia of the motor (

2
.mkg ) 0.1 No change 

 

Table 1: Parameters of the robot arm.  

 

The system is initialized with 00 )(q . To check the ability of the proposed 

algorithm, it is assumed that load parameters changed to the values listed in column 3 

after 50 seconds. Simulation results are shown in Figs. 5-9. For this nonlinear system, 

the poles of the filter are selected as 05. . The order of the local linear system to be 

identified is selected as 1n  and the number of fuzzy subspace is selected as 15. So 

that the dimension of the parameter matrix to be identified is 2225  . The parameter 
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matrix is set to null at the beginning of the identification. One may notice that the error 

(Fig. 6) between the output of the actual nonlinear system and the output of the fuzzy 

model is relatively large during the first two periods. After two periods, the error 

begins to converge.  

 

 
 

Fig. 5. Actual output (solid line) and the estimated output (dashed line). 

 

Since the order of the local linear system is set as 1n , the model in each fuzzy rule 

is as follows: 
 

)()()(thenis)(andis)(if: tYatUbtyBtyoutputAtuinputR
llll

11
             

 

Figure 7 and 8 show respectively the time history of 
1

b  and 
1

a in the 1
st
 , 30

th
 and 

225
th
 local linear systems. Figure 9 shows the output surfaces of the adaptive fuzzy 

system at different stages of the identification process.  

It follows that the proposed fuzzy on-line identification method can identify 

the system on-line.  

 

 
 

Fig. 6. Identification error 

 



Sharkawy, Abdel Badie 678 

 
 

Fig. 7. Time history of some parameters of the parameter matrix (coefficients of the 

output) 

 

 
 

Fig. 8. Time history of some parameters of the parameter matrix (coefficients of the 

input) 

 

 
 

Fig. 9. The output surfaces of the fuzzy identifier at different stages.  
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7. CONCLUSIONS 

In this paper, an adaptive fuzzy identification method for SISO nonlinear system has 

been proposed. The key feature of the algorithm is the integration of conventional on-

line identification with fuzzy logic theory. The identification process is entirely 

designed in continuous time domain in contrast to other works in literature which are 

designed in discrete time domain, i.e. off-line identification. Simulation results of one 

link robot have demonstrated the capabilities of this method and have shown that the 

algorithm can effectively match the time varying nonlinear systems.  
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يه المدخل والمخرجدللأنظمه اللاخطيه أحامتأقلم  هلامىتمييز   
 

 لأسباب عده من بينها: لها ج رياضىذه الهندسيه منً صعوبة عمل نمو تأتى أهمية تمييز الأنظم
 ,صعوبه الفهم الكامل لعمل هذه الأنظمه 

 ,عدم أمكانية تحديد عناصرها بدقه 

  خاصة للأنظمه المركبه. النموذج الرياضى ايجادصعوبه  

 (SISO) أحاديه المدخل والمخرج اللاخطيه كيفية تمييز الأنظمهيتناول البحث فى هذه الدراسه 
)المعادلات التفاضليه  للنموذج الرياضى متأقلمه لاتعتمد على أى معرفه مسبقه هلاميهبأستعمال منظومه 

التشغيل لأستنتاج منظومه  أثناءبيانات الناتجه الطريقه المقترحه فى هذه الدراسه تستعمل ال .الزمنيه(
الطريقه المقترحه بكلمات أخرى, . لوصف العلاقه بين المدخل والمخرج للمنظومه الهندسيه تقريبيه هلاميه

 العلاقه بين مدخل المنظومه الهندسيه ومخرجها. تصف  هلاميهتعتمد على ايجاد نماذج رياضيه خطيه 
للمنظومه فأثبتت نتائج المحاكاه الرياضيه قدره فائقه على ذراع آلى أحادى الوصله  هتم تطبيق الدراس

 الذراع الآلى. وصف حركه على الهلاميه 


	ADAPTIVE FUZZY IDENTIFICATION FOR NONLINEAR SISO SYSTEMS
	1. INTRODUCTION
	2. PROBLEM FORMULATION
	3. FUZZY LOGIC AND FILTER DESIGN
	3.1. Fuzzy Rule Base
	3.2. Filter Design
	3.3. Fuzzy Inference Engine
	3.4. Fuzzification
	3.5. Defuzzification

	4. FUZZY ON-LINE IDENTIFICATION
	4.1. Error Analysis
	4.2. Adaptive Law Synthesis

	5. IMPLEMENTATION
	6. SIMULATION TESTS OF ONE-LINK ROBOT
	7. CONCLUSIONS
	REFERENCES


