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ABSTRACT

This paper is concerned with the influence of vibration isolators in the form of post-buckled elastic clamped-clamped one
and pair strut to relief the vibrating machines from the harmful effects of vibration. These vibrations are in most cases
uncontrollable and lead to sudden failure, therefore, mechanical engineers in preventive maintenance sections have to
control, isolate, and minimize the harmful effects of such unwanted vibrations. A mathematical model consists of pre-bent
post-buckled one and pair strut acting as vibration isolators supporting an asymmetric rigid plate. The model is subject to
axial harmonic excitation at the base, and allowed to displace laterally with respect to axial center line of the isolated plate.
The displacement transmissibility is calculated over a wide range of frequencies and plotted in form of design charts. The
transmissibility plots are used to recognize the ranges of frequencies, at which isolation can be maintained. The resonance
frequencies of the system can be easily depicted from the design graphs. The present study reveals that at resonance
frequencies the most effective transmissibility is well below unity. Vibration characteristics are determined under specific
frequencies such that the physical behavior of the system can be thoroughly analyzed. All variables used in the analysis are
normalized, such that the results aren’t dependent on any material or geometric property. In this way, the obtained results
can be applied over a wide range of elastic materials, regardless of the type of material or section properties.
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1. Introduction and literature review
Several modern machinery, such as compressors, internal
combustion engines, mining machines, hydraulic, and
pneumatic presses, turbo machinery, etc. undergo
uncomfortable and even undesirable serious source.
These vibrations are in most cases uncontrollable and
lead to sudden failure and in turn to a loss of machines
availability. Therefore, mechanical engineers in
preventive maintenance sections in the industry have the
serious job to put these vibrations under control, isolate,
and minimize the harmful effects of such unwanted
vibrations.

Hoque et al. (2010) developed the vibration isolation
system fundamentally, by connecting an active negative
suspension realized by zero-power control in series with
an active—passive positive suspension. The system could
effectively isolate ground vibrations in addition to
suppress the effect of on-board generated direct
disturbances of the six-axis motions, associated with
vertical and horizontal directions. Yun, Y., Mak, C.M.
(2010) used the level of ‘“‘power transmissibility’’ to
assess the performance of vibration isolators, and the
level of the ‘‘vibration velocity transmissibility’’ of the
supporting floor structure, the ‘‘mounted vibration
velocity’’, and the ‘‘mounted rotational velocity level’’
of the vibratory machine were proposed to assess the
stability of the vibratory system with various inertia
blocks. The results primarily have indicated that the use
of an inertia block did not affect the performance of
vibration isolation. Leo, D.J. and Inman (1999) used a
quadratic programming algorithm for studying the design
tradeoffs of active-passive vibration isolation systems

In Carrellaa et al. (2009), the force transmissibility of a
quasi-zero-stiffness (QZS) isolator was considered. The
isolator comprised a vertical spring and two oblique
springs that were either linear, linear with pre-stress or
softening nonlinear with pre-stress. Carrellaa et al.
(2008) proposed a theoretical and experimental study of
one such mount stiffness required to support a static load.
It comprised two vertical mechanical springs between
which an isolated mass was mounted. Lee et al. (2007)
presented an approach, based on the consistent theory of
thin shells, for designing compact springs in terms of
their compatibility with the room available for packaging
the vehicle suspensions and simultaneous extension of
the height control region where fundamental frequencies
were kept minimal. Jalili, N. (2000) presented the
development of an innovative approach for optimum
vibration suppression of flexible structures. It was shown
that concurrent adjustment of structural properties and
control re-tuning significantly improved the vibration
suppression quality.
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Mizuno et al. (2007) studied analytically and
experimentally an active vibration isolation system using
zero-power magnetic suspension. Yilmaz et al. (2006)
aimed to design a stiff and lightweight passive vibration
isolator that had wide stopband at low frequencies. First
of all, bandwidths of single-degree-of-freedom (sdof)
dynamic vibration absorbers and lever-type anti-resonant
vibration isolators were formulated in a general
framework. Then, by making use of these formulations, a
2dof vibration isolator was synthesized to obtain large
bandwidth at low frequencies. Winthropa et al. (2005)
developed a method for selecting and understanding the
performance of variable stiffness devices. The exact
solution was used to create an approximate solution
directly linking past variable stiffness approximations to
the exact solution in a systematic way. Bai et al. (2002)
presented numerical and experimental investigations on
active vibration isolation system. Two configurations
were implemented for a statically balanced three-mount
system. Roh, J.H. (2008) applied the shape memory
alloys (SMAs) as actuators and vibration isolation
devices.

2. Equilibrium analysis

Equilibrium analysis procedure

The model studied in this paper is a simple system
consisting of four buckled struts used to support an
asymmetric rigid plate and is limited for non-
dimensionalized frequencies of up to 200. The analysis
of buckled struts as vibration isolators is based on the use
of four struts connected by a rigid plate at four corners
(Jeffers et al. 2005). Jeffers et al. (2005), Alloway
(2003), and Plaut et al. (2003) have used strut elements
as isolators for fixed-fixed bars underlying axial
harmonic displacement excitation. Sidburg (2003) has
used the same isolators as used in Jeffers et al. (2005),
Alloway (2003), and Plaut et al. (2003) with pinned-
pinned end condition. The author of the present work has
used the same type of isolators as that used in Jeffers et
al. (2005), Alloway (2003), Plaut et al. (2003), and
Sidburg (2003). However, the end condition is selected
within the present analysis as clamped - clamped. El-
Kafrawy, A. et al. (4 May 2010) studied the vibration
isolation of a symmetric and asymmetric rigid bar using
struts subject to axial static and dynamic excitation. El-
Kafrawy, A. et al. (28 September 2010) treated the case
of the vibration isolation of a symmetric rigid plate using
struts subject to axial static and dynamic excitation.

The results determined in Jeffers et al. (2005), Alloway
(2003), Plaut et al. (2003), Sidburg (2003), and El-
Kafrawy, A. et al. (28 September 2010) revealed that the
behavior of the buckled strut under axial, harmonic,
displacement excitation is similar for both fixed-fixed



and pinned-pinned end conditions. In the present paper it
has been decided to choose fixed-fixed end conditions,
since such system can support much higher load.

The first step in the analysis is to evaluate the model at
static equilibrium for the plate. In the second step the
strut is analyzed in a post buckled state, with clamped-
clamped ends as done by Jeffers et al. (2005) and Virgin
and Davis (2003) as shown in Fig. 1. It should be noted
that the model is constrained against any lateral

movement except in Y -direction. If the analyzed model
is free to move laterally, the model consisting of pre-bent
struts may become unstable and would buckle and sway
(Inman 1994).

Rigid plate analysis
The plate analyzed in the present work is symmetric. It

has the ability to move vertically, rotate about the X and

Y axes and allowed to move laterally in direction- Y as
shown in Fig. 1. The horizontal movements at the corners
of the plate due to such rotations will be ignored in the
equilibrium analysis because only small rotations of the
plate will be considered. As a result, the plate will be
analyzed as a four degree-of-freedom system.

Upon considering the free body diagram of the plate
shown in Fig. 2, one apparent observation is that there
are four unknown forces, Fi, F,, F3 and F,4, acting at the
corners of the plate, but only four equations result from
the equilibrium. These equations are:

FR+h+R+FR =W (1)
-(R+R)B+(R+F)B, =0 2
(R+R)AL - (R +F)A, =0 (3)
ZO_ZP_ZQ+ZR =0 (4)

Where: Zo, Zp, Zo, and Zg are the vertical displacements
at the corners of the plate, which are labeled by O,P, Q,

and R when it rotates at some angle about X and Y
axes.

Fig. 1 Asymmetric rigid plate supported by pre-bent
one strut at each corner
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Fig. 2 Free-body diagram of the plate in static
equilibrium state

Vibration Isolator Analysis

Now that the axial force applied to the top of each
isolator can be determined, it is necessary to examine the
force-displacement relationship for each isolator. As
stated earlier, the isolator, shown horizontally in Fig.3,
consists of one strut which is clamped at both ends. For
simplicity, the isolator is restrained against rotation at

both ends and free horizontal (Y -direction)
displacement without any external laterally force in this
direction.

The additional variables used for the remaining
portion of this analysis can be defined as follows. The
subscript st is used for static equilibrium analysis. Note
that the subscript i is used to denote the current number
of isolators. The struts have the same length and bending
stiffness. Hence, the analysis is only carried out on one
strut. The other struts represent actually a typical and
mirror image of the first. A free-body diagram of an
incremental element of the strut is shown in Fig. 4. Under
the existing load on the isolator, F;, the strut deflects from
the initial configuration to a new position Y;(S). The
following equations are derived to describe the shape of
the strut:

Yi

Fig. 3 Model of vibration isolator under static axial
load F;
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Fig. 4 Free body diagram of an element of the strut
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in equilibrium case

Cos 0; ¢ =—dxi'St ©)
! dSi

. in st

Sind; ¢ =——— °
1,st dSl ( )

dei,st __ Mi,st (7)

dSi BiEI

Mist 5 dino 0 8

5 - i st SINO; gt + Qj 5 COS O o )
1

The struts are made of an elastic material to support a
static load up to the critical point, at which the strut
buckles. This critical point is known as the Euler
buckling load and its value depends upon the support end
conditions. For a fixed-fixed strut (not allowed to rotate
or to deflect transversely) the critical load is given by P
= 4w? EI/L% For a pinned-pinned strut (free to rotate
transversely) the critical load is given by P, = w2 EI/L?
(Inman 1994). The variables have been normalized so
that the analysis provides relevant results for any elastic
material, regardless of its geometric and material
properties.

Note that the bending stiffness EI for each strut is
multiplied by a modification factor;. The stiffness

modification factors will be chosen so that the downward
deflection at the top of each strut due to the static load F;
is the same for all four isolators. In other words, each
isolator will have the same initial height H, when the
system is in equilibrium. Because of symmetry, the axial
force P;g in the strut is equal to the total load Fi applied
to the isolator. That is,
Fi=Pig )

Equations 5-8 lead to the following differential equations
(for0<s<1).

dx;
008 0 ¢ = ——= (10)

i

. dyi st

—sing; 4 =——— 11
1,st dSi ( )

do; m;
1,st - 1,st (12)

ds; Bi
dmi,St _ H 6 9 13
s = Pi,st SINY; st +Qj st COS Uj g (13)

1

The boundary conditions must be established to
complement the differential Equations 10-13. The fixed-
fixed end condition of the strut does not allow any
rotation at its ends, but it allows only small deflection

(lateral movement) in the Y -direction, Fig. 1.

Boundary conditions for static equilibrium state

The boundary conditions of the treated model in static
equilibrium state can be written as follows:

At s = 0; Xits=0, Vig=0,and 0;4=0
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(the left, or bottom, end of the strut)
At Si‘st = 1; yl,st = y3,st: yZ,St = y4,st and
(the right, or top, end of the strut)

6i,st:O

Recall that Eq. 4 is still in terms of the total forces
applied to the isolator rather than the axial forces in each
strut. Furthermore, Eq. 4 is in terms of the displacements
at the corners of the plate. From continuity, the vertical

displacement at a given corner is equal to the X -
direction displacement at the end of the strut of the
isolator attached at that corner. Specifically, Zo =
Xl,st(L)r ZP = XZ,st(L)r ZQ = X3,st(|—) and ZR = x4,st(|—)-
Substituting these relationships into Eq. 4, the following
equations ensue:

Pyst +P2,st +P3st TPt =W (14)
—(Pyst +P2,st)b1+ (P35t +P4st)02 =0 (15)
(Pst +P3st)a1 — (P2t +Past)a2 =0 (16)
Xy 5t() =Xzt (1) =Xzt (1) + X4 5 (1) =0 17)

A computer program has been implemented as an
interface to Mathematica, Ver. 5.2 (Wolfram Research,
Inc. 2005) to solve the system of differential Equations
(10-13). Based on the given initial value of load, p,, the
implemented program solves for the value of the
moment, m at the left end, or bottom, of the strut (s=0).
Because of the nonlinearity of the system of equations,
the solution is based on an iterative algorithm making use
of the shooting method. The iteration is based on an
initial guess for the moment, m.

3. Dynamic Analysis

Dynamic Analysis Procedure

Within the dynamic model the symmetric plate is
assumed to be subject to a forced axial harmonic
vibration as per (Den Hartog 1985) (axial base
displacement). as shown in Fig. 5. Similar to the static
equilibrium analysis, the derivation of the equations of
motion for the dynamic analysis is also divided into two
parts. First, the equations of motion for the rigid plate are
determined from the kinetic and potential energies in the
system using Lagrange’s equations. Second, the strut in
each isolator is analyzed using D’Alembert’s principle.
All dynamic equations are linearized for small motions
and put in non-dimensional form. A program written in
Mathematica is used to numerically solve these equations
to determine the motion transmissibility of the system.

Rigid plate analysis
The X, Y, Z coordinate system is fixed in space as shown

in Fig. 6 and has unit vectors Ij and k. The angles
0,y and ¢ [ ]are used to define coordinate rotations

about the X,—Y and Z axes, respectively, and are initially

zero. The points O, P, Q, and R are located at the bottom
of each corner of the plate, and the plate has an initial



height H, when the system is in static equilibrium state.
The center of mass (labeled c.m. in Fig. 6) is indicated by
the dimensions A;, A, B4, and B,, and it is positioned at
a distance C° above the bottom of the plate.

The equations of motion for the plate will be determined
using Lagrange’s equations. Thus, it is necessary to
determine the kinetic and potential energies of all
components of the system. Because it is desirable to
preserve symmetry in the model for the vibration
isolator, horizontal springs are added to the corners of the
plate to simulate the horizontal resistance contributed by
the isolators when the plate rotates. Because this
horizontal motion is very small, this assumption should
have a minimal effect on the results of this analysis. The
springs are numbered 1 — 8 and attach to the plate.

i 7
T U, sin(QT) T U(0,T) = U, sin(QT)

Fig. 5 The components of model for the dynamic state

R P

|

z i
X
Y

Fig. 6 Initial configuration of the plate

The plate has both rotational and translational kinetic
energy. The equations of motion for the plate become:

Yo,d = Yo,d (18)
Xp,d =Xo,d (19)
~MQ?

—— [AXaq+AXp 4—CX, 4(L)+
A1+A2[ 2X0.d +A1Xp g 2.4(L)

CoXy ()] + (K +K3)Xp g + (Kg +K7)Xg g =0 (20)
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~MQ?
Bl + Bz
C Xy, (L)]+ (K1 +Kg) Yo 4 +(Ks +Ks)Yg g =0 (21)

-MQ?

A +A,

MQ?

A +A,
=P 4 L)+ P,q L)+ Psg L)+ Pud (L)
—15Q?

Xa 4(L) =X, 4(L

B, +B, [X34(L) =X 4(L)]

=Py g(L) + Py q(L)]IBy + [P3 4(L) +Ps g (L)]B;
~1yQ? ~
AL A, [X2.q(L) = Xq,4(L)]
=P q(L) +P34(L)JA; + [Py 4(L) + Py g (LA,

Calculation of the mass moment of inertia for the
asymmetric plate

For the purpose of calculating the mass moment of
inertia, the eccentricity of the plate will be modeled as a
block set on top of the plate, where the block is
positioned arbitrarily on top of the plate, as shown in Fig.
7. This model is representative of a piece of equipment
set on top of the rigid plate. The plate has a thickness H;
and the block has a height H, and width and depth D. The
center of mass for the combination of the plate and block
is given by the dimensions A;, A,, B, B,, and C°, where
A; and A, give the position of the center of mass along

the X -axis, B1 and B2 give the position of the center of
mass along the — Y -axis, C° gives the position of the

center of mass in the Z direction measured from the
bottom of the plate, as shown in Figs. 6-7.

[B1Yq.d+B2Yo,d—C*X3q(L)+

[AX, 4 (L) +A,X, 4 (L) +CX, s —CXp 41—

[B1X3,d (L) - B X, 4 L)+ CCYQ,d - CCXo,d]

(22)

(23)

(24)

b
i

2

L
)

z

Fig. 7 Dimensions of block on top of asymmetric rigid
plate

The values for A;, A,, By, and B, are known and are
specified directly. However, C° must be calculated in
terms of the dimensions of the block and the plate using
the following equation :

CC:ZZA
DA

(25)




(Al + A2)H1 *% + DHz(Hl +HZ\J

CcC = (26)

(A1+A2)H1+DH2
Assuming that the plate has mass M, the mass

moments of inertia about the X and Y axes at the center
of mass can be calculated as follows:

2
Iy = %[(Bl +B, ) + H12]+ M{@ - Blj

2
+ Ml(i - ccj

> +&[D2+H22]

12
Ho 2
B1(By +By)H; —(By + 132)271

+M2 +

DH,

H 2
MZ[Hl +72—ch (27)

2
|Y:ﬂ[(A1+A2)2+H12]+ My ArtA2 _p
12 2
H 2 M
+M,| =L-c°® +—2[D2+H22]
2 12
Y
Ag(Ar+AgHy - (Ag +Ag) =L

+M
2 DH,

H 2
MZ(H1+72—C°] (28)
Analysis of the vibration isolator

In Den Hartog (1985) as well as in the present work the
strut is assumed to take a horizontal position as shown in
Fig. 8, such that the base lies at the left side of strut, at
which the excitation force acts. Fig. 8 shows the isolator
subjected to a harmonic base excitation U(T), where
U(T) was defined as U(T) = U, sin(QT) . This imposed
base displacement is resisted at the top of the isolator by
the force F;, which is now a portion of the combined
effects of the weight W of the plate and the inertial load
from the mass of the plate. In the analysis of the vibration
isolator, it is again assumed that the horizontal
movements Xog, Xpg, Xod, Xrd» Yod Yrd You and

Yra (generated by rotation angle® about X -axis and
angley about—Y -axis)at the corners of the plate are

small enough that they can be neglected and symmetry
can be used in the analysis of each isolator. It can be
noticed that the deflection is a function of position along
the strut, L and time, T.
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—

X,(0,T) = U, sin(QT)

Fig. 8 Strut under forced harmonic vibration

In the present case we deal with linear viscous
damping, i.e., the relationship between the damping force
and the velocity of the system is linear. The analysis
revealed that damping has a negligible effect on the
transmissibility. The damping effect cannot be
determined from geometrical, material, or other physical
properties of the strut element. Hence, the damping effect
can be determined through experiments such as a free
vibration test. In any case, damping is present and must
be taken into account.

To analyze the strut under forced harmonic
excitation, a free body diagram of forces acting on an
element at a particular time and position should be
considered as shown in Fig. 9. This can be done by
making use of D’Alembert’s Principle, which is based on
a fictitious inertia force that is set equal to the product of
the mass and the acceleration. This force is assumed to
act in the opposite direction of the accelerating mass.
Hence, at any particular instant, the strut is considered to
be in a state of static equilibrium (Chopra 2001).

Notice that the mass per unit length pL of the strut is

multiplied by the factor§; that was used to adjust the

bending stiffness ElI in the equilibrium analysis.
Assuming that the same material is used in each strut
(i.e., the modulus of elasticity E remains constant), the
bending stiffness can be modified by changing the cross-
section of the strut so that the moment of inertia about
the axis of bending becomes ;1.

From the geometry, equilibrium, and the elastic
constitutive laws for the strut, the following relationships
can be established for the strut subjected to forced
harmonic vibrations. The governing variables describing
the strut can now be written as a function of time and
location along the strut to describe the response of the
strut to the forced excitation. The subscript “st”
represents the static equilibrium portion of the equation,
and “d” represents the dynamic portion, these equations
are written below:




Fig. 9 Free body diagram of element of strut in
dynamic state
dXi,d

d_Si__ei’d Sineilst (29)
dYi 4
d_sl} =—0; 4 C0S 0; & (30)
do; M;
id __ id (31)
ds;  BiEl
dM, 4
dSI-’ =(Qi,g +Pist9i,d) oS 0 g
1
+(Pi.g — Qi st0i,a)SING; & (32)
dP; 4 2
— _BpQ?X; 33
s, Bin id (33)
dQ; ¢ 2
—— =B:nQQ°Y; 34
ds, BinQ%Yiq (34)

The variables describing the strut can now be written
as a function of time and location along the strut to
describe the response of the strut to the forced excitation.
It is assumed that the dynamic vibrations will be
relatively small. Hence, small displacement theory can be
used to derive the following linear dynamic relationships.
These equations are written below in non-dimensional
form:

Yq.d =Yo.d (35)

Xp,d =Xo,d (36)
The equations of motion for the plate can be written as:

- choZ[aszd +agXp g —CXp g (1) +

g, g (D] + (Kz +K3)xp g +(Kg +K7)X0,g =0 (37)

- rVV(,02

[b1yq.a +b2Yo,d € Xz,4(1)+

cq,q (D] + (kg +Kg)yo,q + (K4 +Ks)ygq =0 (38)
—1we?[agx g (1) +agXg g (1) +CXp g —CX 0 g]

f\N(,O2

o [byX34 (1) —byxy4(1) + CCyQ,d - Ccyo,d]
=prda()+p2,a(D)+p3a()+paq(l) (39)

—ixco2

[X3,4(1) =%1.4(D]
=—p1,a(1) +p2,a(D1by + [P3,4 (1) +Paq (Db (40)
—iy0?[Xp.(1) = X1 g (1]

=—prg()+p3aDlar+ [P2,a () +paq(D]az (41)
The mass moments of inertia become the form:
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2
ajhy ——
+ 2[d2+h22]+m2 2
dh,
h 2
+m2(h1+72—c°j (43)
2
h§+dh2(h1+hzzj
ct = (44)

hy +dh,
Similarly, the dynamic equations for the strut can be
written as:

dx;
I,d :_GIdSIne| st (45)
dSi
ayi g
d_sl‘i =—0; 4 C0S 0 & (46)
do; m
id __Tlid .
dsi Bi
dmi 4
dsl_’_ = (0i,g +Pist0i,d) COS O st
|
+(Pi,d —ist0i,4)SIN0; 5t 48)
dp; 4
olslI =Pio*xiq (49)
dag; g
dsl». =Bioia (50)

The boundary conditions for dynamic state
The boundary conditions at each end of the strut can be
written in a non-dimensional form:

At S, =0; Xig= U, Yig=0,and 0 4=0
At S;=1,Y14=Yad Y20 = Yad Yod = Yaar Y10 = Ya,0, aNd

Oi,d=0
Similar to the static solution, the governing
differential equations can be implemented in

Mathematica to solve for the dynamic transmissibility.
The moment my determined from the equilibrium
analysis is used as initial value in the dynamic analysis to



determine the dynamic transmissibility. Other known
values of the initial load p,, the amplitude of excitation

at the base u,, the stiffness parameter, r, and the

external damping parameter, c, are defined and used as
input in the program. Repeatedly, the iterative scheme
based on the use of the shooting method is implemented
to solve the equations; with the following initial variables
pq (0), qq (0), and mg (0). To increase the convergence,

the resulting variables: pg (0), g4 (0), and my(0), are

updated by adding weighted percentage of their initial
values, are then used as a guess for the next iteration in
the loop.

The dynamic transmissibility of the system is the
ultimate goal of this work. The equations used to
determine the transmissibility is given below. As
mentioned before, we deal herein with a displacement
transmissibility. The implemented algorithm is
programmed again by Mathematica to solve for the real
and imaginary parts of the solution.

VAReDX; (0T} +{Imlx; o (O]}
|uo|
TR1+TR2 +TR3 +TR4
4

The square root of the sum of the squares (SRSS) of
the real and imaginary eigen values are used to calculate
the displacement of the strut at the top under the acting
dynamic load. The SRSS is then divided by the original
amplitude of the base, u,, to determine the dynamic
transmissibility. Because each strut underlies the same
amplitude and frequency, the dynamic transmissibility

calculated at the top of each strut is the same at the center
of the rigid plate.

TR; = (51)

TR= (52)

4. Results and discussion
Using the Mathematica program, the equations of motion
derived in this research for the system are numerically
solved. The system is analyzed for the asymmetric case,
i.e., First, the center of mass is positioned at several
points along a line that runs through the center of the
plate perpendicular to the edge OP of the plate, as shown
in Fig. 10-a. Secondly, the center of mass is positioned at
several points along a line of symmetry that passes
diagonally from corner R to corner O, as shown in Fig.
10-b.

The transmissibility is computed and plotted for a
wide range of non-dimensional excitation frequencies for
each of these cases. The transmissibility plots are used to
recognize frequencies at which resonance occurs in the
system and frequency ranges in which the
transmissibility is small.
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(a) (b)
Fig. 10 Location of the center of mass of plate for
(a) case 1 and (b) case 2

The equations of motion are solved for the case
shown in Fig. 10. The non-dimensional weight w is set at
160, as was done in the equilibrium analysis. Similarly,
the stiffness k; of the eight horizontal springs attached to
the plate is each set at 0.1 as shown in Fig. 11. The aspect
ratio o of the plate is set equal to 1, i.e. the plate remains
square in this analysis. The plate dimension hy, required
to calculate the vertical distance c® to the center of mass
and the mass moments of inertia, ix and iy, are set equal
to 0.05. The stiffness modification factor B; and the

equilibrium portion of the axial force p; g, the shear force
Qis,» and the bending moment m;y for each strut are
obtained from the equilibrium analysis. From the solution
of the equations of motion, the transmissibility TR is
calculated for various excitation frequencies ® using
Egns. (51 and 52).

Y X

Fig. 11 Horizontal springs attached to plate

For static state

The equilibrium results for the values of shear force in
the struts at variable b, are nearly minimum values from
0.24 to 1.0 for all struts and the values of the moment in
strut 1 and 2 are equal from 1.1 to 0.96 but in strut 3 and
4 are equal from 1.2 to 0.8 and have the same direction.
The values of the moment and shear force are determined
for the asymmetric case analysis using four struts. Figs
12-14 and tables 1-5 show the relation between the
variable b, vs. the axial load, the moment and the shear
force for rigid plate supported by using one strut in each
corner but the Figs. 15-17 and the tables 6-9 show the
relation between the variable a, and b, vs. the axial load,
the moment and the shear force for rigid plate supported
by using one strut in the corners. The rigid plate
supported by using two struts in each corner gives the



same equilibrium results of the rigid plate supported by
using one strut in each corner.

When the asymmetric plate center of mass c.m. moves in
a direction perpendicular to an edge like OP, the struts
axial loads (p; and p, in Fig. 12) and the struts shear
forces (g, and g, in Fig. 13) of this edge increase, but the
struts moments (m; and m; in Fig. 14) decrease than that
of the adjacent edge.
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Fig. 12 Struts axial load, p; vs. b, for asymmetric plate

case with allowing a lateral motion of the rigid plate
by one strut at each corner.
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Fig. 13 Struts moment m;, m,,  ms, and m, vs. b, for
asymmetric plate case with allowing a lateral motion

of the rigid plate by one strut at each corner
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Fig. 14 Struts shear force q; vs. b, for asymmetric
plate case with allowing a lateral motion of the rigid
plate by one strut.
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Table 1 The normal force, the moment, and the shear
force at (a;= b;=0.5)

StrutNo. | p m q
1 40 | 2.037 | 1.94 * 1077
2 40 | 2.037 | 1.94 * 1077
3 40 | -2.037 | 1.94 * 1077
4 40 | -2.037 | 1.94 * 1077

Table 2 The normal force, the moment, and the shear
force at (b;=0.45)
StrutNo. | P [ m q

1 11 | 1.1 | 0.332
2 11 | 1.1 | 0.361
3 9 |12 ] -0.237
4 9 |12 ] -0.360

Table 3 The normal force, the moment, and the shear
force at (b;=0.4)
StrutNo. | P | m q

1 121 1 | 0.586
2 121 1 | 0.544
3 8 | 1.2 | -0.640
4 8 | 1.2 | -0.556

Table 4 The normal force, the moment, and the shear
force at (b;=0.35)

StrutNo. | P | m q
1 13| 1 | 0.999
2 13| 1 | 0.817
3 7 12| -0.829
4 7 | 11| -0.527

Table 5 The normal force, the moment, and the shear
force at (b;=0.3

StrutNo. | p m q
1 141114 | 1.35
2 141112 | 1.38
3 6 | 1.36 | -1.13
4 6 | 1.36 | -1.26
40
p—
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~ 30 p3
e i 1
2 20
g 10 L—ﬁf\
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0.5 0.55 0.6 0.65 0.7

Displacement (a2,b2)
Fig. 15 Struts axial load p; vs. a, and b, for asymmetric plate case

with allowing a lateral motion of the rigid plate by two struts at
each corner.
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Fig. 16 Struts moment my, m,, ms, and m, vs. a, and b, for
asymmetric plate case with allowing a lateral motion of the rigid
plate by two struts at each corner
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Fig. 17 Struts shear force qi, gz, gs, and g4 vs. a, and b, for
asymmetric plate case with allowing a lateral motion of the rigid
plate by two struts at each corner
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Table 6 The normal force, the moment, and the shear

force at (a;= b;=0.45)
Strut No. p m q
1 11.58 | 1.03 | 0.509
2 1042 | 1.1 | 0.104
3 1042 | 1.1 | 0.160
4 753 | 1.1 | -0.589
Table 7 The normal force, the moment, and the shear
force at (a;=b,=0.4)
Strut No. p m q
1 12.444 | 0.987 | 0.548
2 11.556 | 0.988 | 0.557
3 11.556 | 0.980 | 0.384
4 4444 | 1.155 | -1.453
Table 8 The normal force, the moment, and the shear
force at (a;=b;= 0.35)
Strut No. p m q
1 14.6 | 0.963 | 1.236
2 11.3 | 1.031 | 0.383
3 11.3 | 1.051 | 0.453
4 2.8 | 1.252 | -1.961
Table 9 The normal force, the moment, and the shear
force at (a;=b;=0.3)
Strut No. p m q
1 149 | 1.14 | 1.35
2 13.1 | 1.12 | 1.38
3 13.1|1.36 | -1.13
4 -1.1 | 1.36 | -1.26
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For dynamic state

The first case to be analyzed is the case where the center
of mass is positioned at several points along a line that
runs through the center of the plate perpendicular to the
edge OP of the plate, as shown in figure (10-a). For this
case, the plate moves with three degrees of freedom, i.e.,
the plate will move vertically, horizontally and/or rotate
at an angle 6 about the X-axis when the system is
subjected to a base excitation. In this analysis, the
distance a; is fixed at 0.5 and the distance b, is varied
from 0.45 to 0.3 in increments of 0.05. Note that as b,
decreases, the eccentricity of the weight increases.

From the solution of the equations of motion, the
transmissibility TR is calculated for various excitation
frequencies @ . When observing the transmissibility plots
in figures (18-19), this looks analogous and the
transmissibility is plotted for  non-dimensional
frequencies ranging from 0.01 to 200. On each plot, the
results from the analysis of the asymmetric case (i.e.,
Case 1) are included so that it is easy to see how the
transmissibility changes for various eccentricities. For
example, Fig. 18, it has six significant frequency peaks
and they each have frequencies o= 0.89, 10, 15.8, 47,
63.096 and 158.48, from about 0.01 to 0.8 and 1 to 9 the
transmissibility is well below unity.

As observed at the higher frequencies, more peaks in
the curve start to appear for the lower values of b;.
However, most of these peaks after frequency 9 are
higher than the transmissibility of 1.0. The peaks before
the frequency of 9 have the transmissibility of lower
than 1.0 and are not of much concern because this means
the displacement of the plate is much less than the
displacement of the base at low frequency (less than 9),
which is the desired condition for an effective vibration
isolator. Fig. 18 shows the transmissibility vs. frequency
for a general case of the position of asymmetric plate
center of mass c.m. with a;=0.5, b;=0.45. Fig. 19 shows
the transmissibility vs. frequency for different values of
b, for asymmetric plate which supported with one strut
at each corner.
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Fig. 18 Transmissibility vs. frequency for asymmetric plate case
with allowing a lateral motion of the rigid plate by one strut at
each corner, case (a;=0.5, b; = 0.45)
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Fig. 19 Transmissibility vs. frequency for different values of bl for
asymmetric plate case with allowing a lateral motion of the rigid
plate by one strut in each corner (case 1)

The second case to be analyzed is the case where the
center of mass is positioned at several points along a line
that runs diagonally from corner R to corner O, as shown
in Fig. 10-b. Because of symmetry, it is expected that
isolators 2 and 3 will behave identically for this case. In
order to analyze this case, the variables a; and b; will be
set equal to each other and will be varied from 0.45 to
0.3 in increments of 0.05. Notice that, as a; and by
decrease, the eccentricity of the weight increases. Fig. 20
shows the transmissibility vs. frequency for different
values of a; = b, for asymmetric plate which supported
by one strut at each corner.
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0.1
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= = 'al=b1=0.40
— -al=b1=0.45
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Fig. 20 Transmissibility vs. frequency for different
values of al=b1 for asymmetric plate case with
allowing a lateral motion of the rigid plate by one
strut at each corner (case 2)

Figure 22 shows the transmissibility vs. frequency for
the asymmetric plate (case 1) with allowing a lateral
motion of the rigid plate supported by using two struts at
each corner as shown in Fig. 21.
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Fig. 21 Eight struts supporting of an asymmetric
rigid plate
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Fig. 22 Transmissibility vs. frequency for different
values of b1 for asymmetric plate case with allowing
a lateral motion of the rigid plate by two struts at
each corner (case 1)

Figure 23 shows the transmissibility vs. frequency for
the asymmetric rigid plate (case 2) with allowing a
lateral motion of the rigid plate supported by using two
struts at each corner. Fig. 24 shows the location of the
center of mass of asymmetric rigid plate for case 3. By
calculating the transmissibility versus random a; and b,
of asymmetric rigid plate which is supported by pair pre-
bent struts at each corner, the results obtained have the
same behavior as before (Fig. 25).
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Fig. 23 Transmissibility vs. frequency for different
values of al=b1 with allowing a lateral motion of the
asymmetric rigid plate by two struts at each corner

(case 2)
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Fig. 24 Location trace of the center of mass of the
rigid plate (case 3)

Figures 19, 20, and 25 have similar characteristics, i.e.
the transmissibility has peaks values of lower than 1.0 at
lower frequencies up to ® =1 and it has peaks values
higher than 1.0 at frequencies higher than  =1.
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Fig. 25 Transmissibility vs. frequency for random
values of al and b1 with allowing a lateral motion of
the asymmetric rigid plate by two struts at each
corner
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In general, it can be observed that the transmissibility
values will be better by using two struts than one strut at
low frequencies with lateral motion. This method is not
recommended to be used in high frequencies for
asymmetric plate.

Table 10 shows the peak frequencies of vibrations with
allowing lateral motion, and location of the center of
mass from one side, (first case-b,), for asymmetric rigid
plate supported by one strut at each corner. Table 11
shows the peak frequencies of vibrations with allowing
lateral motion and location of the center of mass from
one side, (first case-b;), for asymmetric rigid plate
supported by two struts at each corner. Table 12 shows
the peak frequencies of vibrations with allowing lateral
motion and Location of the center of mass from two side,
(second case-a; and b;), for asymmetric rigid plate
supported by one strut at each corner. Table 13 shows the
peak frequencies of vibrations with allowing lateral
motion and Location of the center of mass from two side,
(second case-a; and b;), for asymmetric rigid plate
supported by two struts at each corner

Table 14 shows the transmissibility of vibrations with
allowing lateral motion, and location of the center of
mass from one side, (first case-b,), for asymmetric rigid
plate supported by one strut at each corner. Table 15
shows the transmissibility of vibrations with allowing
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lateral motion and location of the center of mass from
one side, (first case-b;), for asymmetric rigid plate
supported by two struts at each corner. Table 16 shows
the transmissibility of vibrations with allowing lateral
motion and location of the center of mass from two sides,
(second case-a; and b,), for asymmetric rigid plate
supported by one strut at each corner. Table 17 shows the
transmissibility of vibrations with allowing lateral motion
and location of the center of mass from two sides,
(second case-a; and b;), for asymmetric rigid plate
supported by two strut at each corner.

Table 18 shows the peak frequencies of vibrations
with allowing lateral motion and Location of the Center
of Mass from two side, random, (third case-al and bl),
for asymmetric rigid plate supported by two struts at each
corner. Table 19 shows the transmissibility of vibrations
with allowing lateral motion and Location of the Center
of Mass from two sides, random, (third case-al and bl),
for asymmetric rigid plate supported by two struts at each
corner.

Table 10 Peak frequencies vs. different values of b, for

asymmetric plate supported by one strut at each corner
a; b, [OF oy O3 | ©W4 | O5 [On
05]045|0.89 | 10.0 | 15.8 | 47.0 | 63.1 | 1585
051|040 (019 | 48.0 | 199 | ----- | ----- | ------
05[035|126| 50 | 99 | 251 |47.0| 199.5
05/0.30|058| 40 |12.0|31.6 | 50.0 | 155.0

Table 11 Peak frequencies vs. different values of b, for
asymmetric plate supported by two struts at each Corner

a; | by O | Oy o3 (oW ®s (O
05(045|0.70| 79 | 158 | 450 | 63.1 | 199
05040090 |49.0| 1995 | ----—- | -----
05(1035|1.00| 50 | 12.6 | 39.8 | 158.4 | ----
05(/030|0.70|3.16 | 199 | 49.0 | 63.1 | 193

Table 12 Peak frequencies vs. different values of a; and
b, for asymmetric plate supported by one strut at each
corner

a; b, W, | Wy | W3 | 04| O5| Wg
045|045 | 1.2 | 125|316 | 195 | - | ----
040|040 1.2 | 100|199 39.8 | 199 | ----
0.35]0.35| 10.0 | 50.1 | 158. | ---- | === | --—--
030030 50 [501 | 195 | - | = | -—--

Table 13 Peak frequencies vs. different values of a; and
b, for asymmetric plate supported by two struts at each
corner

& by Wy | ®2 (QF W, | Os C;)
04 | 04 | 12. | 199 | 50.1 | 195. | --—-- | ---
5 5 6 0 - -
04 | 04 | 10. | 199 | 39.8 | 63.1 | 155 | ---
0 0 0 _ -
03 | 03| 31 | 125, | 199. | --—--
5 5 6 8 5 - -
03| 03|31 | 631 | 155. | -----
0 0 6 - -




Table 14 Transmissibility vs. different values of b, for
asymmetric plate supported by one strut in each corner

a bl TR, TR, TR; TRy TRs TRg
05]045|11.64 | 1092 | 1.21 | 10.70 | 3.43 | 9.49
05]040| 145 | 6792|9436 | -——- | -—--- | --—--
05035 249 | 115 | 141 | 1.48 | 23.45| 22.05
05]030| 156 | 451 | 29.14 | 1.27 | 34.61 | 4.59

Table 15 Transmissibility vs. different values of b, for
asymmetric plate supported by two struts in each corner

a bl TR, TR, TR; TRy TRs TRg
05]045| 1447 | 195 | 1.49 | 18.30 | 13.57 | 75.13
051040 | 1949 | 13.04 | 80.34 | --—--- | ----m- | ------
05]035| 203 | 417 | 289 |21.64 | 3.37 | ------
05]030| 488 | 277 | 50.29 | 6.58 | 6.70 | 5.12

Table 16 Transmissibility vs. different values of a; and
b, for asymmetric plate supported by one strut in each
corner

as | by | TRI] TR, | TR | TR, | TRs | TRs
045|045 | 2.04 | 276 | 1797 | 43.3 | ----- —
040 | 040 | 1025 | 1.72 1.69 | 85.09 | 1142 | ----
035|035 | 483 | 11.05 | 425 | - | -
030|030 | 299 | 2.87 | 453 | - | -

Table 17 Transmissibility vs. different values of a; and
b, for asymmetric rigid plate supported by two struts at
each corner

a | by |TR;| TR, | TR; | TR, | TRs | TRe
045 | 045 | 1.15 | 1.18 | 20.38 | 17.45 | —-
0.40 | 0.40 | 412 | 827 | 7.73 | 7.29 | 53.75 | -
0.35 | 0.35 | 6.41 | 1.245 | 14.90 | - | -—--
0.30 | 0.30 | 1.94 | 29.99 | 8.18 | -—---- | -

Table 18 Peak frequencies vs. random values of a; and b;
for asymmetric rigid plate supported by two struts at each
corner

Ay b, 0, | O, ®3 [On ®s (OF
045035001032 2511 | 50.11 | 1995 | ----
040030 | 158|794 | 3162 | 63.09 | 1995 | ----
035040 | 501|794 |39.81| 63.09 | 100 200
030035316 | 10 |19.95| 63.9 100 | 199.5

Table 19 Transmissibility vs. random values of a; and b;
for asymmetric rigid plate supported by two struts at each
corner

a b, TR; | TR, | TR; | TRy | TRy TR
045|035 | 1257 | 215 | 432 | 188 | 11.26 -
040|030 | 1.17 | 203 | 1.66 5.8 3.86 -
035|040 | 365 | 1.3 72 | 1454 | 117 92,5
030|035 | 231 | 3.56 | 26.87 | 4.16 | 37.47 | 140.26
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5. Conclusions
The proposed isolation device has the ability to support a
relatively large static load with a relatively small static
deflection than the traditional vibration isolators and
offers a low axial resistance under dynamic excitation,
making it ideal for isolating vertical vibrations. By
examining the results of model described, the following
conclusions can be drawn:

e The use of post-buckled struts as vibration isolators
provides a wide range of frequencies at which the
transmissibility is well below unity,

e The direction of the horizontal deflection of the
buckled struts, whether left direction or right
direction, has no effect on the equilibrium moment
and shear force and in turn on the transmissibility.

e Tuned isolators can provide improved vibration
isolation, even lateral motion is allowed.

e The transmissibility does differ substantially in
shape. This is true if lateral motion is allowed or
not. However, lateral motion improves the
magnitude of transmissibility, and respectively the
efficiency of vibration isolation, especially at low
frequencies.

e The transmissibility values will be better by using
two struts than one strut at low frequencies with
lateral motion. This method is not recommended to
be used in high frequencies for asymmetric plate.

e The transmissibility at versus random al and bl of
asymmetric rigid plate which is supported by pair
pre-bent struts at each corner, the results obtained
have the same behavior of before calculating, (case
1, and case 2).

e The position of the asymmetric plate center of mass
¢.m. has a significant effect on the struts axial loads,
shear forces, moments, and transmissibility values.

List of symbols

e Its worth to mention that capital letters are denoted
to dimensional variables, while small letters are
thought for normalized non dimensional quantities.
The dimensional and dimensionless variables used in
the present paper are:

e A; Distance from plate center gravity to strut 1
and strut 3 in X -direction (m)

e 3, Dimensionless distance from plate center gravity
to strut 1 and strut 3 in X -direction (-)

e A, Distance from plate center gravity to strut 2
and strut 4 in X -direction (m)

e 3, Dimensionless distance from plate center gravity

to strut 2 and strut 4 in X -direction (-)

A, Surface area of the block (m?)

a, Dimensionless surface area of the block (-)

A,  Surface area of the plate (m?)

a, Dimensionless surface area of the plate (-)



B, Distance from plate center gravity to strut 1
and strut 2 in Y -direction (m)

b, Dimensionless distance from plate center gravity
to strut 1 and strut 2 in Y - direction (-)

B,Distance from plate center gravity to strut 3 and
strut 4 in Y -direction (m)

b, Dimensionless distance from plate center
gravity to strut 3 and strut 4 in Y -direction (-)

C External damping coefficient per unit length of
strut (N.s/m)

c Dimensionless external damping coefficient
per unit length of strut (-)
c* Distance from bottom plate surface to C.G. of

the plate (m)

c

c Dimensionless distance from bottom plate
surface to C.G. of the plate (-)

d Subscript used to indicate variables resulting
from dynamic analysis

Dy  Depth of the block (m)

dys  Dimensionless depth of the block (-)

dS Infinite small length element along the arc of
the strut (m)

ds  Dimensionless infinite small length element
along the arc of the strut (-)

dS; Infinite small length element along the arc
of the strut in the i" isolator (m)

ds; Dimensionless small element of length
along the arc of the strut in the i" isolator (-)

dXx Projection of dSin the X -direction (m)

dx Dimensionless projection of ds in X -direction

)

dXi st projection of dS; in X -direction (m)

dX; et Dimensionless projection of ds; in X -
direction (-)

dy Projection of dS in Y -direction (m)

dy  Dimensionless projection of ds in Y -direction

¢

dYis Projection of dS; in the Y -direction (m)
dyi st Dimensionless projection of ds; in the Y -
direction (-)

E Modulus of elasticity of elastic material of strut
(assumed to be the same for all struts) (GPa)

g Gravity acceleration (m/s?)

H, Height of plate from the base, the equilibrium
height (m)

h, Dimensionless height of plate from the base, the
equilibrium height (-)

H;  Thickness of the plate (m)

h, Dimensionless thickness of the plate (-)

H,  Thickness of the block (m)

h, Dimensionless thickness of the block (-)

il The isolator counter ranging from 1...4 (-)
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I Moment of inertia of strut cross-section about the
axis of bending (assumed to be the same for all
struts) (m*)

I, Inertia dyadic

Iy Principal mass moments of inertia about X -
axis through center of mass (kg.m?

ix Dimensionless principal mass moments of inertia
about X -Axis through center of mass (-)

Iy Principal mass moments of inertia about —Y -
axis through center of mass (kg.m?

iy Dimensionless principal mass moments of inertia

about — Y -axis through center of mass (-)

j  Number of the horizontal springs (-)

K Spring stiffness (N/m)

k Dimensionless spring stiffness (-)

K;  Stiffness of the eight horizontal attached to the
plate, j=1:8 (N/m)

ki  Dimensionless stiffness of the eight horizontal
attached to the plate, j=1:8 (-)

L Length of strut (m)

M Bending moment acting on the strut (N.m)

m Dimensionless bending moment acting on the
strut (-)

M, Plate mass (kg)

my Dimensionless plate mass (-)
M, Block mass (kg)
m, Dimensionless block mass (-)

M Bending moment acting on the strut for the i
isolator (N.m)

M ot Dimensionless bending moment acting on
the strut for the i isolator (-)

P Horizontal component of force acting on the strut
atS=0(N)

p Dimensionless horizontal component of force
acting on the strut at s=0 (-)

Pist Component of force acting in X -direction on
the strut for the i" isolator (N)

Pist Dimensionless component of force acting in

X -direction on the strut for the i" isolator (-)

P, Applied load from the rigid plate on the strut, (the
classical Euler critical load, P,) (N)

po Dimensionless applied load from the rigid plate
on the strut, (the classical Euler critical load, P) (-)
PyRatio of the weight W to the weight of the strut
nel ()

Q Vertical component of force in the strut at S =0
(N)

q Dimensionless vertical component of force in the
strutats=0(-)

Qist Component of force acting in Y - Direction on
the strut in the i isolator (N)

gis Dimensionless component of force acting in

Y - Direct. on the strut in the i"" isolator (-)
S Arc length of the strut (m)



s Dimensionless arc length of the strut (-)

st Subscript used to indicate variables which result
from the static equilibrium analysis (-)

T Time(s)

t Dimensionless time (-)

U, Peak or maximum displacement (i.e. the
amplitude) of the point from a datum line (m)

U, Dimensionless peak or maximum displacement
(i.e. the amplitude) of the point from a datum line (-)
U(T) Position of the point with respect to time T (m)
u(t) Dimensionless position of the point with
respect to time t (-)

V,; Potential energy in the springs (N)

W Weight of the supported load (full rigid plate)
(N)

w Dimensionless weight of the supported load (-)
Wy Width of the block (m)

wy  Dimensionless width of the block (-)

Yo Initial buckling of the strut (m)

Yo, Dimensionless initial buckling of the strut (-)

Yy, Strut1 Y -lateral movement (m)

yi1  Dimensionless strut 1 Y - lateral movement (-
)

Y., Strut2 Y -lateral movement (m)

yi» Dimensionless strut 2 Y - lateral movement (-

)

Y.s Strut3 Y -lateral movement (m)

Y13 Dimensionless strut 3 Y - lateral movement (-
)

Y. Strut4 Y -lateral movement (m)

Vs Dimensionless strut 4 Y - lateral movement (-

)

Yy, Strut 1Y - buckling movement (m)

Vo  Dimensionless strut 1 Y - buckling
movement (-)

Y, Strut 2 Y - buckling movement (m)

Vo2 Dimensionless strut 2 Y - buckling movement
)

Y3 Strut 3 Y - buckling movement (m)

Y3 Dimensionless strut 3 Y - buckling movement
)

Yy Strut 4 Y - buckling movement (m)

Yos  Dimensionless strut 4 Y - buckling movement
Q)
Z Distance between centre of each area and OPRQ
surface area (m)
Z  Dimensionless distance between centre of each
area and OPRQ surface area (-)
o} Aspect ratio of the plate (-)
Bi The i" isolator factor for strut stiffness

modification (-)

27

0i st Angle of the deflected strut in the i™ isolator

measured from X -axis [°]

0, initial angle [’]

u Mass per unit length of the strut (kg/m)

u Dimensionless mass per unit length of the strut (-)
®, Angular velocity vector (sec™)

Q  Applied frequency of the axial excitation of
the strut base (sec™)

®  Dimensionless applied frequency of the axial
excitation of the strut base (-)
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