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ABSTRACT 
This paper is concerned with the influence of vibration isolators in the form of post-buckled elastic clamped-clamped one 

and pair strut to relief the vibrating machines from the harmful effects of vibration. These vibrations are in most cases 

uncontrollable and lead to sudden failure, therefore, mechanical engineers in preventive maintenance sections have to 

control, isolate, and minimize the harmful effects of such unwanted vibrations. A mathematical model consists of pre-bent 

post-buckled one and pair strut acting as vibration isolators supporting an asymmetric rigid plate. The model is subject to 

axial harmonic excitation at the base, and allowed to displace laterally with respect to axial center line of the isolated plate. 

The displacement transmissibility is calculated over a wide range of frequencies and plotted in form of design charts. The 

transmissibility plots are used to recognize the ranges of frequencies, at which isolation can be maintained. The resonance 

frequencies of the system can be easily depicted from the design graphs. The present study reveals that at resonance 

frequencies the most effective transmissibility is well below unity. Vibration characteristics are determined under specific 

frequencies such that the physical behavior of the system can be thoroughly analyzed. All variables used in the analysis are 

normalized, such that the results aren‟t dependent on any material or geometric property. In this way, the obtained results 

can be applied over a wide range of elastic materials, regardless of the type of material or section properties. 

Keywords Transmissibility, Euler elastic buckling, Vibration isolation, Struts, asymmetric rigid plate, post-buckled 

 

 
 باسخخذاً ػاصه ٗازذ ٗمزا صٗج ٍِ اىؼ٘اصه ٍِ أرسع ٍشّت  ػضه الإٕخضاصاث ىَسخ٘ٙ خاسٚء غيش ٍخَاثو

 ٍخؼشػا إىٚ إثاسة ٍس٘سيت إسخاحينيت ٗديْاٍينيت ٍْبؼدت ٍسبقا
 

 

اػذة ا اىبسث ٕ٘ دساست حأثيش اسخخذاً ػ٘اصه ىلإٕخضاصاث اىخي ػيٚ شنو أرسع ٍشّٔ ٍْسْيت ٍٗثبج أزذ ؽشفيٖا باىدسٌ اىَشاد ػضىٔ ٗالآخش باىقاىٖذف ٍِ ٕز

ٗحؤدٙ إىٚ اّٖياس  ٕزٓ الإٕخضاصاث حنُ٘ في ٍؼظٌ اىسالاث غيش ٍسيطش ػييٖا .اىَثبج ػييٖا اىدسٌ ، ٗرىل ىخدْب اىخأثيشاث اىؼاسة ىلإٕخضاصاث ػيٚ اىَاميْاث

حسج  ثىزىل فئُ اىَْٖذسيِ اىَيناّينييِ في أقساً اىظياّت اى٘قائيت في ٍداه اىظْاػت يؼَيُ٘ بدذيت ى٘ػغ ٕزٓ الإخضاصا. ٍفاخئ ٗ باىخاىي خساسة ىيَاميْاث 

ٍاثو ٍؼيق ػِ ؽشيق رساع ٗازذ ٍْسْٚ ٍشُ ٗيقذً ٕزا اىبسث َّ٘رج سياػي ٍنُ٘ ٍِ ٍسخ٘ٙ خاسٚء غيش ٍج. اىسيطشة ٗػضه ٗحقييو الآثاس اىؼاسة ىٖا

ٗيخؼشع ٕزا اىَ٘ديو لإثاسة ٕشٍّ٘يت ٍس٘سيت ػْذ اىقاػذة ٗيسَر اىَ٘ديو بسشمت إّخقاىيت ػشػيت باىْسبت  .ٍْبؼح ٍسبقا ٗمزىل رساػيِ مؼ٘اصه ىلإخضاصاث

ٗحسسب . ػاصه فٚ ػضه الإٕخضاصاث اىَْخقيت ٍِ اىقاػذة إىٚ اىدسٌ اىداسئإُ ّسبت الإّخقاىيت ىلإصازت حؼخبش اىؼْظش اىَْظٌ ىنفاءة اه .ىَس٘ساىَسخ٘ٙ اىَؼضٗه

ٗقذ أػطيج دسخت زشيت . اىخشدداث ٗ حشسٌ مَْسْياث حظَيَيت ىخسذيذ حأثيشٕا ػيٚ سي٘ك الإٕخضاصاث باسخخذاً حيل اىؼ٘اصه ٍِّسبت الإّخقاىيت ػبش ٍذٙ ٗاسغ 

ٗيَنِ . ٗحسخخذً سسٍ٘اث الإّخقاىيت ىيخؼشف ػيٚ ٍذٙ اىخشدداث اىزٙ ػْذٓ يَنِ حسقيق اىؼضه. ٍؼضٗهاػافيت ٕٗٚ اىسَاذ باىسشمت الإّخقاىيت ىيَسخ٘ٙ اه

ٗقذ أظٖشث ٕزٓ اىذساست أّٔ ػْذ حشدداث اىشّيِ حنُ٘ ّسبت الإّخقاىيت الأمثش مفاءة ػْذ قيَت أقو . ػْذئز حسذيذ حشدداث اىشّيِ ىيْظاً ٍِ اىشسٍ٘اث اىَظََٔ

مو اىَخغيشاث اىَسخخذٍت فٚ . لإٕخضاصاث يخٌ حسذيذٕا ػْذ حشدداث ٍؼيْت بسيث أُ اىسي٘ك اىطبيؼي ىيْظاً يَنِ حسييئ ٍِ خلاه رىلإُ سَاث ا. ٍِ اى٘ازذ

سخخذً ع ىيشنو اىٌاىخسييو ٕٚ بذُٗ أبؼاد ٗبزىل فئُ ٕزٓ اىْخائح لا حؼخَذ ػيٚ خ٘اص أٙ ٍادة أٗ شنو ْٕذسٚ ٍؼيِ ٍثو ٍؼاٍو اىَشّٗٔ ىيَادة ٍٗؼاٍو اىَقؾ

ٗقذ احؼر . ٗبٖزٓ اىطشيقت يَنِ حطبيق اىْخائح اىَسخخيظت ػيٚ ٍذٙ ٗاسغ ٍِ اىَ٘اد اىَشّٔ بغغ اىْظش ػِ ّ٘ع اىَادة أٗ خ٘اص اىَقطغ. أٗ ؽ٘ه اىؼاصه

يَنِ حسسيِ ػضه . لإّخقاىيتأُ احدآ الإّسْاء ىلأرسع اىَْبؼدت ّس٘ اىيساس أٗ اىيَيِ ىيس ىٔ حأثيش ػيٚ ػضً الإحضاُ ٗق٘ٙ اىقض ٗباىخاىٚ ػيٚ ّسبت ا

ٗحساػذ اىسشمت الإّخقاىيت اىؼشػيت ػيٚ حسسيِ قيَت ّسبت . الإٕخضاصاث باسخخذاً الأرسع اىَْبؼدت زخٚ فٚ ٗخ٘د زشمت اّخقاىيت ػشػيت ىيدسٌ اىَشاد ػضىٔ

ػدت يسسِ قيٌ ّسبت الإّخقاىيت ػِ اسخخذاً رساع ٗازذ ػْذ اُ اسخخذاً صٗج ٍِ الأرسع اىَْب. الإّخقاىيت ٗباىخاىٚ مفاءة اىؼضه خاطت ػْذ اىخشدداث اىَْخفؼت

. حخغيش قيٌ ّسبت الإّخقاىيت ٍغ حغيش ٍ٘ػغ ٍشمض اىنخيت ىيدسٌ اىَؼضٗه. اىخشدداث اىَْخفؼت ٕٗزا لايخسقق ٍغ اىخشدداث اىؼاىيت
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1.  Introduction and literature review 
Several modern machinery, such as compressors, internal 

combustion engines, mining machines, hydraulic, and 

pneumatic presses, turbo machinery, etc. undergo 

uncomfortable and even undesirable serious source. 

These vibrations are in most cases uncontrollable and 

lead to sudden failure and in turn to a loss of machines 

availability. Therefore, mechanical engineers in 

preventive maintenance sections in the industry have the 

serious job to put these vibrations under control, isolate, 

and minimize the harmful effects of such unwanted 

vibrations. 

 

Hoque et al. (2010) developed the vibration isolation 

system fundamentally, by connecting an active negative 

suspension realized by zero-power control in series with 

an active–passive positive suspension. The system could 

effectively isolate ground vibrations in addition to 

suppress the effect of on-board generated direct 

disturbances of the six-axis motions, associated with 

vertical and horizontal directions. Yun, Y., Mak, C.M. 

(2010) used the level of „„power transmissibility‟‟ to 

assess the performance of vibration isolators, and the 

level of the „„vibration velocity transmissibility‟‟ of the 

supporting floor structure, the „„mounted vibration 

velocity‟‟, and the „„mounted rotational velocity level‟‟ 

of the vibratory machine were proposed to assess the 

stability of the vibratory system with various inertia 

blocks. The results primarily have indicated that the use 

of an inertia block did not affect the performance of 

vibration isolation. Leo, D.J. and Inman (1999) used a 

quadratic programming algorithm for studying the design 

tradeoffs of active-passive vibration isolation systems 

 

In Carrellaa et al. (2009), the force transmissibility of a 

quasi-zero-stiffness (QZS) isolator was considered. The 

isolator comprised a vertical spring and two oblique 

springs that were either linear, linear with pre-stress or 

softening nonlinear with pre-stress. Carrellaa et al. 

(2008) proposed a theoretical and experimental study of 

one such mount stiffness required to support a static load. 

It comprised two vertical mechanical springs between 

which an isolated mass was mounted. Lee et al. (2007) 

presented an approach, based on the consistent theory of 

thin shells, for designing compact springs in terms of 

their compatibility with the room available for packaging 

the vehicle suspensions and simultaneous extension of 

the height control region where fundamental frequencies 

were kept minimal. Jalili, N. (2000) presented the 

development of an innovative approach for optimum 

vibration suppression of flexible structures. It was shown 

that concurrent adjustment of structural properties and 

control re-tuning significantly improved the vibration 

suppression quality. 

 

Mizuno et al. (2007) studied analytically and 

experimentally an active vibration isolation system using 

zero-power magnetic suspension. Yilmaz et al. (2006) 

aimed to design a stiff and lightweight passive vibration 

isolator that had wide stopband at low frequencies. First 

of all, bandwidths of single-degree-of-freedom (sdof) 

dynamic vibration absorbers and lever-type anti-resonant 

vibration isolators were formulated in a general 

framework. Then, by making use of these formulations, a 

2dof vibration isolator was synthesized to obtain large 

bandwidth at low frequencies. Winthropa et al. (2005) 

developed a method for selecting and understanding the 

performance of variable stiffness devices. The exact 

solution was used to create an approximate solution 

directly linking past variable stiffness approximations to 

the exact solution in a systematic way. Bai et al. (2002) 

presented numerical and experimental investigations on 

active vibration isolation system. Two configurations 

were implemented for a statically balanced three-mount 

system. Roh, J.H. (2008) applied the shape memory 

alloys (SMAs) as actuators and vibration isolation 

devices. 

 

2.  Equilibrium analysis 

Equilibrium analysis procedure 
The model studied in this paper is a simple system 

consisting of four buckled struts used to support an 

asymmetric rigid plate and is limited for non-

dimensionalized frequencies of up to 200. The analysis 

of buckled struts as vibration isolators is based on the use 

of four struts connected by a rigid plate at four corners 

(Jeffers et al. 2005). Jeffers et al. (2005), Alloway 

(2003), and Plaut et al. (2003) have used strut elements 

as isolators for fixed-fixed bars underlying axial 

harmonic displacement excitation. Sidburg (2003) has 

used the same isolators as used in Jeffers et al. (2005), 

Alloway (2003), and Plaut et al. (2003) with pinned-

pinned end condition. The author of the present work has 

used the same type of isolators as that used in Jeffers et 

al. (2005), Alloway (2003), Plaut et al. (2003), and 

Sidburg (2003). However, the end condition is selected 

within the present analysis as clamped - clamped. El-

Kafrawy, A. et al. (4 May 2010) studied the vibration 

isolation of a symmetric and asymmetric rigid bar using 

struts subject to axial static and dynamic excitation. El-

Kafrawy, A. et al. (28 September 2010) treated the case 

of the vibration isolation of a symmetric rigid plate using 

struts subject to axial static and dynamic excitation.   

 

The results determined in Jeffers et al. (2005), Alloway 

(2003), Plaut et al. (2003), Sidburg (2003), and El-

Kafrawy, A. et al. (28 September 2010) revealed that the 

behavior of the buckled strut under axial, harmonic, 

displacement excitation is similar for both fixed-fixed 
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and pinned-pinned end conditions. In the present paper it 

has been decided to choose fixed-fixed end conditions, 

since such system can support much higher load. 

 

The first step in the analysis is to evaluate the model at 

static equilibrium for the plate. In the second step the 

strut is analyzed in a post buckled state, with clamped-

clamped ends as done by Jeffers et al. (2005) and Virgin 

and Davis (2003) as shown in Fig. 1. It should be noted 

that the model is constrained against any lateral 

movement except in Y -direction. If the analyzed model 

is free to move laterally, the model consisting of pre-bent 

struts may become unstable and would buckle and sway 

(Inman 1994). 

Rigid plate analysis 

The plate analyzed in the present work is symmetric. It 

has the ability to move vertically, rotate about the X  and 

Y  axes and allowed to move laterally in direction- Y  as 

shown in Fig. 1. The horizontal movements at the corners 

of the plate due to such rotations will be ignored in the 

equilibrium analysis because only small rotations of the 

plate will be considered. As a result, the plate will be 

analyzed as a four degree-of-freedom system. 

 

Upon considering the free body diagram of the plate 

shown in Fig. 2, one apparent observation is that there 

are four unknown forces, F1, F2, F3 and F4, acting at the 

corners of the plate, but only four equations result from 

the equilibrium. These equations are:  

WFFFF 4321            (1) 

0B)FF(B)FF( 243121         (2) 

 0A)FF(A)FF( 242131         (3) 

 0ZZZZ RQPO          (4) 

Where: ZO, ZP, ZQ, and ZR are the vertical displacements 

at the corners of the plate, which are labeled by O,P, Q, 

and R when it rotates at some angle about X  and Y  

axes. 
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Fig. 1 Asymmetric rigid plate supported by pre-bent 

one strut at each corner 
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Fig. 2 Free-body diagram of the plate in static 

     equilibrium state 

Vibration Isolator Analysis 

Now that the axial force applied to the top of each 

isolator can be determined, it is necessary to examine the 

force-displacement relationship for each isolator. As 

stated earlier, the isolator, shown horizontally in Fig.3, 

consists of one strut which is clamped at both ends. For 

simplicity, the isolator is restrained against rotation at 

both ends and free horizontal ( Y -direction) 

displacement without any external laterally force in this 

direction.  

The additional variables used for the remaining 

portion of this analysis can be defined as follows. The 

subscript st is used for static equilibrium analysis. Note 

that the subscript i is used to denote the current number 

of isolators. The struts have the same length and bending 

stiffness. Hence, the analysis is only carried out on one 

strut. The other struts represent actually a typical and 

mirror image of the first. A free-body diagram of an 

incremental element of the strut is shown in Fig. 4. Under 

the existing load on the isolator, Fi, the strut deflects from 

the initial configuration to a new position Yi,st(S). The 

following equations are derived to describe the shape of 

the strut:  

 
Fig. 3 Model of vibration isolator under static axial 

load Fi 

 
Fig. 4 Free body diagram of an element of the strut  
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st,i

st,i dS
dS

dQ
Q   

i

i

st,i

st,i dS
dS

dP
P   

dSi Qi,st 

Pi,st 

st,iM  
st,i 
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st,i dS
dS

dM
M   
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in equilibrium case 

 
i

st,i
st,i

dS

dX
cos            (5) 

 
i

st,i
st,i

dS

dY
sin            (6) 

 
EI

M

dS

d

i

st,i

i

st,i





           (7) 

 st,ist,ist,ist,i
i

st,i
cosQsinP

dS

dM
      (8)  

The struts are made of an elastic material to support a 

static load up to the critical point, at which the strut 

buckles. This critical point is known as the Euler 

buckling load and its value depends upon the support end 

conditions. For a fixed-fixed strut (not allowed to rotate 

or to deflect transversely) the critical load is given by Pcr 

= 4 2 
EI/L

2
. For a pinned-pinned strut (free to rotate 

transversely) the critical load is given by Pcr =  2 
EI/L

2
 

(Inman 1994). The variables have been normalized so 

that the analysis provides relevant results for any elastic 

material, regardless of its geometric and material 

properties.  

 

Note that the bending stiffness EI for each strut is 

multiplied by a modification factor i . The stiffness 

modification factors will be chosen so that the downward 

deflection at the top of each strut due to the static load Fi 

is the same for all four isolators. In other words, each 

isolator will have the same initial height Ho when the 

system is in equilibrium. Because of symmetry, the axial 

force Pi,st in the strut is equal to the total load Fi applied 

to the isolator. That is,  

 Fi = Pi,st             (9) 

Equations 5–8 lead to the following differential equations 

(for 0  s  1). 

 
i

st,i
st,i

ds

dx
cos           (10) 

 
i

st,i
st,i

ds

dy
sin          (11) 

 
i

st,i

i

st,i m

ds

d





         (12)  

 st,ist,ist,ist,i
i

st,i
cosqsinp

ds

dm
    (13) 

The boundary conditions must be established to 

complement the differential Equations 10–13. The fixed-

fixed end condition of the strut does not allow any 

rotation at its ends, but it allows only small deflection 

(lateral movement) in the Y -direction, Fig. 1.  

Boundary conditions for static equilibrium state 

The boundary conditions of the treated model in static 

equilibrium state can be written as follows: 

At st,is = 0;  xi,st = 0,  yi,st = 0, and    i,st = 0  

(the left, or bottom, end of the strut) 

At st,is = 1;  y1,st = y3,st,  y2,st = y4,st and   i,st = 0  

 (the right, or top, end of the strut) 

 

Recall that Eq. 4 is still in terms of the total forces 

applied to the isolator rather than the axial forces in each 

strut. Furthermore, Eq. 4 is in terms of the displacements 

at the corners of the plate. From continuity, the vertical 

displacement at a given corner is equal to the X -

direction displacement at the end of the strut of the 

isolator attached at that corner. Specifically, ZO = 

X1,st(L), ZP = X2,st(L), ZQ = X3,st(L) and ZR = X4,st(L). 

Substituting these relationships into Eq. 4, the following 

equations ensue: 

 wpppp st,4st,3st,2st,1       (14) 

 0b)pp(b)pp( 2st,4st,31st,2st,1    (15) 

 0a)pp(a)pp( 2st,4st,21st,3st,1     (16) 

 0)l(x)l(x)l(x)1(x st,4st,3st,2st,1    (17) 

 

A computer program has been implemented as an 

interface to Mathematica, Ver. 5.2 (Wolfram Research, 

Inc. 2005) to solve the system of differential Equations 

(10-13). Based on the given initial value of load, po, the 

implemented program solves for the value of the 

moment, m at the left end, or bottom, of the strut (s=0). 

Because of the nonlinearity of the system of equations, 

the solution is based on an iterative algorithm making use 

of the shooting method. The iteration is based on an 

initial guess for the moment, m. 

 

3.  Dynamic Analysis 

Dynamic Analysis Procedure 

Within the dynamic model the symmetric plate is 

assumed to be subject to a forced axial harmonic 

vibration as per (Den Hartog 1985) (axial base 

displacement). as shown in Fig. 5. Similar to the static 

equilibrium analysis, the derivation of the equations of 

motion for the dynamic analysis is also divided into two 

parts. First, the equations of motion for the rigid plate are 

determined from the kinetic and potential energies in the 

system using Lagrange‟s equations. Second, the strut in 

each isolator is analyzed using D‟Alembert‟s principle. 

All dynamic equations are linearized for small motions 

and put in non-dimensional form. A program written in 

Mathematica is used to numerically solve these equations 

to determine the motion transmissibility of the system. 

Rigid plate analysis 

The Z,Y,X coordinate system is fixed in space as shown 

in Fig. 6 and has unit vectors ĵ,î  and k̂ . The angles 

,  and 

about the Y,X  and Z axes, respectively, and are initially 

zero. The points O, P, Q, and R are located at the bottom 

of each corner of the plate, and the plate has an initial 
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height Ho when the system is in static equilibrium state. 

The center of mass (labeled c.m. in Fig. 6) is indicated by 

the dimensions A1, A2, B1, and B2, and it is positioned at 

a distance C
c
 above the bottom of the plate. 

 

The equations of motion for the plate will be determined 

using Lagrange‟s equations. Thus, it is necessary to 

determine the kinetic and potential energies of all 

components of the system. Because it is desirable to 

preserve symmetry in the model for the vibration 

isolator, horizontal springs are added to the corners of the 

plate to simulate the horizontal resistance contributed by 

the isolators when the plate rotates. Because this 

horizontal motion is very small, this assumption should 

have a minimal effect on the results of this analysis. The 

springs are numbered 1 – 8 and attach to the plate. 
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Fig. 5 The components of model for the dynamic state 
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Fig. 6 Initial configuration of the plate 

The plate has both rotational and translational kinetic 

energy. The equations of motion for the plate become: 

  d,Od,Q YY            (18) 

  d,Od,P XX            (19) 

 



)L(XCXAXA[

AA

M
d,2

c
d,P1d,O2
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Calculation of the mass moment of inertia for the 

asymmetric plate 

For the purpose of calculating the mass moment of 

inertia, the eccentricity of the plate will be modeled as a 

block set on top of the plate, where the block is 

positioned arbitrarily on top of the plate, as shown in Fig. 

7. This model is representative of a piece of equipment 

set on top of the rigid plate. The plate has a thickness H1 

and the block has a height H2 and width and depth D. The 

center of mass for the combination of the plate and block 

is given by the dimensions A1, A2, B1, B2, and C
c
, where 

A1 and A2 give the position of the center of mass along 

the X -axis, B1 and B2 give the position of the center of 

mass along the Y -axis, C
c
 gives the position of the 

center of mass in the Z direction measured from the 

bottom of the plate, as shown in Figs. 6-7. 

 
Fig. 7 Dimensions of block on top of asymmetric rigid 

plate 

The values for A1, A2, B1, and B2 are known and are 

specified directly. However, C
c
 must be calculated in 

terms of the dimensions of the block and the plate using 

the following equation : 
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Assuming that the plate has mass M1, the mass 

moments of inertia about the X and Y  axes at the center 

of mass can be calculated as follows: 
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Analysis of the vibration isolator 

In Den Hartog (1985) as well as in the present work the 

strut is assumed to take a horizontal position as shown in 

Fig. 8, such that the base lies at the left side of strut, at 

which the excitation force acts. Fig. 8 shows the isolator 

subjected to a harmonic base excitation U(T), where 

U(T) was defined as )Tsin(U)T(U o  . This imposed 

base displacement is resisted at the top of the isolator by 

the force Fi, which is now a portion of the combined 

effects of the weight W of the plate and the inertial load 

from the mass of the plate. In the analysis of the vibration 

isolator, it is again assumed that the horizontal 

movements XO,d, XP,d, XQ,d, XR,d, YO,d, YP,d, YQ,d, and 

YR,d (generated by rotation angle   about X -axis and 

angle  about Y -axis)at the corners of the plate are 

small enough that they can be neglected and symmetry 

can be used in the analysis of each isolator. It can be 

noticed that the deflection is a function of position along 

the strut, L and time, T. 

 
Fig. 8 Strut under forced harmonic vibration 

In the present case we deal with linear viscous 

damping, i.e., the relationship between the damping force 

and the velocity of the system is linear. The analysis 

revealed that damping has a negligible effect on the 

transmissibility. The damping effect cannot be 

determined from geometrical, material, or other physical 

properties of the strut element. Hence, the damping effect 

can be determined through experiments such as a free 

vibration test. In any case, damping is present and must 

be taken into account.  

To analyze the strut under forced harmonic 

excitation, a free body diagram of forces acting on an 

element at a particular time and position should be 

considered as shown in Fig. 9. This can be done by 

making use of D‟Alembert‟s Principle, which is based on 

a fictitious inertia force that is set equal to the product of 

the mass and the acceleration. This force is assumed to 

act in the opposite direction of the accelerating mass. 

Hence, at any particular instant, the strut is considered to 

be in a state of static equilibrium (Chopra 2001).  

Notice that the mass per unit length of the strut is 

multiplied by the factor i  that was used to adjust the 

bending stiffness EI in the equilibrium analysis. 

Assuming that the same material is used in each strut 

(i.e., the modulus of elasticity E remains constant), the 

bending stiffness can be modified by changing the cross-

section of the strut so that the moment of inertia about 

the axis of bending becomes i I.  

From the geometry, equilibrium, and the elastic 

constitutive laws for the strut, the following relationships 

can be established for the strut subjected to forced 

harmonic vibrations. The governing variables describing 

the strut can now be written as a function of time and 

location along the strut to describe the response of the 

strut to the forced excitation. The subscript “st” 

represents the static equilibrium portion of the equation, 

and “d” represents the dynamic portion, these equations 

are written below: 
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Fig. 9 Free body diagram of element of strut in 

dynamic state 
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The variables describing the strut can now be written 

as a function of time and location along the strut to 

describe the response of the strut to the forced excitation. 

It is assumed that the dynamic vibrations will be 

relatively small. Hence, small displacement theory can be 

used to derive the following linear dynamic relationships. 

These equations are written below in non-dimensional 

form:  

  d,Od,Q yy            (35) 

  d,Od,P xx            (36) 

The equations of motion for the plate can be written as: 
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The mass moments of inertia become the form: 
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Similarly, the dynamic equations for the strut can be 

written as: 
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The boundary conditions for dynamic state 

The boundary conditions at each end of the strut can be 

written in a non-dimensional form: 

At is = 0; xi,d= uo, yi,d= 0, and  i,d= 0  

At is = 1; y1,d = y3,d, y2,d = y4,d, y2,d = y3,d, y1,d = y4,d, and  

    i,d = 0  

Similar to the static solution, the governing 

differential equations can be implemented in   

Mathematica to solve for the dynamic transmissibility. 

The moment mst determined from the equilibrium 

analysis is used as initial value in the dynamic analysis to 
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determine the dynamic transmissibility. Other known 

values of the initial load op , the amplitude of excitation 

at the base ou , the stiffness parameter, r, and the 

external damping parameter, c, are defined and used as 

input in the program. Repeatedly, the iterative scheme 

based on the use of the shooting method is implemented 

to solve the equations; with the following initial variables 

dp (0), dq (0), and dm (0). To increase the convergence, 

the resulting variables: dp (0), dq (0), and dm (0), are 

updated by adding weighted percentage of their initial 

values, are then used as a guess for the next iteration in 

the loop.  

The dynamic transmissibility of the system is the 

ultimate goal of this work. The equations used to 

determine the transmissibility is given below. As 

mentioned before, we deal herein with a displacement 

transmissibility. The implemented algorithm is 

programmed again by Mathematica to solve for the real 

and imaginary parts of the solution. 
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The square root of the sum of the squares (SRSS) of 

the real and imaginary eigen values are used to calculate 

the displacement of the strut at the top under the acting 

dynamic load. The SRSS is then divided by the original 

amplitude of the base, uo, to determine the dynamic 

transmissibility. Because each strut underlies the same 

amplitude and frequency, the dynamic transmissibility 

calculated at the top of each strut is the same at the center 

of the rigid plate. 

 

4.  Results and discussion  
Using the Mathematica program, the equations of motion 

derived in this research for the system are numerically 

solved. The system is analyzed for the asymmetric case, 

i.e., First, the center of mass is positioned at several 

points along a line that runs through the center of the 

plate perpendicular to the edge OP of the plate, as shown 

in Fig. 10-a. Secondly, the center of mass is positioned at 

several points along a line of symmetry that passes 

diagonally from corner R to corner O, as shown in Fig. 

10-b. 

The transmissibility is computed and plotted for a 

wide range of non-dimensional excitation frequencies for 

each of these cases. The transmissibility plots are used to 

recognize frequencies at which resonance occurs in the 

system and frequency ranges in which the 

transmissibility is small. 

 P R 

Q O 

P R 

Q O 
 

    (a)                (b) 

Fig. 10 Location of the center of mass of plate for 

(a) case 1 and (b) case 2 

The equations of motion are solved for the case 

shown in Fig. 10. The non-dimensional weight w is set at 

160, as was done in the equilibrium analysis. Similarly, 

the stiffness kj of the eight horizontal springs attached to 

the plate is each set at 0.1 as shown in Fig. 11. The aspect 

ratio  of the plate is set equal to 1, i.e. the plate remains 

square in this analysis. The plate dimension h1, required 

to calculate the vertical distance c
c
 to the center of mass 

and the mass moments of inertia, ix and iy, are set equal 

to 0.05. The stiffness modification factor i  and the 

equilibrium portion of the axial force pi,st, the shear force 

qi,st, and the bending moment mi,st for each strut are 

obtained from the equilibrium analysis. From the solution 

of the equations of motion, the transmissibility TR is 

calculated for various excitation frequencies   using 

Eqns. (51 and 52). 
 

 

1 

2 

3 4 

5 

6 

7 8 

 
Fig. 11 Horizontal springs attached to plate 

 

For static state 

The equilibrium results for the values of shear force in 

the struts at variable b2 are nearly minimum values from 

0.24 to 1.0 for all struts and the values of the moment in 

strut 1 and 2 are equal from 1.1 to 0.96 but in strut 3 and 

4 are equal from 1.2 to 0.8 and have the same direction. 

The values of the moment and shear force are determined 

for the asymmetric case analysis using four struts. Figs 

12–14 and tables 1–5 show the relation between the 

variable b2 vs. the axial load, the moment and the shear 

force for rigid plate supported by using one strut in each 

corner but the Figs. 15–17 and the tables 6–9 show the 

relation between the variable a2 and b2 vs. the axial load, 

the moment and the shear force for rigid plate supported 

by using one strut in the corners. The rigid plate 

supported by using two struts in each corner gives the 
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same equilibrium results of the rigid plate supported by 

using one strut in each corner. 

  

When the asymmetric plate center of mass c.m. moves in 

a direction perpendicular to an edge like OP, the struts 

axial loads (p1 and p2 in Fig. 12) and the struts shear 

forces (q1 and q2 in Fig. 13) of this edge increase, but the 

struts moments (m1 and m2 in Fig. 14) decrease than that 

of the adjacent edge.  
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Fig. 12 Struts axial load, pi vs. b2 for asymmetric plate 

case with allowing a lateral motion of the rigid plate 

by one strut at each corner. 
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Fig. 13 Struts moment m1, m2,  m3, and m4 vs. b2 for 

asymmetric plate case with allowing a lateral motion 

of the rigid plate by one strut at each corner 
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Fig. 14 Struts shear force qi vs. b2 for asymmetric 

plate case with allowing a lateral motion of the rigid 

plate by one strut. 

 

 

 

Table 1 The normal force, the moment, and the shear 

force at (a1= b1= 0.5)  

Strut No. p m q 

1 40 2.037 1.94 * 10
-06.0

 

2 40 2.037 1.94 * 10
-06.0

 

3 40 -2.037 1.94 * 10
-06.0

 

4 40 -2.037 1.94 * 10
-06.0

 

Table 2 The normal force, the moment, and the shear 

force at (b1= 0.45)  

Strut No. P m q 

1 11 1.1 0.332 

2 11 1.1 0.361 

3 9 1.2 -0.237 

4 9 1.2 -0.360 

Table 3 The normal force, the moment, and the shear 

force at (b1= 0.4)  

Strut No. P m q 

1 12 1 0.586 

2 12 1 0.544 

3 8 1.2 -0.640 

4 8 1.2 -0.556 

Table 4 The normal force, the moment, and the shear 

force at (b1= 0.35)  

Strut No. P m q 

1 13 1 0.999 

2 13 1 0.817 

3 7 1.2 -0.829 

4 7 1.1 -0.527 

Table 5 The normal force, the moment, and the shear 

force at (b1= 0.3)  

Strut No. p m q 

1 14 1.14 1.35 

2 14 1.12 1.38 

3 6 1.36 -1.13 

4 6 1.36 -1.26 
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Fig. 15 Struts axial load pi vs. a2 and b2 for asymmetric plate case 

with allowing a lateral motion of the rigid plate by two struts at 

each corner. 
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Fig. 16 Struts moment m1, m2, m3, and m4 vs. a2 and b2 for 

asymmetric plate case with allowing a lateral motion of the rigid 

plate by two struts at each corner 
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Fig. 17 Struts shear force q1, q2, q3, and q4 vs. a2 and b2 for 

asymmetric plate case with allowing a lateral motion of the rigid 

plate by two struts at each corner 

Table 6 The normal force, the moment, and the shear 

force at (a1= b1= 0.45)  

Strut No. p m q 

1 11.58 1.03 0.509 

2 10.42 1.1 0.104 

3 10.42 1.1 0.160 

4 7.53 1.1 -0.589 

 

Table 7 The normal force, the moment, and the shear 

force at (a1=b1= 0.4)  

Strut No. p m q 

1 12.444 0.987 0.548 

2 11.556 0.988 0.557 

3 11.556 0.980 0.384 

4 4.444 1.155 -1.453 

Table 8 The normal force, the moment, and the shear 

force at (a1=b1= 0.35)  

Strut No. p m q 

1 14.6 0.963 1.236 

2 11.3 1.031 0.383 

3 11.3 1.051 0.453 

4 2.8 1.252 -1.961 

Table 9 The normal force, the moment, and the shear 

force at (a1=b1= 0.3)  

Strut No. p m q 

1 14.9 1.14 1.35 

2 13.1 1.12 1.38 

3 13.1 1.36 -1.13 

4 -1.1 1.36 -1.26 

For dynamic state 

The first case to be analyzed is the case where the center 

of mass is positioned at several points along a line that 

runs through the center of the plate perpendicular to the 

edge OP of the plate, as shown in figure (10-a). For this 

case, the plate moves with three degrees of freedom, i.e., 

the plate will move vertically, horizontally and/or rotate 

at an angle   about the X-axis when the system is 

subjected to a base excitation. In this analysis, the 

distance a1 is fixed at 0.5 and the distance b1 is varied 

from 0.45 to 0.3 in increments of 0.05. Note that as b1 

decreases, the eccentricity of the weight increases.  

 

From the solution of the equations of motion, the 

transmissibility TR is calculated for various excitation 

frequencies . When observing the transmissibility plots 

in figures (18-19), this looks analogous and the 

transmissibility is plotted for non-dimensional 

frequencies ranging from 0.01 to 200. On each plot, the 

results from the analysis of the asymmetric case (i.e., 

Case 1) are included so that it is easy to see how the 

transmissibility changes for various eccentricities. For 

example, Fig. 18, it has six significant frequency peaks 

and they each have frequencies = 0.89, 10, 15.8, 47, 

63.096 and 158.48, from about 0.01 to 0.8 and 1 to 9 the 

transmissibility is well below unity. 

 

As observed at the higher frequencies, more peaks in 

the curve start to appear for the lower values of b1. 

However, most of these peaks after frequency 9 are 

higher than the transmissibility of 1.0. The peaks before 

the frequency of 9 have the transmissibility of lower 

than 1.0 and are not of much concern because this means 

the displacement of the plate is much less than the 

displacement of the base at low frequency (less than 9), 

which is the desired condition for an effective vibration 

isolator. Fig. 18 shows the transmissibility vs. frequency 

for a general case of the position of asymmetric plate 

center of mass c.m. with a1=0.5, b1=0.45. Fig. 19 shows 

the transmissibility vs. frequency for different values of 

b1 for asymmetric plate which supported with one strut 

at each corner.   
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Fig. 18 Transmissibility vs. frequency for asymmetric plate case 

with allowing a lateral motion of the rigid plate by one strut at 

each corner, case (a1=0.5, b1 = 0.45) 
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Fig. 19 Transmissibility vs. frequency for different values of b1 for 

asymmetric plate case with allowing a lateral motion of the rigid 

plate by one strut in each corner (case 1) 

 

The second case to be analyzed is the case where the 

center of mass is positioned at several points along a line 

that runs diagonally from corner R to corner O, as shown 

in Fig. 10-b. Because of symmetry, it is expected that 

isolators 2 and 3 will behave identically for this case. In 

order to analyze this case, the variables a1 and b1 will be 

set equal to each other and will be varied from 0.45 to 

0.3 in increments of 0.05. Notice that, as a1 and b1 

decrease, the eccentricity of the weight increases. Fig. 20 

shows the transmissibility vs. frequency for different 

values of a1 = b1 for asymmetric plate which supported 

by one strut at each corner. 
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Fig. 20 Transmissibility vs. frequency for different 

values of a1=b1 for asymmetric plate case with 

allowing a lateral motion of the rigid plate by one 

strut at each corner (case 2) 

Figure 22 shows the transmissibility vs. frequency for 

the asymmetric plate (case 1) with allowing a lateral 

motion of the rigid plate supported by using two struts at 

each corner as shown in Fig. 21.  
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Fig. 21 Eight struts supporting of an asymmetric 

rigid plate 
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Fig. 22 Transmissibility vs. frequency for different 

values of b1 for asymmetric plate case with allowing 

a lateral motion of the rigid plate by two struts at 

each corner (case 1) 

Figure 23 shows the transmissibility vs. frequency for 

the asymmetric rigid plate (case 2) with allowing a 

lateral motion of the rigid plate supported by using two 

struts at each corner. Fig. 24 shows the location of the 

center of mass of asymmetric rigid plate for case 3. By 

calculating the transmissibility versus random a1 and b1 

of asymmetric rigid plate which is supported by pair pre-

bent struts at each corner, the results obtained have the 

same behavior as before (Fig. 25). 
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Fig. 23 Transmissibility vs. frequency for different 

values of a1=b1 with allowing a lateral motion of the 

asymmetric rigid plate by two struts at each corner 

(case 2) 
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Fig. 24 Location trace of the center of mass of the 

rigid plate (case 3) 

Figures 19, 20, and 25 have similar characteristics, i.e. 

the transmissibility has peaks values of lower than 1.0 at 

lower frequencies up to ω =1 and it has peaks values 

higher than 1.0 at frequencies higher than ω =1. 
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Fig. 25 Transmissibility vs. frequency for random 

values of a1 and b1 with allowing a lateral motion of 

the  asymmetric rigid plate by two struts at each 

corner 

In general, it can be observed that the transmissibility 

values will be better by using two struts than one strut at 

low frequencies with lateral motion. This method is not 

recommended to be used in high frequencies for 

asymmetric plate. 

 

Table 10 shows the peak frequencies of vibrations with 

allowing lateral motion, and location of the center of 

mass from one side, (first case-b1), for asymmetric rigid 

plate supported by one strut at each corner. Table 11 

shows the peak frequencies of vibrations with allowing 

lateral motion and location of the center of mass from 

one side, (first case-b1), for asymmetric rigid plate 

supported by two struts at each corner. Table 12 shows 

the peak frequencies of vibrations with allowing lateral 

motion and Location of the center of mass from two side, 

(second case-a1 and b1), for asymmetric rigid plate 

supported by one strut at each corner. Table 13 shows the 

peak frequencies of vibrations with allowing lateral 

motion and Location of the center of mass from two side, 

(second case-a1 and b1), for asymmetric rigid plate 

supported by two struts at each corner  

Table 14 shows the transmissibility of vibrations with 

allowing lateral motion, and location of the center of 

mass from one side, (first case-b1), for asymmetric rigid 

plate supported by one strut at each corner. Table 15 

shows the transmissibility of vibrations with allowing 

lateral motion and location of the center of mass from 

one side, (first case-b1), for asymmetric rigid plate 

supported by two struts at each corner. Table 16 shows 

the transmissibility of vibrations with allowing lateral 

motion and location of the center of mass from two sides, 

(second case-a1 and b1), for asymmetric rigid plate 

supported by one strut at each corner. Table 17 shows the 

transmissibility of vibrations with allowing lateral motion 

and location of the center of mass from two sides, 

(second case-a1 and b1), for asymmetric rigid plate 

supported by two strut at each corner.  

Table 18 shows the peak frequencies of vibrations 

with allowing lateral motion and Location of the Center 

of Mass from two side, random, (third case-a1 and b1), 

for asymmetric rigid plate supported by two struts at each 

corner. Table 19 shows the transmissibility of vibrations 

with allowing lateral motion and Location of the Center 

of Mass from two sides, random, (third case-a1 and b1), 

for asymmetric rigid plate supported by two struts at each 

corner. 

Table 10 Peak frequencies vs. different values of b1 for 

asymmetric plate supported by one strut at each corner 

a1 b1  1  2  3  4  5  6 

0.5 0.45 0.89 10.0 15.8 47.0 63.1 158.5 

0.5 0.40 0.19 48.0 199 ----- ----- ------ 

0.5 0.35 1.26 5.0 9.9 25.1 47.0 199.5 

0.5 0.30 0.58 4.0 12.0 31.6 50.0 155.0 

Table 11 Peak frequencies vs. different values of b1 for 

asymmetric plate supported by two struts at each Corner 

 a1 b1  1  2  3  4  5  6 

0.5 0.45 0.70 7.9 15.8 45.0 63.1 199 

0.5 0.40 0.90 49.0 199.5 ----- ----- ---- 

0.5 0.35 1.00 5.0 12.6 39.8 158.4 ---- 

0.5 0.30 0.70 3.16 19.9 49.0 63.1 193 

Table 12 Peak frequencies vs. different values of a1 and 

b1 for asymmetric plate supported by one strut at each 

corner 

a1 b1  1  2  3  4  5  6 

0.45 0.45 1.2 12.5 31.6 195 --- ---- 

0.40 0.40 1.2 10.0 19.9 39.8 199 ---- 

0.35 0.35 10.0 50.1 158. ---- ---- ---- 

0.30 0.30 5.0 50.1 195 ---- ---- ---- 

Table 13 Peak frequencies vs. different values of a1 and 

b1 for asymmetric plate supported by two struts at each 

corner 

a1 b1  1  2  3  4  5 



6 

0.4

5 

0.4

5 

12.

6 

19.9 50.1 195.

0 

----

- 

---

- 

0.4

0 

0.4

0 

10.

0 

19.9 39.8 63.1 155

. 

---

- 

0.3

5 

0.3

5 

31.

6 

125.

8 

199.

5 

------ ----

- 

---

- 

0.3

0 

0.3

0 

31.

6 

63.1 155. ----- ----

- 

---

- 
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Table 14 Transmissibility vs. different values of b1 for 

asymmetric plate supported by one strut in each corner 

a1 b1 TR1 TR2 TR3 TR4 TR5 TR6 

0.5 0.45 11.64 10.92 1.21 10.70 3.43 9.49 

0.5 0.40 1.45 67.92 94.36 ----- ----- ----- 

0.5 0.35 2.49 1.15 1.41 1.48 23.45 22.05 

0.5 0.30 1.56 4.51 29.14 1.27 34.61 4.59 

Table 15 Transmissibility vs. different values of b1 for 

asymmetric plate supported by two struts in each corner 

a1 b1 TR1 TR2 TR3 TR4 TR5 TR6 

0.5 0.45 14.47 1.95 1.49 18.30 13.57 75.13 

0.5 0.40 19.49 13.04 80.34 ----- ------ ------ 

0.5 0.35 2.03 4.17 2.89 21.64 3.37 ------ 

0.5 0.30 4.88 2.77 50.29 6.58 6.70 5.12 

Table 16 Transmissibility vs. different values of a1 and 

b1 for asymmetric plate supported by one strut in each 

corner 

a1 b1 TR1 TR2 TR3 TR4 TR5 TR6 

0.45 0.45 2.04 2.76 17.97 43.3 ----- ---- 

0.40 0.40 10.25 1.72 1.69 85.09 11.42 ---- 

0.35 0.35 4.83 11.05 4.25 ----- ------ ---- 

0.30 0.30 2.99 2.87 4.53 ----- ------ ---- 

Table 17 Transmissibility vs. different values of a1 and 

b1 for asymmetric rigid plate supported by two struts at 

each corner 

a1 b1 TR1 TR2 TR3 TR4 TR5 TR6 

0.45 0.45 1.15 1.18 20.38 17.45 ----- ---- 

0.40 0.40 4.12 8.27 7.73 7.29 53.75 ---- 

0.35 0.35 6.41 1.245 14.90 ----- ----- ---- 

0.30 0.30 1.94 29.99 8.18 ----- ----- ---- 

Table 18 Peak frequencies vs. random values of a1 and b1 

for asymmetric rigid plate supported by two struts at each 

corner 

A1 b1  1  2  3  4  5  6 

0.45 0.35 0.01 0.32 25.11 50.11 199.5 ---- 

0.40 0.30 1.58 7.94 31.62 63.09 199.5 ---- 

0.35 0.40 5.01 7.94 39.81 63.09 100 200 

0.30 0.35 3.16 10 19.95 63.9 100 199.5 

Table 19 Transmissibility vs. random values of a1 and b1 

for asymmetric rigid plate supported by two struts at each 

corner 

a1 b1 TR1 TR2 TR3 TR4 TR5 TR6 

0.45 0.35 12.57 2.15 432 18.8 11.26 ---- 

0.40 0.30 1.17 2.03 1.66 5.8 3.86 ---- 

0.35 0.40 3.65 1.3 7.2 14.54 1.17 92.5 

0.30 0.35 2.31 3.56 26.87 4.16 37.47 140.26 

 

 

5. Conclusions 
The proposed isolation device has the ability to support a 

relatively large static load with a relatively small static 

deflection than the traditional vibration isolators and 

offers a low axial resistance under dynamic excitation, 

making it ideal for isolating vertical vibrations. By 

examining the results of model described, the following 

conclusions can be drawn: 

 The use of post-buckled struts as vibration isolators 

provides a wide range of frequencies at which the 

transmissibility is well below unity,  

 The direction of the horizontal deflection of the 

buckled struts, whether left direction or right 

direction, has no effect on the equilibrium moment 

and shear force and in turn on the transmissibility. 

 Tuned isolators can provide improved vibration 

isolation, even lateral motion is allowed. 

 The transmissibility does differ substantially in 

shape. This is true if lateral motion is allowed or 

not. However, lateral motion improves the 

magnitude of transmissibility, and respectively the 

efficiency of vibration isolation, especially at low 

frequencies. 

 The transmissibility values will be better by using 

two struts than one strut at low frequencies with 

lateral motion. This method is not recommended to 

be used in high frequencies for asymmetric plate. 

 The transmissibility at versus random a1 and b1 of 

asymmetric rigid plate which is supported by pair 

pre-bent struts at each corner, the results obtained 

have the same behavior of before calculating, (case 

1, and case 2). 

 The position of the asymmetric plate center of mass 

c.m. has a significant effect on the struts axial loads, 

shear forces, moments, and transmissibility values.          

List of symbols 
 Its worth to mention that capital letters are denoted 

to dimensional variables, while small letters are 

thought for normalized non dimensional quantities. 

The dimensional and dimensionless variables used in 

the present paper are: 

 A1  Distance from plate center gravity to strut 1 

and strut 3 in X -direction (m)  

 a1 Dimensionless distance from plate center gravity 

to strut 1 and strut 3 in X -direction (-)  

 A2  Distance from plate center gravity to strut 2 

and strut 4 in X -direction (m) 

 a2 Dimensionless distance from plate center gravity 

to strut 2 and strut 4 in X -direction (-)  

 Ab  Surface area of the block (m
2
) 

 ab Dimensionless surface area of the block (-) 

 Ap  Surface area of the plate (m
2
) 

 ap Dimensionless surface area of the plate (-) 
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 B1  Distance from plate center gravity to strut 1 

and strut 2 in Y -direction (m) 

 b1 Dimensionless distance from plate center gravity 

to strut 1 and strut 2 in Y - direction (-)  

 B2 Distance from plate center gravity to strut 3 and 

strut 4 in Y -direction (m) 

 b2 Dimensionless distance  from  plate  center 

gravity to  strut 3 and strut 4 in Y -direction (-)  

 C  External damping coefficient per unit length of 

strut (N.s/m) 

 c   Dimensionless external damping coefficient 

per unit length of strut (-) 

 C
c
    Distance from bottom plate surface to C.G. of 

the plate (m) 

 c
c
  Dimensionless distance from bottom plate 

surface to C.G. of the plate (-) 

 d  Subscript used to indicate variables resulting 

from dynamic analysis 

 Dd Depth of the block (m) 

 dd  Dimensionless depth of the block (-) 

 dS Infinite small length element along the arc of 

the strut (m) 

 ds  Dimensionless infinite small length element 

along the arc of the strut (-) 

 dSi   Infinite small length element along the arc 

of the strut in the i
th

 isolator (m) 

 dsi  Dimensionless small element of length 

along the arc of the strut in the i
th

 isolator (-) 

 dX  Projection of dS in the X -direction (m) 

 dx       Dimensionless projection of ds in X -direction 

(-) 

 dXi,st  projection of dSi in X -direction (m) 

 dxi,st  Dimensionless projection of dsi in X -

direction (-) 

 dY  Projection of dS in Y -direction (m) 

 dy  Dimensionless projection of ds in Y -direction 

(-) 

 dYi,st  Projection of dSi in the Y -direction (m) 

 dyi,st  Dimensionless projection of dsi in the Y -

direction (-) 

 E Modulus of elasticity of elastic material of strut 

(assumed to be the same for all struts) (GPa) 

 g     Gravity acceleration (m/s
2
) 

 Ho   Height of plate from the base, the equilibrium 

height (m) 

 ho Dimensionless height of plate from the base, the 

equilibrium height (-) 

 H1 Thickness of the plate (m) 

 h1 Dimensionless thickness of the plate (-)  

 H2 Thickness of the block (m) 

 h2 Dimensionless thickness of the block (-)  

  The isolator counter ranging from 1…4 (-) 

 I Moment of inertia of strut cross-section about the 

axis of bending (assumed to be the same for all 

struts) (m
4
) 

 PI  Inertia dyadic 

 Ix   Principal mass moments of inertia about X -

axis through center of mass (kg.m
2
) 

 ix Dimensionless principal mass moments of inertia 

about X -Axis through center of mass (-) 

 IY   Principal mass moments of inertia about Y -

axis through center of mass (kg.m
2
) 

 iy Dimensionless principal mass moments of inertia 

about Y -axis through center of mass (-) 

 j Number of the horizontal springs (-) 

 K     Spring stiffness (N/m) 

 k Dimensionless spring stiffness (-) 

 Kj  Stiffness of the eight horizontal attached to the 

plate, j=1:8 (N/m) 

 kj  Dimensionless stiffness of the eight horizontal 

attached to the plate, j=1:8 (-) 

 L     Length of strut (m) 

 M Bending moment acting on the strut (N.m) 

 m Dimensionless bending moment acting on the 

strut (-) 

 M1  Plate mass (kg) 

 m1  Dimensionless plate mass (-) 

 M2  Block mass (kg) 

 m2  Dimensionless block mass (-) 

 Mi,st  Bending moment acting on the strut for the i
th

  

isolator (N.m) 

 mi,st  Dimensionless bending moment acting on  

the strut for the i
th

  isolator (-) 

 P Horizontal component of force acting on the strut 

at S = 0 (N) 

 p Dimensionless horizontal component of force 

acting on the strut at s=0 (-) 

 Pi,st   Component of force acting in X -direction on 

the strut for the i
th

 isolator (N) 

 pi,st Dimensionless component of force acting in 

X -direction on the strut for the i
th

 isolator (-) 

 Po Applied load from the rigid plate on the strut, (the 

classical Euler critical load, Pcr) (N) 

 po Dimensionless applied load from the rigid plate 

on the strut, (the classical Euler critical load, Pcr) (-) 

 Pw Ratio of the weight W to the weight of the strut 

μgl (-) 

 Q Vertical component of force in the strut at S = 0 

(N) 

 q Dimensionless vertical component of force in the 

strut at s = 0 (-) 

 Qi,st Component of force acting in Y - Direction on 

the strut in the i
th

 isolator (N) 

 qi,st Dimensionless component of force acting in 

Y - Direct. on the strut in the i
th

 isolator (-) 

 S Arc length of the strut (m) 
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 s Dimensionless arc length of the strut (-) 

 st Subscript used to indicate variables which result 

from the static equilibrium analysis (-) 

 T    Time (s) 

 t Dimensionless time (-) 

 Uo Peak or maximum displacement (i.e. the 

amplitude) of the point from a datum line (m) 

 uo Dimensionless peak or maximum displacement 

(i.e. the amplitude) of the point from a datum line (-) 

 U(T) Position of the point with respect to time T (m) 

 u(t) Dimensionless position of the point with 

respect to time t (-) 

 Vs,i Potential energy in the springs (N) 

 W  Weight of the supported load (full rigid plate) 

(N) 

 w Dimensionless weight of the supported load (-) 

 Wd Width of the block (m) 

 wd Dimensionless width of the block (-) 

 Yo Initial buckling of the strut (m) 

 yo Dimensionless initial buckling of the strut (-) 

 YL1 Strut 1 Y -lateral movement (m) 

 yL1 Dimensionless strut 1 Y - lateral movement (-

) 

 YL2 Strut 2 Y -lateral movement (m) 

 yL2 Dimensionless strut 2 Y -  lateral movement (-

) 

 YL3 Strut 3 Y -lateral movement (m) 

 yL3 Dimensionless strut 3 Y -  lateral movement (-

) 

 YL4 Strut 4 Y -lateral movement (m) 

 yL4 Dimensionless strut 4 Y -  lateral movement (-

) 

 Yb1 Strut 1 Y - buckling movement (m) 

 yb1  Dimensionless strut 1 Y -  buckling 

movement (-) 

 Yb2 Strut 2 Y - buckling movement (m) 

 yb2  Dimensionless strut 2 Y - buckling movement 

(-) 

 Yb3 Strut 3 Y - buckling movement (m) 

 yb3  Dimensionless strut 3 Y - buckling movement 

(-) 

 Yb4 Strut 4 Y - buckling movement (m) 

 yb4  Dimensionless strut 4 Y - buckling movement 

(-) 

 Z
~

 Distance between centre of each area and OPRQ 

surface area (m) 

 z~  Dimensionless distance between centre of each 

area and OPRQ surface area (-) 

       Aspect ratio of the plate (-) 

 i  The i
th

 isolator factor for strut stiffness 

modification (-) 

 st,i  Angle of the deflected strut in the i
th

 isolator 

measured from X -axis [
o
] 

 o  initial angle [
o
] 

   Mass per unit length of the strut (kg/m) 

   Dimensionless mass per unit length of the strut (-) 

 P  Angular velocity vector (sec
-1

)  

   Applied frequency of the axial excitation of 

the strut base (sec
-1

) 

    Dimensionless applied frequency of the axial 

excitation of the strut base (-) 
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