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ABSTRACT 
The objective of this paper is to study the influence of vibration isolators in the form of post-buckled elastic struts. A 

mathematical model is introduced consisting of pre-bent post-buckled pairs strut with intermediate bonded filler acting 

as vibration isolators supporting a symmetric rigid plate. The model is subject to axial harmonic excitation at the base, 

and allowed to displace laterally with respect to axial center line of plate. The displacement transmissibility is the 

governing parameter of the isolator's effectiveness. The transmissibility is calculated over a wide range of frequencies 

and plotted in form of design charts. These plots showed the ranges of frequencies, at which isolation can be 

maintained. The system resonance frequencies can be easily depicted from design graphs. The present study reveals 

that at resonance frequencies the most effective transmissibility is well below unity. Vibration characteristics are 

determined under specific frequencies such that the physical behavior of the system can be thoroughly analyzed. All 

variables used are normalized, such that the results aren’t dependent on any material or geometric property, such as the 

modulus of elasticity of the material, section modulus of the used profile, or the length of the strut. In this way, the 

obtained results can be applied over a wide range of elastic materials, regardless of the type of material or section 

properties. 
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ػضه الإٕخضاصاث ىَسخ٘ٙ خاسٚء ٍخَاثو 

باسخخذاً صٗج ٍِ اىؼ٘اصه ٍِ أرسع ٍشّت ٍْبؼدت ٍسبقا بيَْٖا ٍادة زش٘ ٍطاغيت 

 ٍخؼشظا إىٚ إثاسة ٍس٘سيت إسخاحينيت ٗديْاٍينيت
 

حأثيش اسخخذاً ػ٘اصه ىلإٕخضاصاث اىخي ػيٚ شنو أرسع ٍشّٔ ٍْسْيت ٍسبقا ٍٗثبخت بيِ اىدسٌ اىَشاد ػضىٔ ٗاىقاػذة  اىٖذف ٍِ ٕزا اىبسث ٕ٘ دساست

صٗج ٍِ اىؼ٘اصه ٍِ أرسع ٍشّت ٍْبؼدت ٍسبقا ٗيقذً ٕزا اىبسث َّ٘رج سياظي ٍنُ٘ ٍِ ٍسخ٘ٙ خاسٚء ٍخَاثو ٍؼيق ػِ غشيق  .اىَثبج ػييٖا اىدسٌ

ػْذ اىقاػذة ٗيسَر اىَ٘ديو بسشمت  إسخاحينيت ٗديْاٍينيتٗيخؼشض ٕزا اىَ٘ديو لإثاسة ٕشٍّ٘يت ٍس٘سيت  .مؼ٘اصه ىلإخضاصاث ةبيَْٖا ٍادة زش٘ ٍطاغي

دة إُ ّسبت الإّخقاىيت ىلإصازت حؼخبش اىؼْصش اىَْظٌ ىنفاءة اىؼاصه فٚ ػضه الإٕخضاصاث اىَْخقيت ٍِ اىقاع .إّخقاىيت ػشظيت باىْسبت ىَس٘ساىَسخ٘ٙ اىَؼضٗه

اىخشدداث ٗ حشسٌ مَْسْياث حصَيَيت ىخسذيذ حأثيشٕا ػيٚ سي٘ك الإٕخضاصاث باسخخذاً  ٍِٗحسسب ّسبت الإّخقاىيت ػبش ٍذٙ ٗاسغ . إىٚ اىدسٌ اىداسئ

ٗحسخخذً سسٍ٘اث الإّخقاىيت ىيخؼشف ػيٚ ٍذٙ اىخشدداث . ٗقذ أػطيج دسخت زشيت اظافيت ٕٗٚ اىسَاذ باىسشمت الإّخقاىيت ىيَسخ٘ٙ اىَؼضٗه. حيل اىؼ٘اصه

ٗقذ أظٖشث ٕزٓ اىذساست أّٔ ػْذ حشدداث اىشّيِ حنُ٘  .زذيذ حشدداث اىشّيِ ىيْظاً ٍِ اىشسٍ٘اث اىَصََٔٗيَنِ ػْذئز ث. اىزٙ ػْذٓ يَنِ حسقيق اىؼضه

إُ سَاث الإٕخضاصاث يخٌ حسذيذٕا ػْذ حشدداث ٍؼيْت بسيث أُ اىسي٘ك اىطبيؼي ىيْظاً يَنِ حسييئ  .ّسبت الإّخقاىيت الأمثش مفاءٓ ػْذ قيَت أقو ٍِ اى٘ازذ

ىَخغيشاث اىَسخخذٍت فٚ اىخسييو ٕٚ بذُٗ أبؼاد ٗبزىل فإُ ٕزٓ اىْخائح لا حؼخَذ ػيٚ خ٘اص أٙ ٍادة أٗ شنو ْٕذسٚ ٍؼيِ ٍثو ٍؼاٍو مو ا. ٍِ خلاه رىل

ٗبٖزٓ اىطشيقت يَنِ حطبيق اىْخائح اىَسخخيصت ػيٚ ٍذٙ ٗاسغ ٍِ اىَ٘اد اىَشّٔ بغط . اىَشّٗٔ ىيَادة ٍٗؼاٍو اىَقطغ ىيشنو اىَسخخذً أٗ غ٘ه اىؼاصه

ٗقذ احعر أُ قيَت ٍؼاٍو اىنضاصة ىَادة اىسش٘ اىَطاغيت يدب اخخياسٕا بْاءا ػيٚ ٍخطيباث مو ٍِ اىسي٘ك  .اىْظش ػِ ّ٘ع اىَادة أٗ خ٘اص اىَقطغ

 . ّٗخح ػِ اسخخذاً ٍادة اىسش٘ اىَطاغيت صيادة فٚ ّسبت الإّخقاىيت ػْذ اىخشدداث اىَْخفعت ٗاىؼاىيت. الإسخاحينٚ ٗاىذيْاٍينٚ ىيْظاً
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List of symbols 
It's worth to mention that capital letters are denoted to 

dimensional variables, while small letters are thought 

for normalized non dimensional quantities. The 

dimensional and dimensionless variables used in the 

present paper are: 

A1  Distance from plate center gravity to strut 1 and 

strut 3 in X -direction (m)  

a1 Dimensionless distance from plate center gravity 

to strut 1 and strut 3 in X -direction (-)  

A2  Distance from plate center gravity to strut 2 and 

strut 4 in X -direction (m) 

a2 Dimensionless distance from plate center gravity 

to strut 2 and strut 4 in X -direction (-)  

Ab  Surface area of the block (m
2
) 

ab Dimensionless surface area of the block (-) 

Ap  Surface area of the plate (m
2
) 

ap Dimensionless surface area of the plate (-) 

B1  Distance from plate center gravity to strut 1 and 

strut 2 in Y -direction (m) 

b1 Dimensionless distance from plate center gravity 

to strut 1 and strut 2 in Y - direction (-)  

B2 Distance from plate center gravity to strut 3 and 

strut 4 in Y -direction (m) 

b2 Dimensionless distance  from  plate  center 

gravity to  strut 3 and strut 4 in Y - direction (-)  

C  External damping coefficient per unit length of 

strut (N.s/m) 

c   Dimensionless external damping coefficient per 

unit length of strut (-) 

C
c
    Distance from bottom plate surface to C.G. of 

the plate (m) 

c
c
  Dimensionless distance from bottom plate 

surface to C.G. of the plate (-) 

d  Subscript used to indicate variables resulting 

from dynamic analysis 

Dd  Depth of the block (m) 

dd  Dimensionless depth of the block (-) 

dS Infinite small length element along the arc of the 

 strut (m) 

ds Dimensionless infinite small length element 

 along the arc of the strut (-) 

dSi  Infinite small length element along the arc of the 

 strut in the i
th

 isolator (m) 

dsi Dimensionless small element of length along the 

 arc of the strut in the i
th

 isolator (-) 

dX Projection of dS in the X -direction (m) 

dx Dimensionless projection of ds in X -direction (-) 

dXi,st projection of dSi in X -direction (m) 

dxi,st Dimensionless projection of dsi in X -direction (-) 

dY Projection of dS in Y -direction (m) 

dy Dimensionless projection of ds in Y -direction (-) 

dYi,st Projection of dSi in the Y -direction (m) 

dyi,st Dimensionless projection of dsi in the Y - 

 direction (-) 

E      Modulus of elasticity of elastic material of strut 

         (assumed to be the same for all struts) (GPa) 

g       Gravity acceleration (m/s
2
) 

Ho        Height of plate from the base, the equilibrium 

         height (m) 

ho         Dimensionless height of plate from the base, the 

         equilibrium height (-) 

H1     Thickness of the plate (m) 

h1      Dimensionless thickness of the plate (-)  

H2        Thickness of the block (m) 

h2      Dimensionless thickness of the block (-)  

i        The isolator counter ranging from 1…4 (-) 

I        Moment of inertia of strut cross-section about the 

         axis of bending (assumed to be the same for all 

         struts) (m
4
) 

PI     Inertia dyadic 

Ix        Principal mass moments of inertia about X -axis 

         through center of mass (kg.m
2
) 

ix       Dimensionless principal mass moments of inertia 

         about X -Axis through center of mass (-) 

IY       Principal mass moments of inertia about Y - 

         axis through center of mass (kg.m
2
) 

iy Dimensionless principal mass moments of 

inertia about Y -axis through center of mass (-) 

j Number of the horizontal springs (-) 

K     Spring stiffness (N/m) 

k Dimensionless spring stiffness (-) 

Kj  Stiffness of the eight horizontal attached to the 

plate, j=1:8 (N/m) 

kj  Dimensionless stiffness of the eight horizontal 

attached to the plate, j=1:8 (-) 

L     Length of strut (m) 

M Bending moment acting on the strut (N.m) 

m Dimensionless bending moment acting on the 

strut (-) 

M1  Plate mass (kg) 

m1  Dimensionless plate mass (-) 

M2  Block mass (kg) 

m2  Dimensionless block mass (-) 

Mi,st  Bending moment acting on the strut for the i
th

  

isolator (N.m) 

mi,st  Dimensionless bending moment acting on  the 

strut for the i
th

  isolator (-) 

P Horizontal component of force acting on the 

strut at S = 0 (N) 

p Dimensionless horizontal component of force 

acting on the strut at s=0 (-) 

Pi,st   Component of force acting in X -direction on 

the strut for the i
th

 isolator (N) 

pi,st Dimensionless component of force acting in X -

direction on the strut for the i
th

 isolator (-) 

Po Applied load from the rigid plate on the strut, 

(the classical Euler critical load, Pcr) (N) 

po Dimensionless applied load from the rigid plate 

on the strut, (the classical Euler critical load, Pcr) 

(-) 

Pw Ratio of the weight W to the weight of the strut 

μgl (-) 

Q Vertical component of force in the strut at S = 0 

(N) 

q Dimensionless vertical component of force in 

the strut at s = 0 (-) 

Qi,st Component of force acting in Y - Direction on 

the strut in the i
th

 isolator (N) 

qi,st Dimensionless component of force acting in Y - 

Direct. on the strut in the i
th

 isolator (-) 
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S Arc length of the strut (m) 

s Dimensionless arc length of the strut (-) 

st Subscript used to indicate variables which result 

from the static equilibrium analysis (-) 

T    Time (s) 

t Dimensionless time (-) 

Uo Peak or maximum displacement (i.e. the 

amplitude) of the point from a datum line (m) 

uo Dimensionless peak or maximum displacement 

(i.e. the amplitude) of the point from a datum 

line (-) 

U(T) Position of the point with respect to time T (m) 

u(t) Dimensionless position of the point with respect 

to time t (-) 

Vs,i Potential energy in the springs (N) 

W Weight of the supported load (full rigid plate) 

(N) 

w Dimensionless weight of the supported load (-) 

Wd Width of the block (m) 

wd Dimensionless width of the block (-) 

Yo Initial buckling of the strut (m) 

yo Dimensionless initial buckling of the strut (-) 

YL1 Strut 1 Y -lateral movement (m) 

yL1 Dimensionless strut 1 Y -lateral movement (-) 

YL2 Strut 2 Y -lateral movement (m) 

yL2 Dimensionless strut 2 Y - lateral movement (-) 

YL3 Strut 3 Y -lateral movement (m) 

yL3 Dimensionless strut 3 Y - lateral movement (-) 

YL4 Strut 4 Y -lateral movement (m) 

yL4 Dimensionless strut 4 Y - lateral movement (-) 

Yb1 Strut 1 Y - buckling movement (m) 

yb1      Dimensionless strut 1 Y -buckling movement (-) 

Yb2 Strut 2 Y - buckling movement (m) 

yb2  Dimensionless strut 2 Y -buckling movement (-) 

Yb3 Strut 3 Y - buckling movement (m) 

yb3  Dimensionless strut 3 Y -buckling movement (-) 

Yb4 Strut 4 Y - buckling movement (m) 

yb4  Dimensionless strut 4 Y -buckling movement (-) 

Z
~

 Distance between centre of each area and OPRQ 

surface area (m) 

z~  Dimensionless distance between centre of each 

area and OPRQ surface area (-) 

      Aspect ratio of the plate (-) 

i  The i
th

 isolator factor for strut stiffness 

modification (-) 

st,i  Angle of the deflected strut in the i
th

 isolator 

measured from X -axis [
o
] 

o  initial angle [
o
] 

  Mass per unit length of the strut (kg/m) 

  Dimensionless mass per unit length of the strut 

(-) 

P  Angular velocity vector (sec
-1

)  

   Applied frequency of the axial excitation of the 

strut base (sec
-1

) 

   Dimensionless applied frequency of the axial  

  excitation of the strut base (-) 

1 Introduction and literature review 

Many modern machinery, such as compressors, 

internal combustion engines, mining machines, 

hydraulic, and pneumatic presses, turbo machinery, etc. 

undergo uncomfortable and even undesirable serious 

source. These vibrations are in most cases 

uncontrollable and lead to sudden failure and in turn to 

a loss of machines availability. Therefore, mechanical 

engineers in preventive maintenance sections in the 

industry have the serious job to put these vibrations 

under control, isolate, and minimize the harmful effects 

of such unwanted vibrations. 

Zhou, N. and Liu, K. (2010) developed a novel 

vibration isolator. The developed isolator possessed the 

characteristics of high-static–low-dynamic stiffness 

(HSLDS) and could act passively or semi-actively. The 

HSLDS property of the isolator was obtained by 

connecting a mechanical spring, in parallel with a 

magnetic spring that was constructed by a pair of 

electromagnets and a permanent magnet. The 

mechanical spring was a structural beam whose 

stiffness exhibited a hardening behavior. The stiffness 

of the magnetic spring could be positive or negative, 

depending on the polarity of the current to the 

electromagnets. Carrella, A. et al. (2009) proposed that 

the rotor response was reduced by suspending the 

machine on nonlinear springs. Kovacica, I., Brennanb, 

M.J., and Waters, T.P. (2008) studied a vibration 

isolator consisting of a vertical linear spring and two 

nonlinear pre-stressed oblique springs. The system had 

both geometrical and physical nonlinearity.  

Ibrahim, R.A. (2008) presented a comprehensive 

assessment of recent developments of nonlinear 

isolators in the absence of active control means. 

Carrella, A. et al. (2007) studied a simple system 

comprising a vertical spring acting in parallel with two 

oblique springs. It was shown that there was a unique 

relationship between the geometry and the stiffness of 

the springs that yields a system with zero dynamic 

stiffness at the static equilibrium position. Yilmaz, C., 

Kikuchi, N. (2006) designed stiff and lightweight 

uniaxial passive vibration isolators that had low stop-

band frequency. In order to make fair comparisons, 

stop-band frequencies of various isolator designs were 

formulated in a general framework. Two new n-degree-

of-freedom (n-dof) isolator designs were introduced.  

Liu, L.K., Zheng, G.T., Huang, W.H. (2006) 

introduced an octostrut passive vibration isolation 

platform with redundancy and applied it to whole-

spacecraft vibration isolation. This platform was 

modeled with the Newton–Euler method. Huang, X., 

Elliott, S.J., and Brennan, M.J. (2003) presented a 

theoretical and experimental investigation into an 

active vibration isolation system. Electromagnetic 

actuators were installed in parallel with each of four 

passive mounts, which were placed between a flexible 

equipment structure and a base structure which was 

either flexible or rigid. Dickens, J.D. and Norwood, 

C.J. (2001) proposed a two-mass method to determine 

the four-pole parameters of a uni-directional 

asymmetrical vibration isolator. It could be regarded as 

a universal testing procedure applicable to uni-
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directional or bi-directional, and asymmetrical or 

symmetrical vibration isolators under static load. 

Serrand, M. and Elliott, S.J. (2000) described the 

implementation of an independent two-channel 

controller based on absolute velocity feedback and its 

performance in improving the isolation from base 

vibration of a mounted rigid equipment structure 

characterized by two-degrees of freedom. Plaut, R.H., 

Sidbury, J.E., and Virgin, L.N. (2005) analyzed the use 

of a buckled or pre-bent column with fixed ends as a 

vibration isolator. The column was designed to have a 

high axial stiffness under the weight that it supported, 

so that the static displacement of the weight was not 

excessive, and then to have a low stiffness during 

excitation. Isolation of ground vibration has long been 

considered in the field of nano precision measuring 

instrument design (Banik, R. and Gweon, D.G. 

(2008)). They proposed a six-axis hybrid active-

passive vibration isolation system which could be used 

as a tabletop isolator for highly precise measurement 

and actuation system. 

 

2   Equilibrium analysis 

2.1 Equilibrium analysis procedure 

The model studied in this paper is a simple system 

consisting of four pairs buckled struts with 

intermediate bonded filler used to support a rigid 

symmetric plate. The analysis of buckled struts as 

vibration isolators is based on the use of four pairs 

from struts connected by a rigid plate at each corner 

(Jeffers 2005). Jeffers (2005), Alloway (2003), and 

Plaut et al. (2003) have used strut elements as isolators 

for fixed-fixed bars underlying axial harmonic 

displacement excitation. Sidbury (2003) has used the 

same isolators as used in Jeffers (2005), Alloway 

(2003), and Plaut et al. (2003) with pinned-pinned end 

condition. The authors of the present paper have used 

the same type of isolators as that used in Jeffers (2005), 

Alloway (2003), Plaut et al. (2003), and Sidbury 

(2003). However, the end condition is selected within 

the present analysis as clamped - clamped.   

The results determined in Jeffers (2005), Alloway 

(2003), Plaut et al. (2003), and Sidbury (2003) revealed 

that the behavior of the buckled strut under axial, 

harmonic, displacement excitation is similar for both 

fixed-fixed and pinned-pinned end conditions. In the 

present paper it has been decided to choose fixed-fixed 

end conditions, since such system can support much 

higher load. 

First, an analysis of the rigid plate must be 

performed to determine the relationship between the 

symmetry weight of the uniform plate and the forces 

transmitted to each of the four supporting isolators. 

Secondly, the behavior of each strut must be evaluated 

in terms of the deflected shape and the forces and 

moments in the struts, with clamped-clamped ends as 

done by Jeffers (2005) and Virgin and Davis (2003) as 

shown in Fig. 1. It should be noted that the model is 

constrained against any lateral movement except in Y -

direction. If the analyzed model is free to move 

laterally, the model consisting of pre-bent struts may 

become unstable and would buckle and sway (Inman 

(1994) and Favor (2004)). 

2.1.1 Rigid plate analysis 

The plate analyzed in the present work is symmetric. It 

has the ability to move vertically, rotate about the X - 

and Y -axes and allowed to move laterally in 

direction- Y  as shown in Fig. 1. The horizontal 

movements at the corners of the plate due to such 

rotations will be ignored in the equilibrium analysis 

because only small rotations of the plate will be 

considered. As a result, the plate will be analyzed as a 

four degree-of-freedom system.  

Upon considering the free body diagram of the 

plate shown in Fig. 2, one apparent observation is that 

there are four unknown forces, F1, F2, F3 and F4, acting 

at the corners of the plate, but only four equations 

result from the equilibrium. These equations are: 

  WFFFF 4321         (1) 

  0B)FF(B)FF( 243121      (2) 

  0A)FF(A)FF( 242131      (3) 

  0ZZZZ RQPO        (4) 

Where: ZO, ZP, ZQ, and ZR are the vertical 

displacements at the corners of the plate, which are 

labeled by O,P, Q, and R when it rotates at some angle 

about X  and Y  axes. 
 

A1 

A2 

B2 B1 

O 

P 

Q 

R 

W 

4 

S Ho 

X  

Y  

Z  

1 3 

2 

 
Fig.1 Rigid plate supported by pre-bent struts with 

intermediate bonded filler. 

  

 
Fig. 2 Free-body diagram of the plate in static 

equilibrium state 

 

 

2.1.2 Vibration isolator analysis 
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The axial force applied to the top of each isolator can 

be determined, it is necessary to examine the force-

displacement relationship for each isolator. As stated 

earlier, the isolator, shown horizontally in Fig.3, 

consists of two struts which are clamped together at 

both ends and bonded intermediately by a viscoelastic 

material. The filler contributes both damping and 

stiffness to the isolator and is represented in Fig. 3 by a 

series of springs and dashpots acting along the length 

of the isolator. For simplicity, the isolator is restrained 

against rotation at both ends and free horizontal ( Y -

direction) displacement without any external laterally 

force in this direction. This is done because the 

horizontal displacement of the plate is negligible and 

this assumption will greatly simplify the problem by 

allowing the use of symmetry. The additional variables 

used for the remaining portion of this analysis can be 

defined as follows. The subscript st is used for static 

equilibrium analysis. Note that the subscript i is used to 

denote the current number of isolators.  

Before any load is applied to the isolator, each strut 

has an initial shape with an amplitude ao. All four 

isolators will have the same initial shape and so this 

part of the analysis holds for each strut in all four 

isolators. The initial angle o (S) is assumed as: 

  )L/S2sin(a)S( oo        (5) 
 

Si Yi 

Xi 

 i Fi 

 
Fig. 3 Model of vibration isolator with bonded filler 

under static axial load Fi  

The initial deflection Yo(S) is equal to the integral 

of the sine of the initial angle over the length of the 

strut. For small angles, this is approximately equal to 

the integral of the initial angle o (S) over the length of 

the strut. This gives 
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S2
cos1.

2

La
)S(Y o

o
       (6) 

The struts have the same length and bending 

stiffness. Hence, the analysis is only carried out on one 

strut. The other struts represent actually a typical and 

mirror image of the first. A free-body diagram of an 

incremental element of the strut is shown in Fig. 4. 

Under the existing load on the isolator, Fi, the strut 

deflects from the initial configuration to a new position 

Yi,st(S). The following equations are derived to 

describe the shape of the strut: 

 
Fig. 4 Free body diagram of an element of the strut in 

equilibrium case 
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Where 











 




i

o

i

st,i

dS

d

dS

d
is the change in curvature. Note 

that the bending stiffness EI for each strut is multiplied 

by a modification factor i . The stiffness modification 

factors will be chosen so that the downward deflection 

at the top of each strut due to the static load Fi is the 

same for all four isolators. In other words, each isolator 

will have the same initial height Ho when the system is 

in equilibrium. 

Taking the derivative of equations (5, 6 and 10) gives: 
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The struts are made of an elastic material to support 

a static load up to the critical point, at which the strut 

buckles. This critical point is known as the Euler 

buckling load and its value depends upon the support 

end conditions. For a fixed-fixed strut (not allowed to 

rotate or to deflect transversely) the critical load is 

given by Pcr = 4 2 
EI / L

2
. For a pinned-pinned strut 

(free to rotate transversely) the critical load is given by 

Pcr =  2 
EI / L

2
, (Inman (1994). 

The variables have been normalized so that the 

analysis provides relevant results for any elastic 

material, regardless of its geometric and material 

properties.  

The resulting non-dimensional Eqns. (7–13) 

equations defining the behavior of the i
th

 strut under 

static loading (for 0 s 1) are,  
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The boundary conditions must be established to 

complement the differential Eqns. (14–19). The fixed-

fixed end condition of the strut does not allow any 

rotation at its ends, but it allows only small deflection 

(lateral movement) in the Y -direction, Fig. 1. 

2.2 Boundary conditions for static equilibrium state 

The boundary conditions of the treated model in static 

equilibrium state can be written as follows 

At st,is = 0; xi,st = 0, yi,st = 0, and   i,st = 0                  

   (the left, or bottom, end of the strut) 

At st,is = 1;  y1,st = y3,st,  y2,st = y4,st and   i,st = 0  

      (the right, or top, end of the strut) 

From Figs. (1 and 2), Fi,st = 2Pi,st. Recall that Eq. 4 is 

still in terms of the total forces applied to the isolator 

rather than the axial forces in each strut. 

Furthermore, Eq. 4 is in terms of the displacements 

at the corners of the plate. From continuity, the vertical 

displacement at a given corner is equal to the X -

direction displacement at the end of the strut of the 

isolator attached at that corner. Specifically, ZO = 

X1,st(L), ZP = X2,st(L), ZQ = X3,st(L) and ZR = X4,st(L). 

Substituting these relationships into Eq. 4, the 

following equations ensue: 

  2/wFppp st,4st,3st,2st,1                 (20) 

  0b)pp(b)pp( 2st,4st,31st,2st,1      (21) 

  0a)pp(a)pp( 2st,4st,21st,3st,1      (22) 

  0)l(x)l(x)l(x)1(x st,4st,3st,2st,1      (23) 

A computer program has been implemented as an 

interface to Mathematica, Ver. 5.2 (Wolfram Research, 

Inc. (2005)) to solve the system of differential Eqns. 

(14-19). Based on the given initial value of load, po, the 

implemented program solves for the value of the 

moment, m at the left end, or bottom, of the strut (s=0). 

Because of the nonlinearity of the system of equations, 

the solution is based on an iterative algorithm making 

use of the shooting method. The iteration is based on 

an initial guess for the moment, m. 

 

3   Dynamic analysis 

3.1 Dynamic analysis procedure 

Within the dynamic model the symmetric plate is 

assumed to be subject to a forced axial harmonic 

vibration as per Den Hartog (1985) (axial base 

displacement) as shown in Fig. 5. Similar to the static 

equilibrium analysis, the derivation of the equations of 

motion for the dynamic analysis is also divided into 

two parts. First, the equations of motion for the rigid 

plate are determined from the kinetic and potential 

energies in the system using Lagrange’s equations. 

Second, the strut in each isolator is analyzed using 

D’Alembert’s principle. All dynamic equations are 

liberalized for small motions and put in non-

dimensional form. A program written in Mathematica 

is used to numerically solve these equations to 

determine the motion transmissibility of the system. 
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Fig. 5 The components Of model for the dynamic state 

3.1.1 Rigid plate analysis 

The Z,Y,X coordinate system is fixed in space as 

shown in Fig. 6 and has unit vectors ĵ,î  and k̂ . The 

angles ,  and  are used to define coordinate 

rotations about the Y,X  , and Z axes, respectively, 

and are initially zero. The points O, P, Q, and R are 

located at the bottom of each corner of the plate, and 

the plate has an initial height Ho when the system is in 

static equilibrium state. The center of mass (labeled 

c.m. in Fig. 6) is indicated by the dimensions A1, A2, 

B1, and B2, and it is positioned at a distance C
c 

above 

the bottom of the plate. 

The equations of motion for the plate will be 

determined using Lagrange’s equations. Thus, it is 

necessary to determine the kinetic and potential 

energies of all components of the system. Because it is 

desirable to preserve symmetry in the model for the 

vibration isolator, horizontal springs are added to the 

corners of the plate to simulate the horizontal 

resistance contributed by the isolators when the plate 

rotates. Because this horizontal motion is very small, 

this assumption should have a minimal effect on the 

results of this analysis. The springs are numbered 1 – 8 

and attach to the plate as shown in Fig. 10. 

 The plate has both rotational and translational 

kinetic energy. The equations of motion for the plate 

become: 

  d,Od,Q YY             (24) 

  d,Od,P XX                    (25) 
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Fig. 6 Initial configuration of the plate 

3.1.2 Analysis of the vibration isolator 

In Den Hartog (1985) as well as in the present work 

the strut is assumed to take a horizontal position as 

shown in Fig. 7, such that the base lies at the left side 

of strut, at which the excitation force acts. Fig. 6 shows 

the isolator subjected to a harmonic base excitation 

U(T), where U(T) was defined as )Tsin(U)T(U o  . 

This imposed base displacement is resisted at the top of 

the isolator by the force Fi, which is now a portion of 

the combined effects of the weight W of the plate and 

the inertial load from the mass of the plate. In the 

analysis of the vibration isolator, it is again assumed 

that the horizontal movements XO,d, XP,d, XQ,d, XR,d, 

YO,d, YP,d, YQ,d, and YR,d (generated by rotation angle   

about X -axis and angle  about Y -axis)at the 

corners of the plate are small enough that they can be 

neglected and symmetry can be used in the analysis of 

each isolator. It can be noticed that the deflection is a 

function of position along the strut, L and time, T. 
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Fig. 7 Strut under forced harmonic vibration 

In the present case we deal with linear viscous 

damping, i.e., the relationship between the damping 

force and the velocity of the system is linear. The 

analysis revealed that damping has a negligible effect 

on the transmissibility. The damping effect cannot be 

determined from geometrical, material, or other 

physical properties of the strut element. Hence, The 

damping effect can be determined through experiments 

such as a free vibration test. In any case, damping is 

present and must be taken into account.  

To analyze the strut under forced harmonic 

excitation, a free body diagram of forces acting on an 

element at a particular time and position should be 

considered as shown in Fig. 8. This can be done by 

making use of  D’Alembert’s Principle, which is based 

on a fictitious inertia force that is set equal to the 

product of the mass and the acceleration. This force is 

assumed to act in the opposite direction of the 

accelerating mass. Hence, at any particular instant, the 

strut is considered to be in a state of static equilibrium 

Chopra (2001).  

Notice that the mass per unit length of the strut is 

multiplied by the factor i  that was used to adjust the 

bending stiffness EI in the equilibrium analysis. 

Assuming that the same material is used in each strut 

(i.e., the modulus of elasticity E remains constant), the 

bending stiffness can be modified by changing the 

cross-section of the strut so that the moment of inertia 

about the axis of bending becomes i I.  

From the geometry, equilibrium, and the elastic 

constitutive laws for the strut, the following 

relationships can be established for the strut subjected 

to forced harmonic vibrations. The governing variables 

describing the strut can now be written as a function of 

time and location along the strut to describe the 

response of the strut to the forced excitation. The 

subscript “st” represents the static equilibrium portion 

of the equation, and “d” represents the dynamic 

portion, these equations are written below: 
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Fig. 8 Free body diagram of element of strut in 

dynamic state 
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The variables describing the strut can now be 

written as a function of time and location along the 

strut to describe the response of the strut to the forced 

excitation. It is assumed that the dynamic vibrations 

will be relatively small. Hence, small displacement 

theory can be used to derive the following linear 

dynamic relationships. These equations are written 

below in non-dimensional form:  

  d,Od,Q yy             (37) 

  d,Od,P xx                 (38) 

The equations of motion for the plate can be written as: 
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Similarly, the dynamic equations for the strut can be 

written as: 
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3.2 The boundary conditions for dynamic state 

The boundary conditions at each end of the strut can be 

written in a non-dimensional form: 

At is = 0;   xi,d = uo,  yi,d = 0, and    i,d = 0   

     (the left, or bottom, end of the strut) 

At  is = 1;   y1,d = y3,d,  y2,d = y4,d, y1,d = y4,d, y2,d = y3,d  

and  i,d = 0    (the right, or top, end of the strut) 

Similar to the static solution, the governing 

differential equations can be implemented in 

Mathematica to solve for the dynamic transmissibility. 

The moment mst determined from the equilibrium 

analysis is used as initial value in the dynamic analysis 

to determine the dynamic transmissibility. Other 

known values of the initial load po, the amplitude of 

excitation at the base uo, the stiffness parameter, r, and 

the external damping parameter, c, are defined and 

used as input in the program. Repeatedly, the iterative 

scheme based on the use of the shooting method is 

implemented to solve the equations; with the following 

initial variables dp (0), dq (0), and dm (0). To increase 

the convergence, the resulting variables: dp (0), dq (0), 

and dm (0), are updated by adding weighted 

percentage of their initial values, are then used as a 

guess for the next iteration in the loop.  

The dynamic transmissibility of the system is the 

ultimate goal of this work. The equations used to 

determine the transmissibility is given below. 

As mentioned before, we deal herein with a 

displacement transmissibility. The implemented 

algorithm is programmed again by Mathematica to 

solve for the real and imaginary parts of the solution. 
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The square root of the sum of the squares (SRSS) 

of the real and imaginary eigen values are used to 

calculate the displacement of the strut at the top under 

the acting dynamic load. The SRSS is then divided by 

the original amplitude of the base, uo, to determine the 

dynamic transmissibility. Because each strut underlies 

the same amplitude and frequency, the dynamic 

transmissibility calculated at the top of each strut is the 

same at the center of the rigid plate. 

 

4 Results and Discussion 

Using the Mathematica program, the equations of 

motion derived in this research for the system are 

numerically solved. The system is analyzed for the 

fully symmetric case, i.e., the center of mass is 

positioned at the geometric center of the plate, as 

shown in Fig. 9.  
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Fig. 9  Location of the center of mass 

The transmissibility is computed and plotted for a 

wide range of non-dimensional excitation frequencies. 

The transmissibility plots are used to recognize 

frequencies at which resonance occurs in the system 

and frequency ranges in which the transmissibility is 

small.  

The equations of motion are solved for the case 

shown in Fig. 9. The non-dimensional weight w is set 

at 320, as was done in the equilibrium analysis. 

Similarly, the stiffness kj of the eight horizontal springs 

attached to the plate are each set at 0.1 as shown in Fig. 

10. The aspect ratio   of the plate is set equal to 1, i.e. 

the plate remains square in this analysis. This will 

allow for a special case of symmetry to be analyzed 

which only exists for a square. The plate dimension h1, 

required to calculate the vertical distance c
c
 to the 

center of mass and the mass moments of inertia, ix and 

iy, are set equal to 0.05. The stiffness modification 

factor i for the symmetric plate was assumed equal  to 

1 and the equilibrium portion of the axial force pi,st, the 

shear force qi,st, and the bending moment mi,e for each 

strut are obtained from the equilibrium analysis. From 

the solution of the equations of motion, the 

transmissibility TR is calculated for various excitation 

frequencies   using Eqns. (50 and 51). 
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Fig. 10 Horizontal springs attached to plate 

 

The system is analyzed for the case where the 

center of mass is located at the geometric center of the 

plate, as shown in Fig. 9. To do this, the non-

dimensional variables a1 and b1 are both set as 0.5 in 

the program. Because of the symmetry, the plate does 

not rotate and there is allowed movement in Y-

direction for this case. 

a. For static state 

Before the dynamic results is discussed, it is helpful to 

see how the different values of the amplitude of the 

deflection of the pre-bent struts, ao, the initial static 

load, po, and the filler stiffness, kf, affect the 

equilibrium shape of the struts. From Eq. 6, the 

maximum initial deflection at mid-height of the struts 

can be determined for each of these values of ao. For ao 

= 0.01, yomax = 0.00318; for ao = 0.05, yomax = 0.0159; 

and for ao = 0.1, yomax = 0.0318. These values are 

normalized by the strut length, therefore the largest 

amplitude of ao = 0.1 provides a maximum initial 

deflection of the strut at its midpoint equal to 

approximately 3.2% of its length. This doesn’t seem 

like a very large deflection, but after the struts are 

loaded statically with a value of po = 40, the deflection 

at midheight of the strut is 0.24 (i.e., 24% of the strut 

length) for ao = 0.1 and a filler stiffness kf = 0.1. 

Therefore, the maximum ao to be used in the dynamic 

analysis is 0.1. The moment and shear force acting on 

the struts in equilibrium state are equal for both struts. 

Their values are calculated (m = 4.83007 and q = 

5.967*10
-7

).  

It is worth to mention that the direction of the 

buckled struts for the symmetric case can be outwards 

or inwards, as shown in Fig. 11. By giving positive 

value for m1 and a negative value for m2, the struts 

buckle outwards. By reversing the sign of the initial 

values the struts buckled inwards. The magnitude of 

the equilibrium moment and shear force doesn't change 

in case of inward buckling. 
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Fig.  11 The buckled struts for the equilibrium 

       symmetric case 

b. For dynamic state 

The resonance frequencies represent an essential 

characteristic of the system. A resonance frequency can 

be determined by locating a frequency at which an un-

damped system’s transmissibility is infinite. By setting 

the value of the external damping parameter c equal to 

zero, the un-damped case can be analyzed and the 

resonance frequencies can be found. When the 

transmissibility is plotted versus the non-dimensional 

frequency,  , the resonance frequencies are easily 

identified in the un-damped case by the highest peaks 

on the plot.  

First the transmissibility was determined for the 

values of the filler stiffness, the case of kf = 0.1, po = 

40, ao = 0.1, c = 1.0, and r = 1.0, in order to study the 

effects of the filler stiffness is plotted against the 

frequency in Fig. 12. By observing this plot, it is 

interesting to note that even though the stiffness of the 

strut was constant by one. 

The transmissibility of the system is calculated for 

a range of non-dimensional applied frequencies from 

0.01 to 200. The case is plotted against the frequency 

in Fig. 12. As can be seen, four peaks of the 

transmissibility are indicated. These peak frequencies 

are located at = 8.1, 47.0, 80.0, and 142.0, 

respectively. Between each of these peaks, the 
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transmissibility drops well below unity for a wide 

range of excitation frequencies. The region between the 

first and second peak is of particular interest because it 

is likely that this isolation device would be used to 

isolate vibrations in this range of frequencies. Then the 

transmissibility is less than unity from  (30.0 to 44.0), 

 (53.0 to 77.0),  (81.0 to 134.0) and  (150.0 to 

200.0). After = 200.0 the isolation is good because 

the transmissibility less than unity.  
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Fig. 12 Transmissibility vs. frequency for symmetric 

  plate case with allowinga lateral motion of the rigid 

  plate  by  two  struts  with  filler  in  each  corner, 

  case (a1 = 0.5, b1 = 0.5) 

The transmissibility vs. frequency for the 

symmetric plate case with allowing a lateral motion of 

the rigid plate supported by two struts at each corner 

and without filler is shown in Fig. 13. When observing 

the transmissibility plots in Figs 12 and 13, they look 

quite similar. They each have four significant 

frequency peaks. 

The transmissibility vs. frequency for the 

symmetric plate case with allowing a lateral motion of 

the rigid plate supported by pair struts at each corner 

with and without filler is shown in Fig. 14. 

Transmissibility vs. frequency for the symmetric plate 

case without allowing a lateral  motion  of  the rigid  

plate  by pair struts with filler at each corner, case (a1= 

0.5, b1= 0.5) (Jeffers (2005)). 
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Fig. 13 Transmissibility vs. frequency for symmetric 

plate case with allowing a lateral motion of the rigid 

plate by two struts without filler in each corner, case 

(a1 = 0.5, b1 = 0.5) 
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Fig. 14 Transmissibility vs. frequency for symmetric 

  plate case with allowing a lateral motion of the rigid 

  plate  by  pair  struts  with  and without filler in each 

  corner, case (a1 = 0.5, b1 = 0.5) 

 
   Fig. 14 Transmissibility  vs.  frequency  for  the 

        symmetric plate case without  allowing  a lateral 

      motion  of  the rigid  plate  by two struts in every 

        corner, case (a1= 0.5, b1= 0.5), Jeffers (2005)  

As shown in figs 12-15 and tables 1, 2 the 

transmissibility peaks in the case of allowed lateral 

motion of the plate, which supported by four pairs strut 

with filler are located at higher frequencies than those 

of without filler and without lateral motion. Table 1 

shows the peak frequencies of vibration with allowing 

lateral motion by using four pairs of strut with 

intermediate bonded filler at each corner (case-a), with 

allowing lateral motion by using four pairs of strut 

without intermediate bonded filler at each corner (case-

b) and without allowing lateral motion by using four 

pairs of strut with intermediate bonded filler at each 

corner (case-c). 

From table 1 it is evident that the peak frequencies 

 1 and  3 are higher in case of our calculation with 

the existing of lateral motion than the corresponding 

values calculated in (Jeffers (2005)) without lateral 

motion. To further illustrate the increase in each of the 

frequency peaks for the different cases, the results have 

been tabulated for comparison in table 1. 

Each peak frequency that occurred in the range of 

frequencies studied has been named in order from the 

lowest,  1, to the highest,  4. The deviation of the 

peak frequency at  1 equals 88.5%. At  3 the 

deviation is 1.875%.  

Table 2 shows the transmissibility of vibration with 

allowing lateral motion by using four pairs of strut with 

intermediate bonded filler at each corner (case-a), with 

allowing lateral motion by using four pairs of strut 
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without intermediate bonded filler at each corner (case-

b) and without allowing lateral motion by using four 

pairs of strut with intermediate bonded filler at each 

corner (case-c).  

To further illustrate the increase in each of the 

frequency peaks and the transmissibility for the 

different cases, the results have been tabulated for 

comparison in tables 1 and 2. Each peak frequency that 

occurred in the range of frequencies studied has been 

named in order of the lowest,  1, to the highest,  3 

and 4. From table 2, the transmissibility at first, 

second and fourth peaks frequency in case-a are larger 

than in case-b and case-c but the transmissibility at 

third peaks frequency in case-a is smaller than in case-

b and case-c. 

Table 1 Peak frequencies for three cases (a, b and c), 

(a1 = 0.5, b1 = 0.5) 

Case  1  2  3  4 

Case (a) with filler      (with 

lateral) 
8.10 47.0 80.0 142 

case (b)  without  filler 

(with lateral)
 3.42 44.4 92.7 174 

case (c) with filler   

(without lateral)
1
 

0.92 44.5 78.5 ---- 

          1
 as per Jeffers (2005)  

Table 2 Transmissibility of vibrations for three cases 

(a, b and c), (a1 = 0.5, b1 = 0.5) 

Case TR1 TR2 TR3 TR4 

Case (a) with filler  (with 

lateral) 
6945 8.72 4.11 8.75 

case (b)  without  filler 

(with lateral)
 1565 5.96 227.4 6.53 

case (c) with filler 

(without lateral)
1
 

1043 5.1 0.23 ---- 

 

5 Conclusions 
The proposed isolation device has the ability to support 

a relatively large static load with a relatively small 

static deflection than the traditional vibration isolators 

and offers a low axial resistance under dynamic 

excitation, making it ideal for isolating vertical 

vibrations. By examining the results of model 

described, the following conclusions can be drawn: 

 The use of post-buckled struts as vibration 

isolators provides a wide range of frequencies at 

which the transmissibility is well below unity,  

 The direction of the horizontal deflection of the 

buckled struts, whether inwards or outwards, has 

no effect on the equilibrium moment and shear 

force and in turn on the transmissibility. 

 Tuned isolators can provide improved vibration 

isolation, even lateral motion is allowed. 

 The transmissibility doesn’t differ substantially in 

shape. This is true if lateral motion is allowed or 

not. However, lateral motion improves the 

magnitude of transmissibility, and respectively the 

efficiency of vibration isolation, especially at high 

frequencies. 

 The transmissibility at any point on the 

transmissibility vs. frequency curves other than 

the peak frequencies are well below 1.  

 It is apparent that the behavior of the ideal case of 

the model presents the best situation for utilizing 

post-buckled struts as vibration isolators.  

 The transmissibility peaks in the case of allowed 

lateral motion of the plate are located at higher 

frequencies than those of without lateral motion. 

 Several things were also learned about the model 

presented – pre-bent pairs of struts with an 

intermediate bonded filler. Filler stiffness would 

have to be chosen based on the requirements of 

both the static and dynamic behavior of the 

system. 

 The presence of the Filler increases the 

transmissibility at lower frequencies and higher 

frequency ( 4). But decreases the transmissibility 

at frequency ( 3). 

 

References 
1 Alloway, L.A.: Analysis of buckled columns and 

rigid-link mechanisms used as vibration isolators. 

M. E. Report, Virginia Tech (2003) 

2 Banik, R. and Gweon, D.G.: Design of six degree 

of freedom hybrid active-passive vibration 

isolator using voice coil actuator. Int. J. 

Nanomanufacturing, Vol. 1, No. 6, pp.771-783 

(2008) 

3 Britvec, S.J.: The Stability of Elastic Systems. p. 

190, Pergamon Unified Engineering Series, 

Oxford (1973) 

4 Carrella, A., Brennan, M.J., and Waters, T.P.: 

Static analysis of a passive vibration isolator with 

quasi-zero-stiffness characteristic. J. Sound Vib. 

301 pp.678–689, doi:10.1016/j.jsv.2006.10.011 

(2007) 

5 Carrella, A., Friswell, M.I., Zotovb, A., Ewins, 

D.J., and Tichonov, A.: Using nonlinear springs 

to reduce the whirling of a rotating shaft. 

Mechanical Systems and Signal Processing 23, 

pp.2228–2235 (2009) 

6 Chopra, A. K.: Dynamics of Structures-Theory 

and Applications to Earthquake Engineering. 2
nd

 

edn, Prentice Hall, Upper Saddle River, New 

Jersey, 01 (2001) 

7 Den Hartog, J.P.: Mechanical vibrations. Dover 

Publications, New York (1985) 

8 Dickens, J.D. and Norwood, C.J.: Universal 

method to measure dynamic performance of 

vibration isolators under static load. J. Sound Vib. 

244(4), pp.685-696, doi:10.1006/jsvi.2000.3516 

(2001) 

9 El-Kafrawy, A. et al.: Vibration isolation of a 

symmetric and asymmetric rigid bar using struts 

subject to axial static and dynamic excitation. 

Proc. IMechE Vol. 225, Part C, pp.334-346, 

DOI:101243/09544062JMES2125 (4 May 2010) 

10 El-Kafrawy, A. et al.: (28 September 2010) 

Vibration isolation of a symmetric rigid plate 

using struts subject to axial static and dynamic 

http://www.metapress.com/content/120400/?p=3837329b89bc43019271e06a320f1624&pi=0
http://www.metapress.com/content/120400/?p=3837329b89bc43019271e06a320f1624&pi=0
http://www.metapress.com/content/h8r4hk024124/?p=3837329b89bc43019271e06a320f1624&pi=0


 40 

excitation. Int. J. Mech. Mater Des, DOI 

10.1007/s10999-010-9135-1, Springer (28 

September 2010) 

11 Favor, H. M., Plaut, R. H., Via, C. E.: Two-

dimensional Analysis of Vibration Isolation of 

Rigid Bar Supported by Buckled or Pre-bent 

Struts. Blacksburg, VA, December 3, (2004) 

12 Huang, X., Elliott, S.J., and Brennan, M.J.: 

Active isolation of a flexible structure from base 

vibration. J. Sound Vib.263, pp.357–376, 

doi:10.1016/S0022-460X(02)01057-X (2003) 

13 Ibrahim, R.A.: Recent advances in nonlinear 

passive vibration isolators. J. Sound Vib. 314, 

pp.371–452,doi:10.1016/j.jsv.2008.01.014 (2008) 

14 Inman, D.J.: Engineering vibration. Prentice-Hall, 

Englewood Cliffs, NJ. Jalili, N., A new 

perspective for semi-automated structural 

vibration control (1994) 

15 Jeffers, A.E., Plaut, R.H., and Via, C.E.: 

Vibration isolation of a horizontal rigid plate 

supported by Pre-bent Struts. Blacksburg, VA, 

December (2005) 

16 Kovacica, I., Brennanb, M.J., and Waters, T.P.: A 

study of a nonlinear vibration isolator with a 

quasi-zero stiffness characteristic. J. Sound Vib. 

315 pp.700–711, doi:10.1016/j.jsv.2007.12.019 

(2008) 

17 Liu, L.K., Zheng, G.T., Huang, W.H.: Octo-strut 

vibration isolation platform and its application to 

whole spacecraft vibration isolation. J. Sound 

Vib. 289, pp.726–744, doi:10.1016/j.jsv.2005. 

02.040  (2006) 

18 Plaut, R.H., Alloway, L.A., and Virgin, L.N. : 

Nonlinear oscillations of a buckled mechanism 

used as a vibration isolator. In: Proceedings of the 

IUTAM Symposium on Chaotic Dynamics and 

Control of Systems and Processes in Mechanics, 

Rome, Italy, Vol.122, 241-250 (2003) 

19 Plaut, R.H., Sidbury, J.E., and Virgin, L.N.: 

Analysis of buckled and pre-bent fixed-end 

columns used as vibration isolators. J. Sound Vib. 

283, pp.1216–1228, oi:10.1016/j.jsv.2004.07.029 

(2005) 

20 Serrand, M. and Elliott, S.J.: Multichannel 

feedback control for the isolation of base-excited 

vibration. J. Sound Vib. 234(4), pp.681-704, 

doi:10.1006/jsvi.2000.2891 (2000) 

21 Sidbury, J.E.: Analysis of buckled and pre-bent 

columns used as vibration isolators, M.Sc. Thesis, 

Virginia Polytechnic Institute and State 

University, Blacksburg, VA, (2003) 

22 Virgin, L.N.: The dynamics of symmetric post-

buckling. Int. J. Mech. Sci. 27, 235–248, (1985) 

23 Virgin, L.N., Davis, R.B.: Vibration isolation 

using buckled struts. J. Sound and Vib. 260, 965–

973 (2003) 

24 Wolfram Research, Inc.: Mathematica, Version 

5.2.0.0. Champaign, IL 61820 USA (2005) 

25 Yilmaz, C., Kikuchi, N.: Analysis and design of 

passive low-pass filter-type vibration isolators 

considering stiffness and mass limitations. J. 

Sound Vib. 293, pp.171–195, doi:10.1016/j.jsv. 

2005.09.016 (2006) 

26 Zhou, N. and Liu, K.: A tunable high-static–low-

dynamic stiffness vibration isolator. J. Sound Vib. 

329 pp.1254–1273, doi:10.1016/j.jsv.2009.11.001 

(2010) 

 

 

 


