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ABSTRACT
Application of artificial neural networks (ANNSs) rdel to design the mix
component of self compacting concrete (SCC) witlsirdele properties,
compressive strength and slump flow, is describetlis research
Artificial Neural Networks (ANNs) have recently beentroduced as an
efficient artificial intelligence modeling techniguor applications involving a
large number of variables, especially with highlgninear and complex
interactions among input/output variables in a eystwithout any prior
knowledge about the nature of these interactioraiods types of ANN
models are developed and used for different prokleim this paper, an
artificial neural network of the feed-forward bagtepagation type has been
applied for the prediction of self compacting cater mixtures. The main
targets are SCC components and the inputs inteameadompressive strength
and slump flow. Due to the complex non-linear dffeiccompressive strength
and slump flow properties on the SCC componenesAIKN model is used to
predict the components of SCC parameters (mix coems). SCC component
parameters were outputted according to a multi sniaken from 34 papers [1-
34] related with self compacting concrete which taors the compressive
strength and slump flow test results. Mix componaities are considered as
the aim of the prediction. A total of 225 specimevere selected from the
laboratory results of about 34 researches. Thesyatas trained and validated
using 150 training mixes chosen randomly from th&éadset and tested using
the remaining 75 mixes. About 20 mixes of experitae8CC not found in the
entered data were performed experimental in o@sinmiulate the program and
compare between experimental and predicted mixydesi
Results indicate that SCC components can be peedigith reliable values
to the experimental results using the ANN method.
Keywords: Self compacting concrete; Compressive strengtim§l flow;
Neural Network.
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1. INTRODUCTION

Concrete has been used as a construction materiahdre than a century. During
this period of time, concrete has undergone a goatis development, e.g. the growing
use of secondary cementitious materials in the ibingohase. The use of binder
admixtures in the production of concrete with erteghperformance (also known as
High Performance Concrete or simply HPC) has recke& great amount of attention
recently [35].

One of the most important binder admixtures to roffesignificant contribution to
HPC production is silica fume, a pozzolanic matdfé,37].

Concrete, as a non-homogeneous material, condisteparate phases; hydrated
cement paste, transition zone and aggregate. Ajthooost of the characteristics of
concrete are associated with the average chastaterof a component microstructure,
the compressive strength and failure of concreter@ated to the weakest part of the
microstructure. Cement paste properties are of tgeégnificance in concrete
technology. The compressive strength of cementepiasmainly related to Van der
Walls forces. Therefore, the more compacted thecred®, the higher is the
compressive strength. One porosity reducing faistdahe water-cement ratio and the
other factor that affects concrete porosity i€filnaterials, such as silica fume [36,37].

In recent years, ANNs have shown exceptional pevdmce as regression tools,
especially when used for pattern recognition amttion estimation. They can capture
highly non-linear and complex relations among ifqutput variables in a system
without any prior knowledge about the nature obthimteractions.

Unlike traditional parametric models, these modale able to construct a
supposedly complex relationship between input artgut variables with an excellent
level of accuracy compared with that of conventiongethods [38]. The main
advantage of ANNSs is that one does not have tonassun explicit model form, which
is a prerequisite in the parametric approacheedddin ANN models, a relationship
of a possibly complicated nature between input@urgut variables is generated by the
data points. In comparison to parametric methoddN# can deal with relatively
imprecise or incomplete data and approximate resalhd are less vulnerable to
outliers. They are highly parallel, that is, theimerous independent operations can be
executed simultaneously [39]. Basma et al. [40ppsed a method for the prediction
of cement degree of hydration using ANN.

The results indicated that the ANNs are very dffitiin predicting the concrete
degree of hydration with great accuracy using matiprocessing data. Nehdi et al.
[41] applied a neural network model for performedrh cellular concrete. Results
showed that the production yield, foamed densitgfoamed density and the
compressive strength of cellular concrete mixtuces be predicted much more
accurately using the ANN method compared to exggpirametric methods. Marianne,
T.J. [42] designed a neural network to investighé&einfluence of different parameters
on the salt frost resistance of concrete. Ju-WoneOARl. [43] developed an ANN
model for the proportioning of concrete mixturesshdi et al. [44] used an ANN
model for predicting the performance of self-contpar concrete mixtures. Zong,
Gung and Yun [45] utilized an automatic knowledgejasition system, based on
neural networks, to design concrete mixtures. latar work, Gung and Zong [46]
proposed a method to predict 28-day compressiengiin by using multi layer feed
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forward neural networks. Lai and Serra [47] devebbp model, based on neuro
computing, for prediction of the compressive stthraf cement conglomerates.

Yeh [48] developed a strength based Artificial NgUNetwork (ANN) model, which
was found to be more accurate than the one baseshogssion analysis.

It was also discovered that his ANN model gave teailed effects of the
proportions of each variable from the concrete umeg. Dias and Pooliyadda [49]
used back propagation neural network models toigreéde strength and slump of
ready mixed ordinary concrete and high strengthcia, in which chemical
admixtures were used. Attempts have been madeeipdht to devise a kinetic model
for cement paste properties to predict the phenanwacurring in concrete, but the
focus of these models has been on predicting denstbmpressive strength,
deformation under loading, the cracking of suffitig hardened concrete and etc. The
models have not yet reached the stage where theyexplain the changes in the
physical properties of the cement paste portiothefconcrete [39-49]. Predicting the
properties of cement paste is of great significaarm difficult to achieve as a function
of the mixture gradient and physical properties coihcrete, hence, a nonlinear
prediction model needs to be considered. The umo@ds associated with the
parameters affecting the SCC mixture of cementepasike it difficult to exactly
estimate such properties [36,39]. Knowing the prige of cement paste, a better
understanding of concrete performance propertiededaken into account [36,37].

Considering the influence of silica fume on thensition zone and cement paste and
the complex and nonlinear effect of silica fume aamcrete cement paste, a set of
experiments were carried out on cement paste wifferent water-cementitious
materials and silica fume unit contents, in oraemnivestigate the effect of silica fume
on cement paste. An ANN model is then developededban the data produced, to
predict SCC mixture parameters.

2. NEURAL NETWORKS

ANN modeling, a paradigm for computation and knalgle representation is
originally inspired by the understanding and aletiva of the biological structure of
neurons and the internal operation of the humambfaneural network is a network
of many simple processors that are called nodesaultilayer perceptron may be
thought of as consisting of layers of parallel datacessing cells. Each node (neuron)
has a small amount of local memory. Nodes in tipaitilayer only act as buffers for
distributing the input signals to nodes in the leiddayer. The nodes are connected by
connections; each usually carrying numeric dateedaleights, encoded by any of the
existing methods. Each node in the hidden layerssum its input signals after
weighting them with the strengths of the respectiwanections from the input layer
and computes its output as a function of the sume. fodes operate only on the local
data and on the inputs they receive by the cororextiThe differences between the
computed output and the target are combined togéthan error function to give the
network the verification set, and used to keepnailependent check of the progress of
the algorithm. Training of the neural network i®mied when the error for the
verification set begins to increase [38,39,43].

The main principle of neural computing is the deposition of the input-output
relationship into a series of linearly separabépstusing hidden layers [39].

There are three distinct steps in developing an Adkkd solution:
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1. Data transformation or scaling;

2. Network architecture definition, where the numbghidden layers, the number of
nodes in each layer and the connectivity betweemditles are set;

3. Construction of a learning algorithm in ordetrtn the network [38,41].

Fig. (1) Shows the simple architecture of a typiroatwork that consists of an input
layer, hidden layers, an output layer and connestietween them.

Nodes in the input layer represent possible infiiaéfactors that affect the network
outputs and have no computation activities, whikdutput layer contains one or more
nodes that produce the network output.

Hidden layers may contain a large number of hidgescessing nodes. A feed-
forward back-propagation network propagates theriétion from the input layer to
the output layer, compares the network outputs Witbwn targets and propagates the
error from the output layer back to the input layesing a learning mechanism to
adjust the weights and biases [38,43].

In general, the net input to each node is calcdlate

Nt = Z wh xt=t 4 g
=1

J g

Where V\'/,i is the weight that connects node j in layer [ode@i in layer | -1; n is the
number of nodes in layer 1;-B'j is a threshold value assigned to node j in layantl
X" is the input coming from node i in layer | -1 tode j in layer |. The net input,'jN
is then modified by an activation function, f, tenggrate an output value, ',—Ygiven
by:

- ATl
1_.1' — f(‘m[_‘]')‘

Where f is a nonlinear activation function assigteéach node in the network. The
learning mechanism of this back-propagation netwsr& generalized delta rule that
performs a gradient-descent on the error spacerder to minimize the total error
between the calculated and desired values at tipeitdiayer during modification of the
connection weights. The implementation of this atgm updates the network weights
and biases in the direction in which the error dases most rapidly. Training is
accomplished in an iterative manner. Each iteratigptie involves the feed-forward
computation followed by an error-backward propagatio modify the connection
weights. Convergence depends on the number of hidklger nodes, learning rate
parameters and the size of the data set requiredraate the proper results.
Furthermore, there is no structured algorithm tdaiwbthe optimal structure and
parameters of neural networks; therefore, one shioudl the optimal network by trial
and error. The most interesting property of a netws its ability to generalize new
cases. For this purpose, an independent data gsedsto test the neural network and
check its performance. When verification and tesire are reasonably close together,
the network is likely to generalize well [38, 43].

Upon successful completion of the training procassgll-trained neural network is
not only capable of computing the expected outptimy input set of data used in the
training stage, but should also be able to prediéth an acceptable degree of
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accuracy, the outcome of any unfamiliar set of tripgated within the range of the
training data [3,41].
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Fig. (1)Creation of Neural Network and design tapy

3. SELECTION OF DATABASE

The selection of the database chosen to train eahaatwork such that it will be
capable of capturing the relationships betweerptbgerties of SCC and its mixtures
is of great importance. It must be trained on laagd comprehensive sets of reliable
experimental data that contain influential fact@garding SCC mixtures.

The data set for neural network analysis was aetulbsm the database of SCC
mixtures and its corresponding properties. The $@Kures were measured in the
laboratory by chosen several mixtures of SCC froinr&ferences. In this study,
cement (C), fine powder (P), fine aggregate (FAparse aggregate (CA),
superplastisizer (SP), viscosity enhancement gyéA) and water-cementitious ratio
(W/IC) were used for the production of SCC with dediproperties, compressive
strength and slump flow. Type of cement used wap€T) of 161 to 680 kg/frwith
the W/C of 0.24 to 0.58 and silica fume unit cotgesf 0.0 kg/ m3 to 493 kg/ hand
fine aggregate of 263 to 1270 kg/and coarse aggregate of 370 to 1217 kiwirere
VEA was 0 to 5.7 kg/ m3 were used to prepare tleeigpens. All the specimens were
cured for 28 days at an average temperature . 2lhis led to the development of a
large number of data sets. Table (1) shows theesangverage values and standard
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deviation of all relevant parameters. Ultimately,t@al of 225 data pairs have,
therefore, been selected from the experimentabdaty as stated before.

Table (1) Range, average and standard deviation of measured input and

output variables.

variables Range Average Standard deviation
Y1 (F) 200-950 kg/crh 498.1785 150.2768
Y2 (Slump flow) 440-930 mm 701.36 88.13144
X1 (C) 161-680 kg 359.5326 96.68018
X2 (P) 0-493 kg 155.3457 75.16052
X3 (FA) 263-1270 kg 850.3273 118.2341
X4 (CA) 370-1217 kg 795.5567 104.9805
X5 (SP) 0.4-30 kg 7.317022 4.601536
X6 (VEA) 0-5.7 kg 0.599932 1.243141
X7 (W/C) 0.24-0.58 0.36 0.047925

4. NEURAL NETWORK ARCHITECTURE

There is no effective procedure for identifying thyaimal architecture of a network
before training. However, it is important for thielteen layers to have a small number
of nodes. An excessive number of hidden nodes raagecthe network to memorize
the training data.

In such cases, the ANN would not be able to intetpaeffectively between adjacent
training data points. Too few hidden nodes, ondiftrer hand, will limit the network's
ability to construct an adequate relationship betwiaput and output variables [38].

The number of hidden layers and nodes are usuatbrhined via a trial and error
procedure.

There are some rules to estimate the number ofehidibdes. According to the
method suggested by Dave Anderson and George M{B&]i| an upper bound for the
number of processing nodes in the hidden layersbeacalculated by dividing the
number of input-output pairs in the training setthg total number of input and output
nodes in the network, multiplied by a scaling fadietween five and ten.

Larger scaling factors are used for relatively naiata.

Compressive strength and slump flow were repredehtethe two input nodes,
while the output layer contains seven nodes reptiegeThe cement, fine powder, fine
aggregate, coarse aggregate, superplastisizer, afigAvater cement ratio. Following
the guidelines suggested by Dave Anderson and @&ebtg\eill [38] and some
preliminary computations, a network architecturetaming two hidden layers was
adopted. The first hidden layer included fourteedas, while the second hidden layer
had ten nodes and a full connection between thesdad the adjacent layers was
selected. The network architecture can be seemmstiually in Fig. (2). A free access
ANN package (@ of the feed-forward back-propagation type waglusethis study
[50].
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Fig. (2) Architecture of neural network model

5. TRAINING OF ANN MODEL

The training procedure was carried out by presgntie network with the set of
experimental data in a patterned format. Eachitrgipattern includes an input set of
two parameters representing the compressive shreagd slump flow and a
corresponding output set representing SCC mixt{ihed is, cement, fine powder, fine
aggregate, coarse aggregate, superplastisizer, ®i&oh water cement ratio). The
network is presented with the variables in the inmctor of the first training pattern,
followed by an appropriate computation through tieeles in the hidden layers and
prediction of the appropriate outputs. The errdwieen the predicted output and target
value is calculated and stored. The network is gresented with the second training
pattern and so on until the network has gone thralgthe data available for training
the network.

The Root-Mean-Square (RMS) of the error is thenwated and back propagated to
the network. Biases and weights or the connectimangth between nodes are
modified during the back propagation phase suchttie (RMS) errors are reduced.
The process of the introduction of training inputput pairs to the network,
calculation of the (RMS) error and, finally, thejustment of weights and biases to
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reduce the (RMS) error are referred to as, onatiter. This process continues until
convergence is achieved or the maximum numbeeddtibns is reached [38, 41]. The
trained ANN model is represented by the conneatieights once the above procedure
is converged. This process is illustrated in F@). (Trial and error procedure are
illustrated in Table (2) where trial of hidden layavere carried out for the Neural
Network program in order to obtain optimum numbérhadden layers (hl) and
performance. Letter (x) represented the trial nunolbéayers. Second column of Table
(2) shows the number of trial for each number géta (x). Best trial was illustrated in
the third columns of the table whereas optimumauerfince illustrated in column 4.
After about 176 trials, Results indicated that ligat and performance occurred when
using two layers 14 and 10 consequently as hatchealumn 4.

Table (2) trial and error of hidden layers (hl) and performance

No. of hl | Number of trial (x) | Best trial Optimum
per formance
2-X-1 11 2-10-7 0.0118565
2-1-x-7 14 2-1-11-7 0.0143926
2-2-x-7 10 2-2-9-7 0.0128645
2-3-X-7 13 2-3-10-7 0.00904575
2-4-x-7 12 2-4-10-7 0.00880824
2-5-x-7 12 2-5-7-7 0.00851817
2-6-x-7 13 2-6-9-7 0.0083789
2-7-X-7 10 2-7-8-7 0.00655413
2-8-x-7 11 2-8-10-7 0.006472
2-9-x-7 11 2-9-9-7 0.00620846
2-10-x-7 10 2-10-10-7 0.0048537
2-11-x-7 12 2-11-8-7 0.00540072
2-12-x-7 12 2-12-10-7 0.00409228
2-13-x-7 13 2-13-12-7 0.00383568
2-14-x-7 12 2-14-10-7 0.00338147

To avoid the over-fitting of the neural network nebdo the data during iterative
training, a separate set of the data set was wsedlitlate the model at some intervals
during training. Training is stopped when the erf@r the validation set begins to
increase.

The network was trained and validated, based on tt&fing patterns chosen
randomly from the 225 available data sets. The r@n@ 75 pairs of independent data
were used to test the network after completionraihing and validation in order to
assess its performance on data to which it hasrimfere been exposed. The training
process and the associated ANNs analyses weredamt with an optimal value of
learning rate of 0.00338147and maximum numbereavhitons of 3000 with an error
goal of 0.000.
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6. RESULTS AND DISCUSSION

The network was trained to predict SCC mixturesigis total of 150 training and
validating data sets and 75 testing data setsrésgdia to 4g compare the output and
target values of SCC mixtures for all the 225 aldé data sets. Figures 5a and 5b
show the convergence characteristics of the ANNeahddring the training and testing
phases, respectively.
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Fig. (6) lllustrates the distribution of the netwautputs versus the target values for
the training data sets. All data points are disted along the optimal agreement line,
with the training and testing Root-Mean-Square (RMSors of 0.0338147 and
0.0208165, respectively. The correlation betweeadipted and measured SCC
components is seen to be satisfactory. It is gdélgermwer for powder,
superplastisizers and VEA values that is becausthade parameters includes zero
values in some mixes as indicated in Table (2)fanttes 4b, 4e and 4f. The relatively
larger prediction error and less correlation patansemay, therefore, be associated to
high variability in the mixture development ratltean the prediction method and may
be related to the different types of such materiakd in the training set targets. To test
the accuracy of the ANN model, the final traineddelowas called upon to recall the
data not used in the training process (150 mixes$ptal of 20 mixes, unfamiliar to the
network in the range of training data sets, weesg@nted to the ANN model and the
network was required to predict the SCC mixtureoeiséed with each mixture. The
mixture proportion and the measured and predicédalg are listed in Table (3).
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Table (3) Measured and predicted values of outputsvariablesfor data sets
used in testing of ANN model.

Testing data

Experimental Mix

Mix from ANN program

sets
" Eg;l:: SF el p | Al cal s YVElwe| c| P | Fa| cal sp| VE | wc
m2 mm A A
1 | 468 | 880 | 425 | 130 | 718 | 718 | 9.00 | 0.00 | 0.34 | 380 | 139 | 892 | 741 | 7.34 | 0.08 | 0.36
2 | 477 | 900 | 425 | 130 | 718 | 718 | 9.00 | 0.00 | 0.34 | 379 | 140 | 893 | 740 | 7.33 | 0.08 | 0.36
3 |462 | 870 | 425 | 130 | 718 | 718 | 9.00 | 0.00 | 0.34 | 380 | 139 | 892 | 741 | 7.34 | 0.08 | 0.36
4 | 411 | 777 | 425 | 130 | 716 | 716 | 10.8 | 0.00 | 0.34 | 380 | 139 | 892 | 741 | 7.34 | 0.08 | 0.36
5 |415 | 625 | 412 | 120 | 748 | 748 | 810 | 0.00 | 0.32 | 332 | 157 | 837 | 822 | 431|012 | 037
6 | 360 | 720 | 400 | 130 | 736 | 736 | 9.00 | 0.00 | 0.34 | 351 | 171 | 901 | 727 | 7.90 | 0.04 | 0.36
7 |556 | 740 | 350 | 182 | 917 | 917 | 2.79 | 0.00 | 0.37 | 380 | 139 | 892 | 741 | 7.34 | 0.08 | 0.36
8 |393 | 770 | 350 | 125 | 781 | 781 | 10.6 | 0.00 | 0.42 | 380 | 139 | 892 | 741 | 7.34 | 0.08 | 0.36
9 |387 | 760 | 350 | 125 | 781 | 781 | 12.5 | 0.00 | 0.42 | 380 | 139 | 892 | 741 | 7.34 | 0.08 | 0.36
10 | 720 [ 750 | 402 |71 | 941 | 941 | 142 | 0.00 | 032 | 439 |46 | 786 | 875 | 152 |0 | 0.35
11 | 426 | 740 | 334 | 100 | 776 | 776 | 5.70 | 0.00 | 0.38 | 380 | 139 | 892 | 741 | 7.34 | 0.08 | 0.36
12 | 412 | 695 | 300 | 211 | 718 | 718 | 8.20 | 0.00 | 0.34 | 365 | 119 | 829 | 833 | 7.55 | 0.15 | 0.37
13 | 640 | 630 | 497 |0 | 854 | 854 | 6.96 | 0.00 | 035 |464 |0 | 785 | 875 | 819 |0 |o035
14 | 554 | 743 | 350 | 175 | 723 | 723 | 6.60 | 1.75 | 0.37 | 380 | 139 | 892 | 741 | 7.34 | 0.08 | 0.36
15 | 358 | 650 | 161 | 241 | 864 | 864 | 3.45 | 0.40 | 035 | 258 | 220 | 857 | 801 | 3.31 | 0.12 | 0.38
16 | 343 | 622 | 248 | 191 | 720 | 729 | 8.00 | 0.00 | 0.45 | 253 | 216 | 855 | 814 | 3.72 | 0.11 | 0.38
17 | 430 | 610 | 286 | 190 | 753 | 753 | 5.80 | 0.00 | 039 | 331 | 157 | 837 | 821 | 432 | 012 | 0.37
18 | 450 | 650 | 286 | 190 | 713 | 713 | 7.00 | 0.00 | 0.39 | 337 | 152 | 836 | 823 | 4.32 | 0.12 | 0.37
19 | 389 | 540 | 197 | 197 | 956 | 956 | 2.80 | 0.56 | 0.35 | 223 | 223 | 871 | 800 | 2.89 | 0.09 | 0.39
20 | 358 | 650 | 161 | 241 | 864 | 864 | 3.00 | 0.40 | 0.35 | 258 | 220 | 857 | 801 | 3.31 | 0.12 | 0.38




Ashraf M. Heniegal

1+ o
y=0.9461x+0.0239
0.8 R-square=0.9473 ° ]
o q o ®
[2]
£ 0.6+ s
[=R
5
o
E 0.4
o A 1
2
3]
4
0.2 . . .
. No of points = (7*150) =1050 points
O -
L]
1 1 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Training tagets
Fig. (6) Network outputs vs targets
1.4
Target
1 _ i i _ EC mMP BFA EBECA BSP BWIC
121 B = A ANN R -
“|E s S Progran s S
N IE.r BB EaR [Ea R B R 18
s LHEEIEE B BTN NN
w H B HIE2 K A B H %
Z = gl 2l|= = =78
Z 0.8 1 B 11| B (B T E = m u
< z 5 = =
S = = 15 E ] R %
206 JHENGHENSHIENTHE ENT
> H = = =
o H = H H
S oa JHENL HIEN HIEN HE HENT
CIUEN N LN I : VRE
oz BN BN LN
= = el s % 8 4 H B
0 H - - - -
1 2 3 4 5 6 7 8 9 10

Test mixure number
Fig. (7) Ratio mix design proportion (program/experimental)



numerical analysis for prEdicting of self compagtooncrete ... |

As mentioned previously, a set of experimental datduding 225 pairs of data, was
used in this study, from which 150 training andideting patterns were chosen
arbitrarily and the remaining 75 pairs were usethaasured data, to test and verify the
efficiency and validity of the predicted values the network. A reliable agreement
between the measured and predicted values of SGI6se&rved, as shown in Fig. (7).

Results of program/experimental mix design ratiios0mixes of SCC are illustrated
in Fig. (7) Where the mix design prediction wasragjpmately closed to the target mix
in some mixes whereas other mixes were relativielsed to targets. The high range of
inputs data of compressive strengths and slumpsfl&¥) makes some properties of
compressive strengths and slump flows entered ¢optiogram are closed to each
others so, outputs may correlate to more thanitrgiset data hence, the predicted mix
design may result in many training mixes so mixigle®f outputs may differ from
experimental. Tested data were entered to the anmodpy pairs whereas each tested
data of compressive strengths and slump flows lzderéo the training set as a group
which may differ from the pairs of training setsialhproduce deviation about targets
as indicated in Fig. (7). For example tested mix $6ine components increased with
related to targets such as powder, aggregates @@dmvere as decreasing in cement
and superplastisizer were observed. On the othadshéested mix M7 indicated
increasing in cement, superplastisizer and W/C adeerdecreasing in powder and
aggregates was observed. Economical investigatiodesired and predicted mixes
may be carried out in order to choose the econdmibas as shown in mix M8 which
exhibited no powder in the mix design and decrepsin cement and FA where
increasing in CA and superplastisize. It can beretfore, concluded that the proposed
ANN model is adequately able to predict SCC comptme

Fig. (8) illustrated the average prediction/expemtal of 10nmix design for all
components which indicated that cement, W/C and W@&e more closed to the
experimental (0.99, 1.02 and 1.03 respectively)re/lpwwder, FA and superplastisizer
was relatively closed to the experimental (0.94%fd 0.83 respectively).
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7. CONCLUSIONS

This paper presents a nontraditional approache@tédiction of the SCC mixture of

a cement paste mixture, based on ANN technology.

Based on the findings of this investigation, thiofeing conclusions can be drawn:

1. The proposed model demonstrates the ability féfea-forward back-propagation
neural network to predict the mix component of S€ahcrete with reliable
accuracy. The model performed quite well in predgt not only the SCC
mixtures used in the training process, but alssdhof test mixtures that were
unfamiliar to the neural network.

2. Predicting the mix proportions of SCC as a fiomcof the SCC mix properties,
using analytical and traditional methods, is difficto achieve as a previous
studies, whereas a trained neural network modelpcadict such mix proportion
easily and accurately. Therefore, ANN can providedrastically powerful
alternative approach.

3. Although the prediction capability of any ANN dw® is limited to data located
within the boundaries of the training range, thepmsed model can be retrained to
include a wider range of input variables by prowvgliadditional training sets
covering the new range;

4. The existence of powder materials, superplastisind VEA in the training model
may confuse the model with some negative valuesitfuts.

5. It is recommended to build up a new model forozealues of powder,
superplastisizers and VEA if desired in order tqustdthe model without any
confusion.
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6. The average prediction/experimental outputs weoee closed to cement, water-
cementitious ratios and coarse aggregates (0.92 and 1.03) respectively
whereas the average prediction/experimental outpugse relatively closed to
powder, fine aggregates and superplastisizer {019, and 0.83) respectively.
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