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    ABSTRACT  
Application of artificial neural networks (ANNs) model to design the mix 

component of self compacting concrete (SCC) with desirable properties, 
compressive strength and slump flow, is described in this research 

Artificial Neural Networks (ANNs) have recently been introduced as an 
efficient artificial intelligence modeling technique for applications involving a 
large number of variables, especially with highly nonlinear and complex 
interactions among input/output variables in a system without any prior 
knowledge about the nature of these interactions. Various types of ANN 
models are developed and used for different problems. In this paper, an 
artificial neural network of the feed-forward back-propagation type has been 
applied for the prediction of self compacting concrete mixtures. The main 
targets are SCC components and the inputs interred are compressive strength 
and slump flow. Due to the complex non-linear effect of compressive strength 
and slump flow properties on the SCC components, the ANN model is used to 
predict the components of SCC parameters (mix components). SCC component 
parameters were outputted according to a multi mixes taken from 34 papers [1-
34] related with self compacting concrete which contains the compressive 
strength and slump flow test results. Mix component values are considered as 
the aim of the prediction. A total of 225 specimens were selected from the 
laboratory results of about 34 researches. The system was trained and validated 
using 150 training mixes chosen randomly from the data set and tested using 
the remaining 75 mixes. About 20 mixes of experimental SCC not found in the 
entered data were performed experimental in order to simulate the program and 
compare between experimental and predicted mix design. 

Results indicate that SCC components can be predicted with reliable values 
to the experimental results using the ANN method. 
Keywords: Self compacting concrete; Compressive strength; Slump flow; 
Neural Network. 
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1. INTRODUCTION 

Concrete has been used as a construction material for more than a century. During 
this period of time, concrete has undergone a continuous development, e.g. the growing 
use of secondary cementitious materials in the binding phase. The use of binder 
admixtures in the production of concrete with enhanced performance (also known as 
High Performance Concrete or simply HPC) has received a great amount of attention 
recently [35]. 

One of the most important binder admixtures to offer a significant contribution to 
HPC production is silica fume, a pozzolanic material [36,37]. 

Concrete, as a non-homogeneous material, consists of separate phases; hydrated 
cement paste, transition zone and aggregate. Although most of the characteristics of 
concrete are associated with the average characteristics of a component microstructure, 
the compressive strength and failure of concrete are related to the weakest part of the 
microstructure. Cement paste properties are of great significance in concrete 
technology. The compressive strength of cement paste is mainly related to Van der 
Walls forces. Therefore, the more compacted the concrete, the higher is the 
compressive strength. One porosity reducing factor is the water-cement ratio and the 
other factor that affects concrete porosity is filler materials, such as silica fume [36,37]. 

In recent years, ANNs have shown exceptional performance as regression tools, 
especially when used for pattern recognition and function estimation. They can capture 
highly non-linear and complex relations among input/output variables in a system 
without any prior knowledge about the nature of these interactions. 

Unlike traditional parametric models, these models are able to construct a 
supposedly complex relationship between input and output variables with an excellent 
level of accuracy compared with that of conventional methods [38]. The main 
advantage of ANNs is that one does not have to assume an explicit model form, which 
is a prerequisite in the parametric approaches. Indeed, in ANN models, a relationship 
of a possibly complicated nature between input and output variables is generated by the 
data points. In comparison to parametric methods, ANNs can deal with relatively 
imprecise or incomplete data and approximate results, and are less vulnerable to 
outliers. They are highly parallel, that is, their numerous independent operations can be 
executed simultaneously [39]. Basma et al. [40] proposed a method for the prediction 
of cement degree of hydration using ANN. 

The results indicated that the ANNs are very efficient in predicting the concrete 
degree of hydration with great accuracy using minimal processing data. Nehdi et al. 
[41] applied a neural network model for performed foam cellular concrete. Results 
showed that the production yield, foamed density, unfoamed density and the 
compressive strength of cellular concrete mixtures can be predicted much more 
accurately using the ANN method compared to existing parametric methods. Marianne, 
T.J. [42] designed a neural network to investigate the influence of different parameters 
on the salt frost resistance of concrete. Ju-Won Oh et al. [43] developed an ANN 
model for the proportioning of concrete mixtures. Nehdi et al. [44] used an ANN 
model for predicting the performance of self-compacting concrete mixtures. Zong, 
Gung and Yun [45] utilized an automatic knowledge acquisition system, based on 
neural networks, to design concrete mixtures. In a later work, Gung and Zong [46] 
proposed a method to predict 28-day compressive strength by using multi layer feed 
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forward neural networks. Lai and Serra [47] developed a model, based on neuro 
computing, for prediction of the compressive strength of cement conglomerates. 

Yeh [48] developed a strength based Artificial Neural Network (ANN) model, which 
was found to be more accurate than the one based on regression analysis. 

It was also discovered that his ANN model gave the detailed effects of the 
proportions of each variable from the concrete mixtures. Dias and Pooliyadda [49] 
used back propagation neural network models to predict the strength and slump of 
ready mixed ordinary concrete and high strength concrete, in which chemical 
admixtures were used. Attempts have been made in the past to devise a kinetic model 
for cement paste properties to predict the phenomena occurring in concrete, but the 
focus of these models has been on predicting density, compressive strength, 
deformation under loading, the cracking of sufficiently hardened concrete and etc. The 
models have not yet reached the stage where they can explain the changes in the 
physical properties of the cement paste portion of the concrete [39-49]. Predicting the 
properties of cement paste is of great significance and difficult to achieve as a function 
of the mixture gradient and physical properties of concrete, hence, a nonlinear 
prediction model needs to be considered. The uncertainties associated with the 
parameters affecting the SCC mixture of cement paste make it difficult to exactly 
estimate such properties [36,39]. Knowing the properties of cement paste, a better 
understanding of concrete performance properties can be taken into account [36,37]. 

Considering the influence of silica fume on the transition zone and cement paste and 
the complex and nonlinear effect of silica fume on concrete cement paste, a set of 
experiments were carried out on cement paste with different water-cementitious 
materials and silica fume unit contents, in order to investigate the effect of silica fume 
on cement paste. An ANN model is then developed, based on the data produced, to 
predict SCC mixture parameters. 

 

2. NEURAL NETWORKS 

ANN modeling, a paradigm for computation and knowledge representation is 
originally inspired by the understanding and abstraction of the biological structure of 
neurons and the internal operation of the human brain. A neural network is a network 
of many simple processors that are called nodes. A multilayer perceptron may be 
thought of as consisting of layers of parallel data processing cells. Each node (neuron) 
has a small amount of local memory. Nodes in the input layer only act as buffers for 
distributing the input signals to nodes in the hidden layer. The nodes are connected by 
connections; each usually carrying numeric data called weights, encoded by any of the 
existing methods. Each node in the hidden layer sums up its input signals after 
weighting them with the strengths of the respective connections from the input layer 
and computes its output as a function of the sum. The nodes operate only on the local 
data and on the inputs they receive by the connections. The differences between the 
computed output and the target are combined together by an error function to give the 
network the verification set, and used to keep an independent check of the progress of 
the algorithm. Training of the neural network is stopped when the error for the 
verification set begins to increase [38,39,43]. 

The main principle of neural computing is the decomposition of the input-output 
relationship into a series of linearly separable steps using hidden layers [39]. 

There are three distinct steps in developing an ANN based solution: 
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1. Data transformation or scaling; 
2. Network architecture definition, where the number of hidden layers, the number of 

nodes in each layer and the connectivity between the nodes are set; 
3. Construction of a learning algorithm in order to train the network [38,41]. 

Fig. (1) Shows the simple architecture of a typical network that consists of an input 
layer, hidden layers, an output layer and connections between them. 

Nodes in the input layer represent possible influential factors that affect the network 
outputs and have no computation activities, while the output layer contains one or more 
nodes that produce the network output. 

Hidden layers may contain a large number of hidden processing nodes. A feed-
forward back-propagation network propagates the information from the input layer to 
the output layer, compares the network outputs with known targets and propagates the 
error from the output layer back to the input layer, using a learning mechanism to 
adjust the weights and biases [38,43]. 

In general, the net input to each node is calculated as: 

 

Where Wl
ji is the weight that connects node j in layer l to node i in layer l - 1; n is the 

number of nodes in layer l -1; βl
j is a threshold value assigned to node j in layer l; and 

X l-1
i is the input coming from node i in layer l -1 to node j in layer l. The net input, Nl

j, 
is then modified by an activation function, f, to generate an output value,    Y l j, given 
by:  

 

Where f is a nonlinear activation function assigned to each node in the network. The 
learning mechanism of this back-propagation network is a generalized delta rule that 
performs a gradient-descent on the error space, in order to minimize the total error 
between the calculated and desired values at the output layer during modification of the 
connection weights. The implementation of this algorithm updates the network weights 
and biases in the direction in which the error decreases most rapidly. Training is 
accomplished in an iterative manner. Each iteration cycle involves the feed-forward 
computation followed by an error-backward propagation to modify the connection 
weights. Convergence depends on the number of hidden layer nodes, learning rate 
parameters and the size of the data set required to create the proper results. 
Furthermore, there is no structured algorithm to obtain the optimal structure and 
parameters of neural networks; therefore, one should find the optimal network by trial 
and error. The most interesting property of a network is its ability to generalize new 
cases. For this purpose, an independent data set is used to test the neural network and 
check its performance. When verification and test errors are reasonably close together, 
the network is likely to generalize well [38, 43]. 

Upon successful completion of the training process, a well-trained neural network is 
not only capable of computing the expected outputs of any input set of data used in the 
training stage, but should also be able to predict, with an acceptable degree of 
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accuracy, the outcome of any unfamiliar set of input located within the range of the 
training data [3,41]. 
 

 
 
 
 
 
 
 

 
 
 
 
 

 

 
 
 

Fig. (1)Creation of Neural Network and design topology 
 

3. SELECTION OF DATABASE 

The selection of the database chosen to train a neural network such that it will be 
capable of capturing the relationships between the properties of SCC and its mixtures 
is of great importance. It must be trained on large and comprehensive sets of reliable 
experimental data that contain influential factors regarding SCC mixtures. 

The data set for neural network analysis was a subset from the database of SCC 
mixtures and its corresponding properties. The SCC mixtures were measured in the 
laboratory by chosen several mixtures of SCC from 34 references. In this study, 
cement (C), fine powder (P), fine aggregate (FA), coarse aggregate (CA), 
superplastisizer (SP), viscosity enhancement agent (VEA) and water-cementitious ratio 
(W/C) were used for the production of SCC with desired properties, compressive 
strength and slump flow. Type of cement used was (Type I) of 161 to 680 kg/m3 with 
the W/C of 0.24 to 0.58 and silica fume unit contents of 0.0 kg/ m3 to 493 kg/ m3 and 
fine aggregate of 263 to 1270 kg/m3 and coarse aggregate of 370 to 1217 kg/ m3 where 
VEA was 0 to 5.7 kg/ m3 were used to prepare the specimens. All the specimens were 
cured for 28 days at an average temperature of 20oC. This led to the development of a 
large number of data sets. Table (1) shows the ranges, average values and standard 
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deviation of all relevant parameters. Ultimately, a total of 225 data pairs have, 
therefore, been selected from the experimental database, as stated before. 

 

Table (1) Range, average and standard deviation of measured input and 

output variables. 

variables Range Average Standard deviation 
Y1 (Fcu) 200-950 kg/cm2 498.1785 150.2768 

Y2 (Slump flow) 440-930 mm 701.36 88.13144 
X1 (C)  161-680 kg 359.5326 96.68018 
X2 (P) 0-493 kg 155.3457 75.16052 

X3 (FA) 263-1270 kg 850.3273 118.2341 
X4 (CA) 370-1217 kg 795.5567 104.9805 
X5 (SP) 0.4-30 kg 7.317022 4.601536 

X6 (VEA) 0-5.7 kg 0.599932 1.243141 
X7 (W/C) 0.24-0.58 0.36 0.047925 

 

4. NEURAL NETWORK ARCHITECTURE 

There is no effective procedure for identifying the optimal architecture of a network 
before training. However, it is important for the hidden layers to have a small number 
of nodes. An excessive number of hidden nodes may cause the network to memorize 
the training data. 

In such cases, the ANN would not be able to interpolate effectively between adjacent 
training data points. Too few hidden nodes, on the other hand, will limit the network's 
ability to construct an adequate relationship between input and output variables [38]. 

The number of hidden layers and nodes are usually determined via a trial and error 
procedure. 

There are some rules to estimate the number of hidden nodes. According to the 
method suggested by Dave Anderson and George McNeill [38], an upper bound for the 
number of processing nodes in the hidden layers can be calculated by dividing the 
number of input-output pairs in the training set by the total number of input and output 
nodes in the network, multiplied by a scaling factor between five and ten. 

Larger scaling factors are used for relatively noisy data. 
Compressive strength and slump flow were represented by the two input nodes, 

while the output layer contains seven nodes representing The cement, fine powder, fine 
aggregate, coarse aggregate, superplastisizer, VEA and water cement ratio. Following 
the guidelines suggested by Dave Anderson and George McNeill [38] and some 
preliminary computations, a network architecture containing two hidden layers was 
adopted. The first hidden layer included fourteen nodes, while the second hidden layer 
had ten nodes and a full connection between the nodes in the adjacent layers was 
selected. The network architecture can be seen schematically in Fig. (2). A free access 
ANN package (Qnet) of the feed-forward back-propagation type was used in this study 
[50]. 
 



numerical analysis for prEdIcting of self compacting concrete … 1581

Compressive strength Slump flow
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Hidden layer 1

Hidden layer 2

Fig. (2) Architecture of neural network model 
 

5. TRAINING OF ANN MODEL 

The training procedure was carried out by presenting the network with the set of 
experimental data in a patterned format. Each training pattern includes an input set of 
two parameters representing the compressive strength and slump flow and a 
corresponding output set representing SCC mixtures (that is, cement, fine powder, fine 
aggregate, coarse aggregate, superplastisizer, VEA and water cement ratio). The 
network is presented with the variables in the input vector of the first training pattern, 
followed by an appropriate computation through the nodes in the hidden layers and 
prediction of the appropriate outputs. The error between the predicted output and target 
value is calculated and stored. The network is then presented with the second training 
pattern and so on until the network has gone through all the data available for training 
the network. 

The Root-Mean-Square (RMS) of the error is then calculated and back propagated to 
the network. Biases and weights or the connection strength between nodes are 
modified during the back propagation phase such that the (RMS) errors are reduced. 
The process of the introduction of training input-output pairs to the network, 
calculation of the (RMS) error and, finally, the adjustment of weights and biases to 
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reduce the (RMS) error are referred to as, one iteration. This process continues until 
convergence is achieved or the maximum number of iterations is reached [38, 41]. The 
trained ANN model is represented by the connection weights once the above procedure 
is converged. This process is illustrated in Fig. (3). Trial and error procedure are 
illustrated in Table (2) where trial of hidden layers were carried out for the Neural 
Network program in order to obtain optimum number of hidden layers (hl) and 
performance. Letter (x) represented the trial number of layers. Second column of Table 
(2) shows the number of trial for each number of layers (x). Best trial was illustrated in 
the third columns of the table whereas optimum performance illustrated in column 4. 
After about 176 trials, Results indicated that best trial and performance occurred when 
using two layers 14 and 10 consequently as hatched in column 4. 
 

Table (2) trial and error of hidden layers (hl) and performance 

Optimum 
performance Best trial Number of trial (x) No. of hl 

0.0118565 2-10-7 11 2-x-7 
0.0143926 2-1-11-7 14 2-1-x-7 
0.0128645 2-2-9-7 10 2-2-x-7 
0.00904575 2-3-10-7 13 2-3-x-7 
0.00880824 2-4-10-7 12 2-4-x-7 
0.00851817 2-5-7-7 12 2-5-x-7 
0.0083789 2-6-9-7 13 2-6-x-7 
0.00655413 2-7-8-7 10 2-7-x-7 
0.006472 2-8-10-7 11 2-8-x-7 

0.00620846 2-9-9-7 11 2-9-x-7 
0.0048537 2-10-10-7 10 2-10-x-7 
0.00540072 2-11-8-7 12 2-11-x-7 
0.00409228 2-12-10-7 12 2-12-x-7 
0.00383568 2-13-12-7 13 2-13-x-7 
0.00338147 2-14-10-7 12 2-14-x-7 

  
To avoid the over-fitting of the neural network model to the data during iterative 

training, a separate set of the data set was used to validate the model at some intervals 
during training. Training is stopped when the error for the validation set begins to 
increase. 

The network was trained and validated, based on 150 training patterns chosen 
randomly from the 225 available data sets. The remaining 75 pairs of independent data 
were used to test the network after completion of training and validation in order to 
assess its performance on data to which it has never before been exposed. The training 
process and the associated ANNs analyses were carried out with an optimal value of 
learning rate of 0.00338147and maximum number of iterations of 3000 with an error 
goal of 0.000. 
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Fig. (3) Processing neural network model 
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6. RESULTS AND DISCUSSION 

The network was trained to predict SCC mixtures using a total of 150 training and 
validating data sets and 75 testing data sets. Figures 4a to 4g compare the output and 
target values of SCC mixtures for all the 225 available data sets.  Figures 5a and 5b 
show the convergence characteristics of the ANN model during the training and testing 
phases, respectively.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 



numerical analysis for prEdIcting of self compacting concrete … 1585

0 50 100 150 200 250
200

400

600

800

1000

1200

1400

Pattern sequences

T
ar

ge
ts

/o
ut

pu
ts

Fig. (4-c) Targets/outputs vs Pattern sequences (node 3-fine agg.)
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Fig. (4-e) Targets/outputs vs Pattern sequences (node 5-superplastisizer)
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Fig. (5-b) Testing RMS error- (Performance is 0.00208165, Goal is 0)

 

 

 

 

 

 
Fig. (6) Illustrates the distribution of the network outputs versus the target values for 

the training data sets. All data points are distributed along the optimal agreement line, 
with the training and testing Root-Mean-Square (RMS) errors of 0.0338147 and 
0.0208165, respectively. The correlation between predicted and measured SCC 
components is seen to be satisfactory. It is generally lower for powder, 
superplastisizers and VEA values that is because of these parameters includes zero 
values in some mixes as indicated in Table (2) and figures 4b, 4e and 4f. The relatively 
larger prediction error and less correlation parameters may, therefore, be associated to 
high variability in the mixture development rather than the prediction method and may 
be related to the different types of such materials used in the training set targets. To test 
the accuracy of the ANN model, the final trained model was called upon to recall the 
data not used in the training process (150 mixes). A total of 20 mixes, unfamiliar to the 
network in the range of training data sets, were presented to the ANN model and the 
network was required to predict the SCC mixture associated with each mixture. The 
mixture proportion and the measured and predicted values are listed in Table (3). 
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Table (3) Measured and predicted values of outputs variables for data sets 

used in testing of ANN model. 
 

No 

Testing data 
sets 

Experimental Mix Mix from ANN program 

Fcu 
kg/c
m2 

SF 
mm 

C P FA CA SP 
VE
A 

W/C C P FA CA SP 
VE
A 

W/C 

1 468 880 425 130 718 718 9.00 0.00 0.34 380 139 892 741 7.34 0.08 0.36 

2 477 900 425 130 718 718 9.00 0.00 0.34 379 140 893 740 7.33 0.08 0.36 

3 462 870 425 130 718 718 9.00 0.00 0.34 380 139 892 741 7.34 0.08 0.36 

4 411 777 425 130 716 716 10.8 0.00 0.34 380 139 892 741 7.34 0.08 0.36 

5 415 625 412 120 748 748 8.10 0.00 0.32 332 157 837 822 4.31 0.12 0.37 

6 360 720 400 130 736 736 9.00 0.00 0.34 351 171 901 727 7.90 0.04 0.36 

7 556 740 350 182 917 917 2.79 0.00 0.37 380 139 892 741 7.34 0.08 0.36 

8 393 770 350 125 781 781 10.6 0.00 0.42 380 139 892 741 7.34 0.08 0.36 

9 387 760 350 125 781 781 12.5 0.00 0.42 380 139 892 741 7.34 0.08 0.36 

10 720 750 402 71 941 941 14.2 0.00 0.32 439 46 786 875 15.2 0 0.35 

11 426 740 334 100 776 776 5.70 0.00 0.38 380 139 892 741 7.34 0.08 0.36 

12 412 695 300 211 718 718 8.20 0.00 0.34 365 119 829 833 7.55 0.15 0.37 

13 640 630 497 0 854 854 6.96 0.00 0.35 464 0 785 875 8.19 0 0.35 

14 554 743 350 175 723 723 6.60 1.75 0.37 380 139 892 741 7.34 0.08 0.36 

15 358 650 161 241 864 864 3.45 0.40 0.35 258 220 857 801 3.31 0.12 0.38 

16 343 622 248 191 729 729 8.00 0.00 0.45 253 216 855 814 3.72 0.11 0.38 

17 430 610 286 190 753 753 5.80 0.00 0.39 331 157 837 821 4.32 0.12 0.37 

18 450 650 286 190 713 713 7.00 0.00 0.39 337 152 836 823 4.32 0.12 0.37 

19 389 540 197 197 956 956 2.80 0.56 0.35 223 223 871 800 2.89 0.09 0.39 

20 358 650 161 241 864 864 3.00 0.40 0.35 258 220 857 801 3.31 0.12 0.38 
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Fig. (7) Ratio mix design proportion (program/experimental)
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As mentioned previously, a set of experimental data, including 225 pairs of data, was 

used in this study, from which 150 training and validating patterns were chosen 
arbitrarily and the remaining 75 pairs were used as measured data, to test and verify the 
efficiency and validity of the predicted values by the network. A reliable agreement 
between the measured and predicted values of SCC is observed, as shown in Fig. (7). 

Results of program/experimental mix design ratios of 10 mixes of SCC are illustrated 
in Fig. (7) Where the mix design prediction was approximately closed to the target mix 
in some mixes whereas other mixes were relatively closed to targets. The high range of 
inputs data of compressive strengths and slump flows (SF) makes some properties of 
compressive strengths and slump flows entered to the program are closed to each 
others so, outputs may correlate to more than training set data hence, the predicted mix 
design may result in many training mixes so mix design of outputs may differ from 
experimental. Tested data were entered to the program by pairs whereas each tested 
data of compressive strengths and slump flows correlate to the training set as a group 
which may differ from the pairs of training sets which produce deviation about targets 
as indicated in Fig. (7). For example tested mix M1 some components increased with 
related to targets such as powder, aggregates and W/C where as decreasing in cement 
and superplastisizer were observed. On the other hands tested mix M7 indicated 
increasing in cement, superplastisizer and W/C whereas decreasing in powder and 
aggregates was observed. Economical investigation of desired and predicted mixes 
may be carried out in order to choose the economical mixes as shown in mix M8 which 
exhibited no powder in the mix design and decreasing in cement and FA where 
increasing in CA and superplastisize. It can be, therefore, concluded that the proposed 
ANN model is adequately able to predict SCC components.  

Fig. (8) illustrated the average prediction/experimental of 10nmix design for all 
components which indicated that cement, W/C and CA were more closed to the 
experimental (0.99, 1.02 and 1.03 respectively) where powder, FA and superplastisizer 
was relatively closed to the experimental (0.9, 1.14 and 0.83 respectively). 
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Fig. (8) Average Ratio mix design proportion 
(program/experimental)
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7. CONCLUSIONS 

This paper presents a nontraditional approach to the prediction of the SCC mixture of 
a cement paste mixture, based on ANN technology. 

Based on the findings of this investigation, the following conclusions can be drawn: 
1. The proposed model demonstrates the ability of a feed-forward back-propagation 

neural network to predict the mix component of SCC concrete with reliable 
accuracy. The model performed quite well in predicting, not only the SCC 
mixtures used in the training process, but also those of test mixtures that were 
unfamiliar to the neural network. 

2. Predicting the mix proportions of SCC as a function of the SCC mix properties, 
using analytical and traditional methods, is difficult to achieve as a previous 
studies, whereas a trained neural network model can predict such mix proportion 
easily and accurately. Therefore, ANN can provide a drastically powerful 
alternative approach. 

3. Although the prediction capability of any ANN model is limited to data located 
within the boundaries of the training range, the proposed model can be retrained to 
include a wider range of input variables by providing additional training sets 
covering the new range; 

4. The existence of powder materials, superplastisizer and VEA in the training model 
may confuse the model with some negative values of outputs. 

5. It is recommended to build up a new model for zero values of powder, 
superplastisizers and VEA if desired in order to adjust the model without any 
confusion. 
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6. The average prediction/experimental outputs were more closed to cement, water- 
cementitious ratios and coarse aggregates (0.99, 1.02 and 1.03) respectively 
whereas the average prediction/experimental outputs were relatively closed to 
powder, fine aggregates and superplastisizer (0.9, 1.14 and 0.83) respectively. 
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ة ذاتية الدمكيالخرسان للتنبوء بمكونات الخلطة عدديتحيل   

باستخدام الشبكات العصبية   

واتجه العالم اليوم الى . فوائد عدةاصبحت الخرسانة ذاتية الدمك تمثل ثورة في عالم الخرسانة لما تتميز به من 

حتويه من اضافات متعددة فتمثل اساليب حديثة لتصميم الخلطات الخرسانية وخصوصا الخرسانة ذاتية الدمك بما ت

  . وفى سياق ذلك اصبحت الطرق التقليدية غير دقيقة، متغيرات عديدة بالخلطة الخرسانية

تطويع هذا البرنامج لاستقبال  هذا البحث أمكن في ، وفى اطار انتشار البرامج الحديثة مثل الشبكات العصبية

و الانسياب الحر لاخراج مكونات الخلطة المستهدفة بعد خواص الخلطات ذاتية الدمك متمثلة في اجهاد الضغط 

بحثا  34من خلال لطة ذاتية دمك خ 225تغذية البرنامج بعدد كبير من الخلطات المعملية حيث امكن تجميع 

  :بنسب وخواص مختلفة وقسمت الى قسمين

ريبـه عليهـا حيـث تـم لتعريـف البرنـامج وتد خلطـة 150القسم الاول عباره عن ثلثى العينـات الكليـة وتمثـل  •

محـاولات عديـدة وصـلت  دادخال خواص الخرسانة كمدخلات وادخـال مكونـات الخلطـات كمخرجـات وبعـ

محاولـة تـم التوصـل الـى افضـل شـكل للنمـوذج وهـو اسـتخدام طبقتـين مختفيتـين مـن العقـد هــى  176الـى 

حيــــث عــــدد )  7-10-14-2(  للطبقــــة الثانيــــة واصــــبح تركيــــب النمــــوذج 10و      للطبقــــة لاولــــى 14

 7) المســتهدفة(ويمثلهــا اجهــاد الضــغط والانســياب الحــر وعــدد المتغيــرات الخارجــة  2المتغيــرات الداخلــة 
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 -الركـــــــام الكبيـــــــر-الركـــــــام الصـــــــغير-المـــــــواد الناعمـــــــة-ويمثلهـــــــا المســـــــتهدف وهـــــــو كميـــــــة الاســـــــمنت

 .نسبة الماء الى المواد الاسمنتية-الاضافات المدعمة للزوجة-السوبربلاستيسيزر

بخلطـات لـم يعرفهـا  خلطـة لاختبـار البرنـامج بعـد تعريفـه 75القسم الثانى عبارة عـن ثلـث العينـات وتمثـل  •

 .مسبفا لتحديد قيمة الاداء للبرنامج

أعطت نتائج الاختبار اخطاء مقبولة فيما عدا نتائج المكونات التى يبدأ مجالها من الصفر مثل المواد الناعمة و 

ث اعطت بعضها بعض القيم السالبة نظرا لما يضاف اليها من اخطاء سالبة لذا نوصى المواد المدعمة للزوجة حي

مدخلات فقط اذا كان المستهدف من تصميم الخلطة عدم وجود بعض المكونات مثل المواد  6بعمل نموذج به 

  .هالضبط المخرجات وجعلها اكثر دقة ولتجنب القيم السالبة ل على سبيل المثال وذلك المدعمة للزوجة

خلطة ذاتية الدمك نسبها وخواصها غير موجودة  20ولكى يتم التاكد عمليا من مخرجات البرنامج تم اعداد 

عن  للعشرين خلطة الخلطات ذاتية الدمك مكونات تم التوصل الى تصميم بالمتغيرات التى عرف بها البرنامج وقد

لحصول على نتائج البرنامج ومقارنتها بنسب ل طريق ادخال خواص الخرسانة وهى اجهاد الضغط والانسياب الحر

متقاربة عن المستهدفة ومتباعده في بعض الاحيان لارتباط القيم الداخلة  وتم التوصل الى قيم الخلط المعملية

باكثر من خلطة من القيم المعرف بها البرنامج فتعطى تصميم خلطة بنسب يمكن الاعتماد عليها حيث للبرنامج 

  .بما يحقق نفس خواص الخلطات المختبرة بنسب معقولة صميم الخلطة عن المستهدفيقل او يزيد نسب ت


