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In this paper, a scheduling algorithm based on deadline time and 

precedence constraints was developed to schedule hard real-time tasks on 

multiprocessor systems. The real-time tasks are characterized by their 

arrival time, deadline time, computation time and precedence constraints. 

Scheduling problem for these tasks has been solved to determine the order 

of scheduling tasks on the processors to minimize the overall computation 

time, and obtain speeding up. The effectiveness of the developed algorithm 

is shown through a simulation study. 
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1. INTRODUCTION 

A real-time system is one in which the correctness of the computations not only 

depends upon the logical correctness of the computations but also upon the time at 

which the result is produced [1-3]. Typical examples of real-time systems include air 

traffic control systems, networked multimedia systems, command and control systems 

etc. [2]. 

Each real-time system consists of a set of tasks some of these tasks are periodic 

in nature, and need to be activated regularly at fixed rates (periods). Normally, periodic 

tasks have constraints, which indicate that instances of them must be executed once per 

period. Other real-time tasks are aperiodic, and they are activated irregularly at some 

unknown and possibly unbounded rate. The time constraint is usually a deadline. [2]. 

Hence, periodic tasks consist of an infinite sequence of identical tasks that are regularly 

activated at a constant rate. Depending on the consequences of missing a deadline, 

real-time tasks are categorized as follows [2]: 

1. Hard real-time systems, in which the execution of the task should be completed 

by a given deadline. i.e. Missing a deadline results in the failure of performance 

degradation of the system, [1-3]. Command and control systems, air traffic 

control systems are examples of hard real-time system. 

2. Soft real-time systems, in which the system will properly perform as long as 

deadline is met most of the time. Missing a few deadline will not affected the 

system [1-3]. Telephone switching systems and image processing applications 

are examples of soft real-time systems. 
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3. Firm real-time systems, in which the task computations may be finished before 

their deadlines. [2]. 

Hard real-time system must execute a set of concurrent real-time tasks in such 

a way that all time critical tasks meet their specific deadlines. 

Real-time scheduling can be categorized into hard and soft real-time 

scheduling. Hard real-time scheduling algorithms can be used for soft real-time 

scheduling. 

Hard real-time scheduling can be classified into two types: Static and dynamic. 

In static scheduling, the scheduling decisions are made at compile time. A run-time 

schedule is generated off-line based on the prior knowledge of task-set parameters 

(execution time, precedence constraints, and deadline time). So, run-time overhead is 

small. On the other hand, dynamic scheduling makes its scheduling decisions at run-

time, selecting one out of the current set of ready tasks. Dynamic scheduler is flexible 

and adaptive. Preemptive or non-preemptive scheduling of tasks is possible with static 

and dynamic scheduling. [2].  

Multiprocessors systems give a powerful computation means for real-time 

applications [4-8]. Real-time systems use sophisticated scheduling algorithms to 

maximize the number of real-time tasks that can be processed without violating timing 

constraints. 

In this paper, we present a scheduling algorithm to  schedule hard real-time 

tasks with precedence constraints on multiprocessor systems . The proposed algorithm 

generates a feasible schedule by determining the processor which the task should be 

assigned , and the order in which tasks should be executed., so that the tasks meet its 

deadline constraints.  

The paper is organized as follows, Section 2 reviews the related works in the 

area of scheduling hard real-time tasks, Section 3 describes scheduling problem, 

Section 4 discussed the proposed scheduling algorithm, in section 5 the simulation 

results are presented, Finally in section 6 our conclusions and summary are presented. 
 

2. RELATED WORK 

The problem of scheduling hard real-time tasks has been studied extensively and a 

number of algorithms have been proposed [4-10]. J. Jousson [4], proposed an improved 

version of the slicing technique and extends it to heterogeneous distributed hard real-

time system. This technique can be applied to computational resources such as 

processors, shard data structures. He does not take into consideration general resources 

requirements. D. Wespetal, et. a.l.,  [5],  proposed an algorithm for parallel task 

scheduling using long path. This algorithm  could not be applied to other graph 

problems. K. Li [6], introduced an algorithm for scheduling parallel tasks on 

multiprocessor system. This algorithm was not used in scheduling real parallel 

computation on real parallel machines. V. Salmani, et. al., [7], proposed a modified 

version of the maximum uregency first scheduling algorithm which combines the 

advantages of fixed and dynamic scheduling to provide the dynamically changing 

systems with flexible scheduling. This algorithm, however, has a major shortcoming 

due to its scheduling mechanism that may cause a critical task to fail. A.Burchard, et. 

al., [8], developed an efficient heuristic algorithm for scheduling a set of periodic tasks 
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on a multiprocessor systems. This algorithm has better performance than rate-

monotonic scheduling algorithm (RM). RM is optimal for uniprocessor systems with 

fixed priority assignments. A.S. Wu, et. al., [9], developed a genetic algorithm (GA) 

approach to the problem of task scheduling for multiprocessor systems. Key features of 

this approach include a flexible, adaptive problem representation and an incremental 

fitness function. The advantages of this algorithm are that it is simple to use, require 

minimal problem specific information and is able to effectively adapted in dynamically 

changing environment. The primary disadvantage of this algorithm is that it has a long 

execution time. J. Goossens, et. al., [10], proposed a new priority-driven scheduling 

algorithm for scheduling periodic task system (PriD). They prove that the PriD 

algorithm is superior to the earliest deadline first algorithm (EDF) in the sense that 

schedules all periodic task systems that EDF can schedule, and in addition schedules 

some periodic task systems for which EDF may miss some deadlines. 

 

3. SCHEDULING PROBLEM 

The input of scheduling hard real-time tasks system with precedence constraints is a set 

of real-time tasks and precedence constraints. 

Each task is defined as  follows T= {j,a,c,d} 

Where  

j is the serial number of the task 

c is the computation time (also called worst-case computation time or execution time    

or processing time) of the task 

a is the arrival time of the task; the time at which  a task arrive to system (sometimes  

called ready time or the earliest time at which task can start its processing) 

d is the  deadline of the task; the time by which the task complete its execution. 

The problem is scheduling these tasks so that all of the tasks should meet their 

timing constraints. Sometimes the ready time of a job may be later than that its 

successors, or its deadline may be earlier than that specified for its predecessors. This 

situation makes no sense. So, we apply the following method in order to achieve an 

effective ready time. 

- If a job has no predecessors, its effective ready time is its ready time. 

- If it has predecessors, its effective ready time is the maximum of its ready time 

and the effective ready times of its predecessors [2]. 

An effective deadline is calculated as: 

- If a job has no successors, its effective deadline is its deadline. 

- If it has successors, its effective deadline is the minimum of its deadline and 

the effective deadlines of its successors [2]. 
 

3.1 Task Model  

We assume that the real-time system consists of n tasks and m (m>1) identical 

processors, which are connected through fully connected network without 

communication cost.. A task may be assigned to any one of the processors. Each task is 

aperiodic and Non-preemptive and is describe by: 
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at arrival time 

ct computation time 

dt deadline time 

st  start time 

ft  finish time 

A task Ti   meets its deadline if  ati  < sti <  dti   - cti  and ati   +  cti  < fti <  dti . 

The start time of the task  Ti   is  sti  = max (ati  , ptime (pi  )) where   ptime (pi  ) is the 

time at which the processor , pj   becomes available. The deadline time  dti= ati   +  cti  + 

variable  value between [60,70] time units, and the finish time fti   = sti   +  cti .    

 

4. PROPOSED SCHEDULING ALGORITHM 

The proposed algorithm uses scheduling method based on deadline time and task 

dependency. First, all tasks are put in the queue, the scheduler picks the first task and 

tries to assign it to the available processor. At time zero all processors are available. 

The pseudo code for our algorithm is as follows: 

Begin 

 While not empty queue Do 

  Begin 

   Get a task at the front of the queue 

   Select a suitable processor 

   Calculate starting time of a task 

   Assign task to the selected processor 

   Calculate finish time of a task 

   Check a task for meeting its deadline  

    If a task meets its deadline add it to schedule list 

    Other wise add it to missing list 

  End 

 Calculate critical path  

 Calculate speed up parameter 

End 

Where : 

Critical path is the longest path from the entry node to the exit node. 

Speed up parameter is the total processing of all tasks in task graph over completion of 

all tasks on multiprocessor according to developed algorithm. 
 

4.1 Selecting A Suitable Processor 

We keep track of all processors in the system by using the array ptime of p(j), j=1,2,  

…. , m (number of processors) which represent the time at which the processor p(j) 

becomes available. Ex. Suppose we have four processors; at time zero all processors 

are available i.e. ptime [p[j]] =0 for all j=1,2, … 4.. At time unit 16 a new task arrives 

to the system and ptime [p[j]] was as follows: 

Ptime [p[j]] 
 

13 23 15 30 
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In this situation we select the processor number one because the processor 

number one has minimum time out of the different available time of all processors. 

The following is the pseudo code for the procedure of selecting a suitable 

processor according to the criteria of selecting a processor with minimum available 

time.    

Input: arrival time of the task(at) ,  the available time of all processors 

Output: a suitable processor, starting time of the task (st)   

Begin 

 If a task Ti has no predecessor tasks    

                                        m 

  Minval = Min (ptime[p[j]]) 

                                       J=1 

  Suitable processor is a processor with minval 

  Starting time st [Ti] =Max [at[Ti] , minval] 

 Enid if  

 If a task Ti  has one predecessor task Tk 

                                        m 

  Minval = Min (ptime[p[j]]) 

                                       J=1 

  Suitable processor is a processor with minval 

             Maxval=Max [at[Ti] , ft[Tk]]  

Where ft is the finish time of the predecessor task Tk 

  Starting time st [Ti] =Max [maxval, minval] 

 End if 

If a task Ti  has more than one predecessor tasks Ti-1, .,…..,, Tk 

                                        m 

  Minval = Min (ptime[p[j]]) 

                                       J=1 

  Suitable processor is a processor with minval 

             Maxval=Max [at[Ti] , ft[Ti-1], ft[Ti-2] , …….., ft[Tk]  ]  

  Starting time st [Ti] =Max [maxval, minval] 

 End if 

End 

To implement the proposed algorithm efficiently we maintain four lists and one task 

dependency matrix described as follows: 

 - at List of arrival time for all tasks in the system 

 - ct List of computation time for all tasks in the system. 

 - dt List of deadline time for all tasks in the system. 

 - sl List of scheduled tasks. 

 - pt matrix represent the task dependency. 

Illustrative example for Pt: we consider a ten task T1,T2, ….., T10. as an example 
 

Pt 

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

0 0 0 0 1 2 0 0 7 0 

0 0 0 0 4 3 0 0 8 0 
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From the above figure we notice that pt [0][6]!= 0 && pt [1][6] !=0. This 

means that the task T6 depend on T2 and T3, so task T6 must start its computation 

after tasks T2 and T3 finishes their computations. 

 

  
   

Start 

Is empty 

queue 

Calculate critical path 

Calculate speed up 

parameter 

End 

Get a task at front of 

queue 

Select a suitable 

processor 

Calculate start time of the 

task 

Assign task to the selected 

processor 

Calculate finish time 

Is a task 

meeting its 

deadline? 
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Yes 

No 
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Fig. (1): A flowchart for our algorithm 

 

The flowchart used to describe our algorithm is as follows: 

No 
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The following is an illustrative example for scheduling ten tasks on three processors. 
 

Task 

No. 
At Ct 

Predecessor 

tasks 
St ft 

Suitable 

processor 

T1 5 2  6 8 P1 

T2 6 3 1 9 12 P1 

T3 6 3  6 9 P2 

T4 6 8  6 14 P3 

T5 6 6  10 16 P2 

T6 12 2  13 15 P1 

T7 12 2  15 17 P3 

T8 12 5  16 21 P1 

T9 12 7 1, 3 17 24 P2 

T10 12 1 9 25 26 P2 

 
First, we schedule the task number one on any of the three processors, then we 

select processor number one; on which task one starts its processing at time unit 6 and 

finishes at time unit 8. We notice that task number two depends on task one, Therefore 

task two start its processing at time unit 9 although it arrives at time unit 6 and finishes  

at time unit 12. Similarly, tasks numbers nine and ten. 

 

5. SIMULATION RESULTS 

We examine our algorithm on two problems. First problem 50 (50-4) tasks with 

minimum number of predecessor tasks equal to 0, maximum number of predecessor 

tasks equal to 4 and average number of predecessor tasks equal to 1. Second problem 

50 (50-12) tasks with minimum number of predecessor tasks equal to 0, maximum 

number of predecessor tasks equal to 12 and average number of predecessor task equal 

to 4.66 which should be schedule onto 6 processors. Number of tasks is generated 

randomly as computation times for every task and the precedence constraints are taken 

from [11]. In this case, the tasks arrive in the system 5 tasks every 6-time units. For this 

problem the critical path length which means that the longest path from the entry task 

to the exist task is 32, 112 time units respectively, and it has been also taken from [11]. 

Applying the developed algorithm, the critical path becomes 79,124 time units.  

Second, we test the problem with 100 (100-4) tasks with minimum number of 

predecessor tasks equal to 0, maximum number of predecessor tasks equal to 4 and 

average number of predecessor tasks equal to 1. Second problem 100 (100-12) tasks 

with minimum number of predecessor tasks equal to 0, maximum number of 

predecessor tasks equal to 12 and average number of predecessor task equal to 3 which 

should be schedule onto 15 processors. In this case, the tasks arrive in the system 10 

tasks every 6-time units. The critical path length is 40, 74 time units respectively and 

taken from [11].  Applying the developed algorithm, the critical path become 79, 87 

time units.  

Figures (2) and (3) show the relationship between number of processors used 

and the critical path length respectively. It is clear from the two figures that the critical 

path length decreased monotonically with increasing the number of processors until the 
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increasing of the number of processors does not effect on the critical path length (reach 

constant critical path length). This is the optimal situation. 

Another factor is speed up parameter which means that total processing of all 

tasks in task graph over completion of all task on multiprocessors according to 

developed algorithm. For first problem are 8.9, 3.0 and 19.5, 10.87 for second problem. 

Also taken from [11]. Applying the developed algorithm becomes 3.5, 2.7 and 9.9, 9.8 

respectively.  

Also, another factor is used to evaluate the performance of the developed 

algorithm, the missing rate, which mean the percentage of tasks that missed the 

deadline time. Figures (4) and (5) show the relationship between number of processors 

used and missing rate respectively. It is clear from the two figures that the missing rate 

decreases monotonically with increasing the number of processors until the increasing 

of the number of processors does not affect on the missing rate (reach constant missing 

rate), this is the optimal situation. 
 

Fig. (2): Relationship between number of 

processors and  critical path length for 50 

tasks 
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Fig. (4): Relationship between number of 

processors and  missing rate for 50 tasks 

0

10

20

30

40

2 3 4 5 6 7 8 9 10

No. of processors

M
is

s
in

g
 r

a
te

 %

 50-4

 50-12

 
 

Fig. (5): Relationship between number of 

processors and  missing rate for 100 tasks 
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The list of tasks scheduled at each time unit on all processors at optimal 

situation for case 50 tasks with four predecessor tasks are shown in the following table 

as an example. 
 

P0 P1 P2 P3 P4 P5 

T0 (6-8) T2(6-9) T3(6-14) T4(6-12) T5(12-14) T6(12-14) 

T1(8-11) T7(12-17) T11(18-21) T8(12-19) T12(30-40) T13(18-21) 

T10(18-27) T15(24-28) T16(24-32) T9(19-20) T20(30-40) T18(24-29) 

T21(30-31) T22(30-32) T17(32-40) T14(20-22) T33(42-51) T23(30-39) 

T24(31-39) T25(36-40) T32(42-49) T19(24-32) T42(54-59) T29(39-46) 

T28(39-42) T31(42-45) T38(49-53) T26(36-41) T48(60-61) T36(48-49) 

T30(42-48) T35(48-56) T43(54-61) T27(41-51) T49(61-70) T37(49-51) 

T34(48-58) T46(60-70)  T41(54-61)  T39(51-55) 

T47(60-62)     T40(55-64) 

     T44(64-71) 

     T45(71-79) 
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Where Ti(n1,n2): i is task number, n1 is the start time of the task, and n2 is the finish 

time of the task. 

Experimental results on the relatively hard problems that have been taken from 

Internet [11] does not consider the deadline time of the task by which the task should 

be completed. In our algorithm we override this problem, and our result does not look 

as bad solution because it has only a few time units less than that for the optimal 

solution [11], especially in case of heavy task graph.  

 

6. CONCLUSION 

Meeting deadlines and achieving high processor utilization are two main goals of task 

scheduling in real-time systems. In this paper, we proposed a scheduling algorithm for 

scheduling hard real-time tasks based on deadline time by which the task must finish 

its execution and including precedence constraints on multiprocessor systems which 

would simulate the practical applications.. Experiment results using task graph taken 

from [11] show that our algorithm gives near optimum solution specially for heavy 

task graph, and confirm the effectiveness of the proposed algorithm. 
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 ملخص البحث:  جدولة المهام للنظم متعددة المعالجات في الزمن الفعلي

 

فيييذا يييحثاثم تيييراخيييزاخجييية ياتيييةثي زاوقةمييييا بخ يييقام يييذاثمةمييي اثميييح ا  يييقاث ا يييخزاخ   يييحاثم  ييي زات مييي اةا
ثمشيييةجاثم قيي جياموقةمييياثم  يي زام يي ازا خبييققفاثم ب مويي  افييذاثميي   اثم ب ييذلااثم  يي زافييذاثميي   اثم ب ييذا

 اةصيييةم  اثميييذاثم اييي زا اةاثمييي   اثميييح ا  يييقاث اخ خ يييذات مييي ا ا  ييي اثمخ   يييحاةاثمشييييةجاخةصيييزا ييي  
اثم ق جيلا

 شك ياثموقةميام يح اثم  ي زا  يقاث اختيحامختق يقاخيخ يذاخ   يحاثم  ي زام يذاثم ب موي  اةاحميتامخج  يحاةمي ا
ايثقياخوي   يلثم جخيحاا خزاثتخ  ي  ا  ات حاقاازثمخ   حاةا   قفاثمقيميلاف م  ياثمتةثيا ا
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