
Journal of Engineering, Sciences, Assiut University, Vol. 35, No. 6, pp. 1443-1453, November 2007

1443

SCHEDULING HARD REAL-TIME TASKS WITH
PRECEDENCE CONSTRAINTS ON MULTIPROCESSOR

SYSTEMS

 E. M. Saad, H. A. Keshk, M. A. Saleh, and
Faculty of Engineering Helwan University, Cairo

A.A. Hamam
Thebes Academy

(Received March 19, 2007 Accepted November 3, 2007)

In this paper, a scheduling algorithm based on deadline time and

precedence constraints was developed to schedule hard real-time tasks on

multiprocessor systems. The real-time tasks are characterized by their

arrival time, deadline time, computation time and precedence constraints.

Scheduling problem for these tasks has been solved to determine the order

of scheduling tasks on the processors to minimize the overall computation

time, and obtain speeding up. The effectiveness of the developed algorithm

is shown through a simulation study.

KEY WORDS – Task Graph, Optimization, Real-time system, Parallel

processing, multiprocessor scheduling

1. INTRODUCTION

A real-time system is one in which the correctness of the computations not only

depends upon the logical correctness of the computations but also upon the time at

which the result is produced [1-3]. Typical examples of real-time systems include air

traffic control systems, networked multimedia systems, command and control systems

etc. [2].

Each real-time system consists of a set of tasks some of these tasks are periodic

in nature, and need to be activated regularly at fixed rates (periods). Normally, periodic

tasks have constraints, which indicate that instances of them must be executed once per

period. Other real-time tasks are aperiodic, and they are activated irregularly at some

unknown and possibly unbounded rate. The time constraint is usually a deadline. [2].

Hence, periodic tasks consist of an infinite sequence of identical tasks that are regularly

activated at a constant rate. Depending on the consequences of missing a deadline,

real-time tasks are categorized as follows [2]:

1. Hard real-time systems, in which the execution of the task should be completed

by a given deadline. i.e. Missing a deadline results in the failure of performance

degradation of the system, [1-3]. Command and control systems, air traffic

control systems are examples of hard real-time system.

2. Soft real-time systems, in which the system will properly perform as long as

deadline is met most of the time. Missing a few deadline will not affected the

system [1-3]. Telephone switching systems and image processing applications

are examples of soft real-time systems.

E. M. Saad
1
, H. A. Keshk

1
, M. A. Saleh

1
, and A.A.Hamam

2
 1444

3. Firm real-time systems, in which the task computations may be finished before

their deadlines. [2].

Hard real-time system must execute a set of concurrent real-time tasks in such

a way that all time critical tasks meet their specific deadlines.

Real-time scheduling can be categorized into hard and soft real-time

scheduling. Hard real-time scheduling algorithms can be used for soft real-time

scheduling.

Hard real-time scheduling can be classified into two types: Static and dynamic.

In static scheduling, the scheduling decisions are made at compile time. A run-time

schedule is generated off-line based on the prior knowledge of task-set parameters

(execution time, precedence constraints, and deadline time). So, run-time overhead is

small. On the other hand, dynamic scheduling makes its scheduling decisions at run-

time, selecting one out of the current set of ready tasks. Dynamic scheduler is flexible

and adaptive. Preemptive or non-preemptive scheduling of tasks is possible with static

and dynamic scheduling. [2].

Multiprocessors systems give a powerful computation means for real-time

applications [4-8]. Real-time systems use sophisticated scheduling algorithms to

maximize the number of real-time tasks that can be processed without violating timing

constraints.

In this paper, we present a scheduling algorithm to schedule hard real-time

tasks with precedence constraints on multiprocessor systems . The proposed algorithm

generates a feasible schedule by determining the processor which the task should be

assigned , and the order in which tasks should be executed., so that the tasks meet its

deadline constraints.

The paper is organized as follows, Section 2 reviews the related works in the

area of scheduling hard real-time tasks, Section 3 describes scheduling problem,

Section 4 discussed the proposed scheduling algorithm, in section 5 the simulation

results are presented, Finally in section 6 our conclusions and summary are presented.

2. RELATED WORK

The problem of scheduling hard real-time tasks has been studied extensively and a

number of algorithms have been proposed [4-10]. J. Jousson [4], proposed an improved

version of the slicing technique and extends it to heterogeneous distributed hard real-

time system. This technique can be applied to computational resources such as

processors, shard data structures. He does not take into consideration general resources

requirements. D. Wespetal, et. a.l., [5], proposed an algorithm for parallel task

scheduling using long path. This algorithm could not be applied to other graph

problems. K. Li [6], introduced an algorithm for scheduling parallel tasks on

multiprocessor system. This algorithm was not used in scheduling real parallel

computation on real parallel machines. V. Salmani, et. al., [7], proposed a modified

version of the maximum uregency first scheduling algorithm which combines the

advantages of fixed and dynamic scheduling to provide the dynamically changing

systems with flexible scheduling. This algorithm, however, has a major shortcoming

due to its scheduling mechanism that may cause a critical task to fail. A.Burchard, et.

al., [8], developed an efficient heuristic algorithm for scheduling a set of periodic tasks

SCHEDULING HARD REAL-TIME TASKS…… 1445

on a multiprocessor systems. This algorithm has better performance than rate-

monotonic scheduling algorithm (RM). RM is optimal for uniprocessor systems with

fixed priority assignments. A.S. Wu, et. al., [9], developed a genetic algorithm (GA)

approach to the problem of task scheduling for multiprocessor systems. Key features of

this approach include a flexible, adaptive problem representation and an incremental

fitness function. The advantages of this algorithm are that it is simple to use, require

minimal problem specific information and is able to effectively adapted in dynamically

changing environment. The primary disadvantage of this algorithm is that it has a long

execution time. J. Goossens, et. al., [10], proposed a new priority-driven scheduling

algorithm for scheduling periodic task system (PriD). They prove that the PriD

algorithm is superior to the earliest deadline first algorithm (EDF) in the sense that

schedules all periodic task systems that EDF can schedule, and in addition schedules

some periodic task systems for which EDF may miss some deadlines.

3. SCHEDULING PROBLEM

The input of scheduling hard real-time tasks system with precedence constraints is a set

of real-time tasks and precedence constraints.

Each task is defined as follows T= {j,a,c,d}

Where

j is the serial number of the task

c is the computation time (also called worst-case computation time or execution time

or processing time) of the task

a is the arrival time of the task; the time at which a task arrive to system (sometimes

called ready time or the earliest time at which task can start its processing)

d is the deadline of the task; the time by which the task complete its execution.

The problem is scheduling these tasks so that all of the tasks should meet their

timing constraints. Sometimes the ready time of a job may be later than that its

successors, or its deadline may be earlier than that specified for its predecessors. This

situation makes no sense. So, we apply the following method in order to achieve an

effective ready time.

- If a job has no predecessors, its effective ready time is its ready time.

- If it has predecessors, its effective ready time is the maximum of its ready time

and the effective ready times of its predecessors [2].

An effective deadline is calculated as:

- If a job has no successors, its effective deadline is its deadline.

- If it has successors, its effective deadline is the minimum of its deadline and

the effective deadlines of its successors [2].

3.1 Task Model

We assume that the real-time system consists of n tasks and m (m>1) identical

processors, which are connected through fully connected network without

communication cost.. A task may be assigned to any one of the processors. Each task is

aperiodic and Non-preemptive and is describe by:

E. M. Saad
1
, H. A. Keshk

1
, M. A. Saleh

1
, and A.A.Hamam

2
 1446

at arrival time

ct computation time

dt deadline time

st start time

ft finish time

A task Ti meets its deadline if ati < sti < dti - cti and ati + cti < fti < dti .

The start time of the task Ti is sti = max (ati , ptime (pi)) where ptime (pi) is the

time at which the processor , pj becomes available. The deadline time dti= ati + cti +

variable value between [60,70] time units, and the finish time fti = sti + cti .

4. PROPOSED SCHEDULING ALGORITHM

The proposed algorithm uses scheduling method based on deadline time and task

dependency. First, all tasks are put in the queue, the scheduler picks the first task and

tries to assign it to the available processor. At time zero all processors are available.

The pseudo code for our algorithm is as follows:

Begin

 While not empty queue Do

 Begin

 Get a task at the front of the queue

 Select a suitable processor

 Calculate starting time of a task

 Assign task to the selected processor

 Calculate finish time of a task

 Check a task for meeting its deadline

 If a task meets its deadline add it to schedule list

 Other wise add it to missing list

 End

 Calculate critical path

 Calculate speed up parameter

End

Where :

Critical path is the longest path from the entry node to the exit node.

Speed up parameter is the total processing of all tasks in task graph over completion of

all tasks on multiprocessor according to developed algorithm.

4.1 Selecting A Suitable Processor

We keep track of all processors in the system by using the array ptime of p(j), j=1,2,

…. , m (number of processors) which represent the time at which the processor p(j)

becomes available. Ex. Suppose we have four processors; at time zero all processors

are available i.e. ptime [p[j]] =0 for all j=1,2, … 4.. At time unit 16 a new task arrives

to the system and ptime [p[j]] was as follows:

Ptime [p[j]]

13 23 15 30

SCHEDULING HARD REAL-TIME TASKS…… 1447

In this situation we select the processor number one because the processor

number one has minimum time out of the different available time of all processors.

The following is the pseudo code for the procedure of selecting a suitable

processor according to the criteria of selecting a processor with minimum available

time.

Input: arrival time of the task(at) , the available time of all processors

Output: a suitable processor, starting time of the task (st)

Begin

 If a task Ti has no predecessor tasks

 m

 Minval = Min (ptime[p[j]])

 J=1

 Suitable processor is a processor with minval

 Starting time st [Ti] =Max [at[Ti] , minval]

 Enid if

 If a task Ti has one predecessor task Tk

 m

 Minval = Min (ptime[p[j]])

 J=1

 Suitable processor is a processor with minval

 Maxval=Max [at[Ti] , ft[Tk]]

Where ft is the finish time of the predecessor task Tk

 Starting time st [Ti] =Max [maxval, minval]

 End if

If a task Ti has more than one predecessor tasks Ti-1, .,…..,, Tk

 m

 Minval = Min (ptime[p[j]])

 J=1

 Suitable processor is a processor with minval

 Maxval=Max [at[Ti] , ft[Ti-1], ft[Ti-2] , …….., ft[Tk]]

 Starting time st [Ti] =Max [maxval, minval]

 End if

End

To implement the proposed algorithm efficiently we maintain four lists and one task

dependency matrix described as follows:

 - at List of arrival time for all tasks in the system

 - ct List of computation time for all tasks in the system.

 - dt List of deadline time for all tasks in the system.

 - sl List of scheduled tasks.

 - pt matrix represent the task dependency.

Illustrative example for Pt: we consider a ten task T1,T2, ….., T10. as an example

Pt

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

0 0 0 0 1 2 0 0 7 0

0 0 0 0 4 3 0 0 8 0

E. M. Saad
1
, H. A. Keshk

1
, M. A. Saleh

1
, and A.A.Hamam

2
 1448

From the above figure we notice that pt [0][6]!= 0 && pt [1][6] !=0. This

means that the task T6 depend on T2 and T3, so task T6 must start its computation

after tasks T2 and T3 finishes their computations.

Start

Is empty

queue

Calculate critical path

Calculate speed up

parameter

End

Get a task at front of

queue

Select a suitable

processor

Calculate start time of the

task

Assign task to the selected

processor

Calculate finish time

Is a task

meeting its

deadline?

Add task to the missing list Add task to the schedule list

Yes

No

Yes No

Fig. (1): A flowchart for our algorithm

The flowchart used to describe our algorithm is as follows:

No

SCHEDULING HARD REAL-TIME TASKS…… 1449

The following is an illustrative example for scheduling ten tasks on three processors.

Task

No.
At Ct

Predecessor

tasks
St ft

Suitable

processor

T1 5 2 6 8 P1

T2 6 3 1 9 12 P1

T3 6 3 6 9 P2

T4 6 8 6 14 P3

T5 6 6 10 16 P2

T6 12 2 13 15 P1

T7 12 2 15 17 P3

T8 12 5 16 21 P1

T9 12 7 1, 3 17 24 P2

T10 12 1 9 25 26 P2

First, we schedule the task number one on any of the three processors, then we

select processor number one; on which task one starts its processing at time unit 6 and

finishes at time unit 8. We notice that task number two depends on task one, Therefore

task two start its processing at time unit 9 although it arrives at time unit 6 and finishes

at time unit 12. Similarly, tasks numbers nine and ten.

5. SIMULATION RESULTS

We examine our algorithm on two problems. First problem 50 (50-4) tasks with

minimum number of predecessor tasks equal to 0, maximum number of predecessor

tasks equal to 4 and average number of predecessor tasks equal to 1. Second problem

50 (50-12) tasks with minimum number of predecessor tasks equal to 0, maximum

number of predecessor tasks equal to 12 and average number of predecessor task equal

to 4.66 which should be schedule onto 6 processors. Number of tasks is generated

randomly as computation times for every task and the precedence constraints are taken

from [11]. In this case, the tasks arrive in the system 5 tasks every 6-time units. For this

problem the critical path length which means that the longest path from the entry task

to the exist task is 32, 112 time units respectively, and it has been also taken from [11].

Applying the developed algorithm, the critical path becomes 79,124 time units.

Second, we test the problem with 100 (100-4) tasks with minimum number of

predecessor tasks equal to 0, maximum number of predecessor tasks equal to 4 and

average number of predecessor tasks equal to 1. Second problem 100 (100-12) tasks

with minimum number of predecessor tasks equal to 0, maximum number of

predecessor tasks equal to 12 and average number of predecessor task equal to 3 which

should be schedule onto 15 processors. In this case, the tasks arrive in the system 10

tasks every 6-time units. The critical path length is 40, 74 time units respectively and

taken from [11]. Applying the developed algorithm, the critical path become 79, 87

time units.

Figures (2) and (3) show the relationship between number of processors used

and the critical path length respectively. It is clear from the two figures that the critical

path length decreased monotonically with increasing the number of processors until the

E. M. Saad
1
, H. A. Keshk

1
, M. A. Saleh

1
, and A.A.Hamam

2
 1450

increasing of the number of processors does not effect on the critical path length (reach

constant critical path length). This is the optimal situation.

Another factor is speed up parameter which means that total processing of all

tasks in task graph over completion of all task on multiprocessors according to

developed algorithm. For first problem are 8.9, 3.0 and 19.5, 10.87 for second problem.

Also taken from [11]. Applying the developed algorithm becomes 3.5, 2.7 and 9.9, 9.8

respectively.

Also, another factor is used to evaluate the performance of the developed

algorithm, the missing rate, which mean the percentage of tasks that missed the

deadline time. Figures (4) and (5) show the relationship between number of processors

used and missing rate respectively. It is clear from the two figures that the missing rate

decreases monotonically with increasing the number of processors until the increasing

of the number of processors does not affect on the missing rate (reach constant missing

rate), this is the optimal situation.

Fig. (2): Relationship between number of

processors and critical path length for 50

tasks

0

100

200

2 3 4 5 6 7 8 9 10

No. of processors

C
ri

ti
c

a
l

p
a

th
 l

e
n

g
h

t

 50-4

 50-12

SCHEDULING HARD REAL-TIME TASKS…… 1451

Fig. (4): Relationship between number of

processors and missing rate for 50 tasks

0

10

20

30

40

2 3 4 5 6 7 8 9 10

No. of processors

M
is

s
in

g
 r

a
te

 %

 50-4

 50-12

Fig. (5): Relationship between number of

processors and missing rate for 100 tasks

0

20

40

60

80

100

2 3 4 5 6 7 8 9 10 11 12 13 14 15

No. of processors

M
is

s
in

g
 r

a
te

 %

100-4

 100-12

The list of tasks scheduled at each time unit on all processors at optimal

situation for case 50 tasks with four predecessor tasks are shown in the following table

as an example.

P0 P1 P2 P3 P4 P5

T0 (6-8) T2(6-9) T3(6-14) T4(6-12) T5(12-14) T6(12-14)

T1(8-11) T7(12-17) T11(18-21) T8(12-19) T12(30-40) T13(18-21)

T10(18-27) T15(24-28) T16(24-32) T9(19-20) T20(30-40) T18(24-29)

T21(30-31) T22(30-32) T17(32-40) T14(20-22) T33(42-51) T23(30-39)

T24(31-39) T25(36-40) T32(42-49) T19(24-32) T42(54-59) T29(39-46)

T28(39-42) T31(42-45) T38(49-53) T26(36-41) T48(60-61) T36(48-49)

T30(42-48) T35(48-56) T43(54-61) T27(41-51) T49(61-70) T37(49-51)

T34(48-58) T46(60-70) T41(54-61) T39(51-55)

T47(60-62) T40(55-64)

 T44(64-71)

 T45(71-79)

E. M. Saad
1
, H. A. Keshk

1
, M. A. Saleh

1
, and A.A.Hamam

2
 1452

Where Ti(n1,n2): i is task number, n1 is the start time of the task, and n2 is the finish

time of the task.

Experimental results on the relatively hard problems that have been taken from

Internet [11] does not consider the deadline time of the task by which the task should

be completed. In our algorithm we override this problem, and our result does not look

as bad solution because it has only a few time units less than that for the optimal

solution [11], especially in case of heavy task graph.

6. CONCLUSION

Meeting deadlines and achieving high processor utilization are two main goals of task

scheduling in real-time systems. In this paper, we proposed a scheduling algorithm for

scheduling hard real-time tasks based on deadline time by which the task must finish

its execution and including precedence constraints on multiprocessor systems which

would simulate the practical applications.. Experiment results using task graph taken

from [11] show that our algorithm gives near optimum solution specially for heavy

task graph, and confirm the effectiveness of the proposed algorithm.

REFERENCES

[1] D. Stewert , "Introduction to real-time scheduling theory", University of Maryland,

Department of Electrical & Computer Engineering, springer Verlag, 2000.

 [2] A. Mohammadi and S.G. Akl (2005):"Scheduling algorithms for real-time

systems", School of Computing, Queen's University, Kingston, Ontario Canada,

July 15, 2005.

[3] L. Sha, T. Abd Elzaher, A. Karl-Erik, A. cervin, T. Baker, A. Burns, G. buttazzo,

M. Caccamo, J. Lehoczky, A. K. Mok, "Real time scheduling theory: A historical

perspective ", real-time system, 28, 101-155, 2004.

[4] J. Jonsson, :"A Robust adaptive metric for deadline assignment in heterogeneous

distributed real-time system", Proceedings of the IEEE Int'l Parallel Processing

Symposium, San Juan, Puerto Rico, April 12-16, 1999, PP. 678-687.

[5] D. Wespetal, J. Netson and D. Lopez, "Approximating a parallel task schedule

using longest path",University of Minnesota-Morris, USA, 2003.

http://cda..morris.umn.edu/~lopezdr/publications/longestpath03.doc

[6] K. Li, "Scheduling precedence constrained parallel tasks on multiprocessor using

the harmonic system partitioning scheme", Journal of Information Science and

Engineering, 21, 309-326, 2005.

[7] V. Salmani, .T. Zargar, and M. Naghibzadeh, "A modified maximum uregency first

scheduling algorithm for real-time tasks", Trans. On Engineering Computing and

Technology, vol. 9, November 2005, ISSN 1305-5313.

[8] A. Burchard, Y. Oh, J. Liebeherr, S.H. Son, "A linear-time online task assignment

scheme for multiprocessor systems", Proceedings, 11
th
 IEEE workshop Real-time

operating systems and software, PP. 28-31, may 1994.

[9] A.S. Wu, H. Yu, S. Jin, K.C.Lin, and G. Schiavone, "An incremental genetic

algorithm approach to multiprocessor scheduling", IEEE Trans. On Parallel and

Distributed systems, Vol. 15, No. 9, Sept. 2004, PP. 824-834.

SCHEDULING HARD REAL-TIME TASKS…… 1453

[10] J. Geoussens, S. Funk, and S. Baruah, :"Priority-driven scheduling of periodic task

systems on multiprocessors", Real-time systems, 25, 187-205, 2003.

[11] Advanced computing systems, available from:

 http://www.kasahara.elec.waseda.ac.jp

 ملخص البحث: جدولة المهام للنظم متعددة المعالجات في الزمن الفعلي

فيييذا يييحثاثم تيييراخيييزاخجييية ياتيييةثي زاوقةمييييا بخ يييقام يييذاثمةمييي اثميييح ا يييقاث ا يييخزاخ يييحاثم ييي زات مييي اةا
ثمشيييةجاثم قيي جياموقةمييياثم يي زام يي ازا خبييققفاثم ب مويي افييذاثميي اثم ب ييذلااثم يي زافييذاثميي اثم ب ييذا

 اةصيييةم اثميييذاثم اييي زا اةاثمييي اثميييح ا يييقاث اخ خ يييذات مييي ا ا ييي اثمخ يييحاةاثمشييييةجاخةصيييزا ييي
اثم ق جيلا

 شك ياثموقةميام يح اثم ي زا يقاث اختيحامختق يقاخيخ يذاخ يحاثم ي زام يذاثم ب موي اةاحميتامخج يحاةمي ا
ايثقياخوي يلثم جخيحاا خزاثتخ ي ا ات حاقاازثمخ حاةا قفاثمقيميلاف م ياثمتةثيا ا

http://www.kasahara.elec.waseda.ac.jp/

	E. M. Saad, H. A. Keshk, M. A. Saleh, and
	Faculty of Engineering Helwan University, Cairo
	A.A. Hamam
	Each task is defined as follows T= {j,a,c,d}
	4.1 Selecting A Suitable Processor
	Ptime [p[j]]
	Input: arrival time of the task(at) , the available time of all processors
	Begin
	J=1
	Suitable processor is a processor with minval
	J=1
	Suitable processor is a processor with minval
	Where ft is the finish time of the predecessor task Tk
	End if
	J=1
	Suitable processor is a processor with minval
	End if
	Pt
	The following is an illustrative example for scheduling ten tasks on three processors.
	5. SIMULATION RESULTS
	6. CONCLUSION
	REFERENCES
	ملخص البحث: جدولة المهام للنظم متعددة المعالجات في الزمن الفعلي

